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Abstract 

This article describes recent improvements in mapping the world-wide scientific literature. Existing 

research is extended in three ways. First, a method for generating maps directly from the data on the 

relationships between hundreds of thousands of documents is presented. Second, quantitative techniques 

for evaluating these large maps of science are introduced. Third, these techniques are applied to data in 

order to evaluate eight different maps. The analyses suggest that accuracy can be increased by using a 

modified cosine measure of relatedness. Disciplinary bias can be significantly reduced and accuracy can 

be further increased by using much lower threshold levels. In short, much larger samples of papers can 

and should be used to generate more accurate maps of science. 

 

Introduction 

Henry Small is the leader in generating macro-level maps of science from the scientific literature. 1-3 

He and his colleagues have generated maps of science that are exemplars in the field. Each map is based 

on a very small sample of reference papers (the most highly cited references). These elite papers cover 

research in all areas of the natural sciences 1 or all areas in the natural and social sciences. 2, 3 In all cases, 

maps were created by clustering these papers using co-citation analysis and then plotting the relationships 

between the clusters. These maps also represent methodological progress. Better sampling techniques 

were used to reduce disciplinary bias. Clustering algorithms were modified in order to limit the size of a 
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cluster of documents. And an iterative clustering approach was introduced so that existing visualization 

algorithms could be utilized. 

There have not been any publications, however, that provide quantitative techniques for evaluating 

these maps of science. For example, there are no publications that show how a series of maps, using 

different methodological choices, could be generated and evaluated to determine which methodological 

choice results in a more accurate map. We have pursued this line of inquiry by focusing on journal-level 

maps (the relationship between scientific journals). Our first study looked at different measures of 

journal-journal relatedness to determine which measure generates the most accurate cluster solutions. 4 A 

second study focused on additional measures of journal-journal relatedness, developed a method for 

measuring local accuracy in a map (whether your neighbor is who you expect to see) and then used these 

methods to determine which measures of relatedness were better for different sample sizes. 5  

This paper builds on this avenue of inquiry, but shifts the level of analysis from scientific journals to 

scientific papers, expanding on our paper at ISSI 2005. 6 Paper-level maps are far more expensive and 

difficult to create. In the 1980’s, one reviewer estimated that it cost $70,000US simply to generate cluster 

solutions from one year of data. 7 Days were required to generate these cluster solutions, weeks if one 

wanted to have a more representative sample of data. One can only be in awe of the resources that were 

invested by Small and his colleagues to generate the few maps that are available in the literature. 

Things are different today. Many institutions now have electronic access to large amounts of 

bibliographic data as well as the computing resources to make sense of it. Software is now available to 

generate maps directly from a matrix of paper-paper relatedness measures. This combination enables us to 

generate large-scale maps of science more efficiently, and in a much more cost-effective manner. This 

capability allows us to generate maps with different measures and methods, which leads to the question 

posed in this paper – how do we determine which maps are better?  

We present a relatively fast and inexpensive procedure for generating paper-level maps of science. 

This procedure uses a graph layout algorithm that can generate maps of science directly from a matrix of 
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paper-paper relatedness measures. The procedure is used to generate eight paper-level maps of science 

using two different sampling strategies, two different measures of relatedness and two different 

approaches towards visualization.  

This paper is organized into five sections. The first section presents two exemplar maps generated by 

Small and his colleagues (the earliest and the most recent). These maps illustrate how the field has 

progressed over the past 25 years, but also illustrate the problem addressed in this paper – how does one 

quantitatively evaluate and compare maps of science? The second section describes our methodology for 

generating maps of science and the methodological choices that will result in eight different maps of 

science. The third section outlines how these maps will be evaluated with a primary focus on the tradeoffs 

between accuracy, coverage and disciplinary bias. The last two sections present the results of the 

evaluations, along with a discussion of the implications of this research. 

 

Exemplar Maps of World-Wide Science 

This study focuses exclusively on maps of science that have been generated from a sample of 

documents covering many disciplinary fields. We will not attempt to review the many mapping efforts 

that focus on a specific field or area of science. 8-11 Nor will we review parallel efforts to map broad 

technical fields or the world-wide web. We limit our focus to the depiction of the structure among and 

between a diverse set of scientific papers in the attempt to map all of science. 

Historically, there has been only one source capable of generating these maps – the combined 

science and social science databases provided by the Institute of Scientific Information (ISI), now a 

division of Thomson Scientific. Henry Small, chief scientist at ISI, has devoted a large portion of his 

career to generating and publishing macro-level maps of science from the ISI database. Two examples are 

provided here: the earliest map 1 and the latest map 3. These maps illustrate many of the accomplishments 

made over the past 25 years and highlight some of the issues associated with generating large maps of 

science. 
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Figure 1 is a map of world wide science generated by Griffith et al. 1 They started out with 867,600 

references (the number of unique references in ISI’s natural sciences database during the first quarter of 

1972). They limited their analyses to the 1,832 references that were most highly cited (reference papers 

had to have been cited 10 or more times in the first quarter of 1972 in order to be included). Three 

different thresholds were then used for clustering. The map shown in Figure 1 is based on a cluster 

threshold of 3 (a reference had to co-occur 3 or more times with another reference before it could be 

included in a cluster). This resulted in 115 clusters that covered 1310 documents (0.15% of the available 

reference documents and 71.5% of the highly cited reference papers). The 41 largest clusters (clusters 

with at least 3 papers) were then selected and graphed so that nodes that are closer are more related.  

 

INSERT FIGURE 1 NEAR HERE 

 

The map in Figure 1 provided a first view of how science might be structured. The four largest nodes 

are biomedicine (the “hub” node on the left side of the map), chemistry (the “hub” node on the far right) 

and nuclear and particle physics (nodes at the upper middle of the map). Two of these nodes have the 

most number of links to other nodes (biomedicine on the left and chemistry on the right). In this map, 

physics does not have as many links to other areas of science as do the hub nodes.  

The map in Figure 1 also provided some intriguing observations about the network relationships 

around major nodes. The nodes connected to biomedicine are like spokes around a wheel. They don’t tend 

to be interconnected like the nodes connected to chemistry (on the right). But it’s unclear whether these 

observations are a reflection of the structure of science or an artifact of the methodological choices 

(sampling threshold, measures of relatedness, clustering algorithm and visualization algorithm). Changes 

in any of these methodological choices may have generated a completely different map of science.  

Small, Sweeney & Greenlee 2 revised their mapping technique in order to overcome three major 

problems: disciplinary bias, over-aggregation of documents, and limitations in visualization software. 
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Disciplinary bias was a consequence of the sampling procedure. The sampling approach in the 1974 map 

used simple citation counts (selecting the references that were cited the most). References in biomedical 

papers were over-represented because biomedical papers tend to have more citations. References in 

mathematics were under-represented for the opposite reason (fewer citations per paper and relatively low 

citation counts). Small, Sweeney & Greenlee proposed using fractional citation counts as a way to reduce 

disciplinary bias. Fractional citation counts involved weighting each reference according to the fraction of 

references in the citing paper (references would each be weighted with the value of ¼ if there were four 

references in a paper). The fractional values were then summed and reference papers with the highest 

counts were selected. 

Over-aggregation (the existence of extremely large clusters of documents) was another problem 

addressed by Small, Sweeney & Greenlee. 2 There seemed to be general consensus that document clusters 

should not exceed around 50 to 60 papers. 7 The clustering algorithm that had been used (single link 

clustering) resulted in two nodes in Figure 1 that significantly exceeded this threshold (the biomedical 

node had 801 papers and the chemistry node had 92 papers). They proposed using a single link clustering 

algorithm that would impose a threshold of 50 papers on cluster size.  

The third major problem that Small, Sweeney & Greenlee 2 addressed was limitations imposed by 

visualization software. The visualization software that was available in the 1970’s and 1980’s could not 

handle more than 100 nodes. But the methodological improvements mentioned above (lower disciplinary 

bias and limitations on cluster size) generated thousands of clusters. They proposed clustering the clusters 

in order to reduce the number of nodes. Four clustering iterations (clusters of clusters of clusters of 

clusters of documents) were needed in order to generate the number of nodes that could be visualized 

with existing software. These methodological improvements were used to generate a map in Small’s 1985 

and 1999 papers. Figure 2 represents the 1999 map using these new techniques.  

 

INSERT FIGURE 2 NEAR HERE 
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This map was based on an initial set of approximately 6,100,000 references (the number of unique 

references in all papers published in 1995, but limited to references that were published between 1981 and 

1995). Their analysis focused on a sample of 164,612 references (based on the sequential application of 

full and fractional citation thresholds). Iterative clustering was used to generate 18,939 clusters (level 1), 

2,402 clusters (level 2), 327 clusters (level 3) and finally the 35 clusters that are represented in Figure 2. 

Documents and clusters were dropped at each level. The first level of clustering dropped 75.3% of the 

sample documents. The final set of 35 clusters consisted of 36,720 documents (dropping an average of 

36.3% of the documents over each iterative clustering step). 

While the scope of this map is greater (it includes the social sciences), the overall number of nodes is 

slightly less than the number of nodes in the early map of Figure 1 (35 vs. 41). The most dramatic 

difference between these two maps, however, is the lack of similarity in structure. Figure 1 suggests that 

certain nodes (chemistry and medical science) are central to the communication patterns in their local area 

while physics is embedded in a more sparsely connected network. Figure 2 suggests that physics and 

chemistry are highly interconnected and medical science does not play a central role. Is this an artifact of 

the methodological choices, a more accurate reflection of how science is structured, or a reflection of 

change in structure? There is no way to answer the question based on what has been published. 

The methodological improvements in Figure 2 had confounding effects on disciplinary bias. The use 

of fractional citation thresholds did have the desired result of reducing disciplinary bias (suppressing the 

number of biomedical references and increasing the number of physics references. But the use of iterative 

clustering (and the exclusion of documents during each clustering iteration) increased disciplinary bias. 3 

Physics was now highly over-represented and clinical medicine was highly under-represented. 

Correspondingly, physics seemed to play a more central role and clinical medicine has a less central 

position in Figure 2.  
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These two maps help illustrate the major issues addressed in this paper. It’s unclear how one might 

quantitatively evaluate the two maps presented above. Specifically, how might one measure the accuracy 

of a map? How much would accuracy deteriorate if one increased the number of documents (by lowering 

the sampling threshold and/or reducing the number of documents that are excluded during clustering)? 

Which map has lower disciplinary bias? What effect would disciplinary bias have on the accuracy of the 

map? What is the relationship between coverage (the number of documents), disciplinary bias and 

accuracy? Pursuing this line of research would help in the selection of measures and thresholds that 

generate more accurate maps of science. Pursuing this line of research would also generate more reliable 

insights into how science is structured and how it has evolved over time. 

 

Generating Maps of Science 

In generating our maps of science, we explore some of the “methodological space” inherent in that 

broad fundamental approach suggested by Small and his colleagues. First, we start from the same choice 

of database and focus on one year of data. We then use two different criteria for generating a sample of 

papers for further analysis. Two different document-document relatedness measures are then calculated 

for each sample. And finally, maps generated directly from paper-paper relatedness statistics are 

compared to maps based on document clusters. 

 

Data 

We have used the combined ISI databases from a single file year in this study (2002 SCIE and SSCI 

databases). There were 1,069,764 current records with 10,911,939 unique reference papers in the dataset. 

Of the over 1 million current records, we limit the number of “mappable” records to the 833,307 that are 

bibliographically coupled to another current record within the set. This excludes the majority of editorials, 

book reviews, and similar items that are indexed by ISI, and limits the dataset primarily to records 

containing publishable technical advances. This parallels the 10,911,039 reference papers used in the set 
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in that, since they were referenced, they can be considered to be publishable technical advances that were 

worth referring to. 

 

Two Sampling Approaches 

Small 3 describes two major approaches to sampling a publication database. One could focus on the 

current papers or on the references. He and others have focused exclusively on the references in 

generating macro-level maps of science using co-citation techniques. We will generate two sets of maps: 

one based on an analysis of the relationship between current papers and another based on the analysis of 

the relationship between references. 

We expect these maps to provide qualitatively different insights into the structure of science. An 

analysis of the relationship between current papers is expected to generate a thematic map. Current papers 

that are close to each other in a map are assumed to have the same theme. Reference papers that are close 

to each other in a map are assumed to deal with a related concept or exemplar. While these maps may be 

similar in structure, one can expect that the relationships between major scientific areas (math, physics, 

chemistry biology and medicine) may differ substantially.  

Minimal thresholds were used to reduce the number of documents for further analysis. Different 

thresholds were used for current and reference papers. We excluded all current papers that had a 

maximum of 1 co-occurrence with any other documents in their set, and those reference papers that had a 

maximum of 3 or fewer co-occurrences with any other documents in the set. Measures of paper-paper 

relatedness are relatively meaningless for the excluded sets of papers. This reduced the number of 

documents to 718,964 reference papers and 731,289 current papers. 

 

Two Measures of Relatedness 

We use co-occurrence frequencies to generate two different measures of paper-paper relatedness. 

Co-occurrence frequency between reference papers (e.g. co-citation analysis) is the approach first 
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proposed by Small, and is the standard that was widely used in the field through the 1980s. Co-occurrence 

frequencies between current papers (e.g. bibliographic coupling) has also been proposed as a useful 

measure, 3, 12 but has not been used. There has been no attempt to map the relationship between a large 

diverse set of current papers. 

Alternative measures of relatedness have been proposed in the literature 13 to overcome the biases 

associated with using co-occurrence frequencies. In this study, we use K50, a modified cosine index (a 

cosine adjusted for expected co-occurrence frequencies). Previous work has suggested that this is the 

most accurate measure for co-citation analysis. 5 A raw frequency count and the modified cosine have 

been generated for each of the two data samples mentioned above. 

 

Visualization Approaches With and Without Document Aggregation 

Some of the newer visualization (or graph layout) algorithms are not limited to mere hundreds of 

nodes, but can handle hundreds of thousands, or even millions of objects. 14, 15 Thus, the visualization 

routine no longer need be a bottleneck when handling very large document sets, and it is no longer 

required to cluster documents in order to visualize the relationship between large numbers of documents. 

In addition, these tools often have zoom and pan capabilities to allow exploration of very large data sets.  

There are, however, theoretical and practical reasons to cluster the documents and then show the 

relationships between these clusters. Theoretically, some believe that the fundamental unit of analysis 

should be a research community rather than a document. 16 Since document clusters are one way to 

characterize these research communities, one should map the document clusters in order to gain insights 

into the fundamental structure of science. On the practical side, there is an upper limit on the number of 

objects that can be deciphered on the printed page. In addition, the visualization program we use, VxOrd, 

does not take into account groups of documents when it tries to locate documents in two-dimensional 

space. We were concerned that the visualization algorithm might tend to optimize local conditions 
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(improving the location of documents) at the potential expense of regional accuracy (improving the 

location of groups of documents). 

We therefore visualize the relationship between documents in two ways. In both cases, we use a 

visualization algorithm, VxOrd, 15 that is capable of handling the relationship between hundreds of 

thousands of documents based on document-document relatedness measures. For the first approach we 

use VxOrd in native mode, which does not aggregate documents. For the second approach we change a 

parameter in VxOrd that enables natural aggregation of documents. The first approach tends to create a 

visually homogenous layout at local levels, while the second approach creates visually separated groups 

of documents. Subsequent clustering is performed on each map. A more detailed description of the 

visualization algorithm is provided in Appendix A. A description of the clustering algorithm is provided 

in Appendix B. 

 

Evaluating Maps of Science 

Figure 3 is an example of what a map of science with ~700,000 nodes looks like. Only the nodes are 

shown in this figure. VxOrd also provides information on the links between these nodes, but including 

this data in Figure 3 would hinder our ability to see the spatial relationship between nodes.  

 

 

This figure illustrates one of the unique problems that one faces in evaluating and comparing large-

scale maps. One cannot rely on simple visual inspections. Quantitative techniques are required to evaluate 

and compare these maps.  

The following methods are proposed to evaluate each map of science. First, we evaluate the local 

accuracy of each measure of relatedness (the tendency for papers that are close to each other to be in the 

same discipline). Second, we evaluate the regional accuracy of each measure of relatedness (the tendency 
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for papers in the same discipline to be located near each other on a map). Third, we evaluate disciplinary 

bias (the tendency for a sample of document to over/under represent different disciplines). And lastly, we 

evaluate the coherence of all clusters with 50 or more papers. 

 

Local Accuracy 

Local accuracy is defined as the tendency for a pair of papers to belong to the same ISI disciplinary 

category. The measure of accuracy used here is based on Klavans & Boyack 5 in their analysis of the 

accuracy of different journal-journal relatedness measures. The following method is used to evaluate local 

accuracy of a map. First, the distance between linked papers in a graph is calculated. Second, each pair of 

papers is coded as “1” if both papers are in the same ISI category and “0” if not (the 24 ISI categories are 

used in this analysis). Journals that are coded in the multidisciplinary category are treated differently. The 

pair of papers is coded as “.5” if either paper is in the multidisciplinary category, because 

multidisciplinary papers can, by definition, link to so many other disciplines. 

All pairs of linked papers are ordered by ascending distance. One expects that the first set of records 

(the most closely spaced pair) will be on the same topic, be assigned to the same ISI disciplinary category, 

and therefore be coded as a “1” (most accurate). The cumulative average is then calculated to determine 

the drop in accuracy as one includes all pairs of papers.  

There are hundreds of millions of pairs of linked papers. We proceed through the list of pairs (from 

most related to least related) until ‘n’ unique papers are covered. For example, the first pair covers two 

papers. The next pair might cover two additional papers. We make note of the local accuracy (cumulative 

sum of the coding numbers divided by number of pairs) as we cover more and more of the papers until 

100% of the papers are covered. This might require the review of only eight million pairs or as many as 

sixty million pairs. The results tell us the overall accuracy as one increases the number of papers from 2 

(the initial case) to 100% of the sample (approximately 700,000 papers). 
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Accuracy vs. coverage curves are generated for each map (two samples, two measures of relatedness 

for each sample and two visualization layouts), where the x-axis shows cumulative coverage, and the y 

axis is the cumulative average accuracy. Based on similar calculations with journals, 5 we expected that 

the curves would start high and slope down. Average accuracy should decline as one includes papers that 

have lower levels of relatedness to their nearest linked neighbors. 

 

Regional Accuracy 

Regional accuracy is defined as the tendency for papers associated with a discipline to be close to 

each other on a map of science. Previous maps of science have tended to show that highly aggregated 

clusters have a strong disciplinary orientation. 4 Therefore, one would expect that papers in the same 

discipline should be located in the same general area on a map. 

The same disciplinary classification system mentioned above is used. The journal affiliation of each 

paper allows one to assign ISI categories to each paper (multi assignments are allowed). The average 

position of each discipline is calculated. Dispersions (Euclidean distances between papers and the average 

position of the discipline) are used to measure regional accuracy. Low dispersions means that the map has 

higher regional accuracy.  

 

Disciplinary Bias 

The following method is used to evaluate disciplinary bias. First, an ordered list is created (papers 

are ordered in terms of distance to nearest neighbor, in the fashion described earlier for local accuracy). 

Second, the disciplinary affiliation of the paper is coded. Fractional counts are generated if the paper is 

assigned to more than one discipline. Third, a cumulative disciplinary profile is calculated (the fraction of 

papers per discipline for all papers up to the nth related paper). Fourth, the squared difference between the 

disciplinary profile and the expected disciplinary profile is calculated. The expected disciplinary profile is 
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based on the entire sample of current papers or references respectively. Disciplinary bias is 0 if the 

cumulative disciplinary profile (for a specific threshold level) equals the expected disciplinary profile.  

Graphs showing disciplinary bias are then generated from all eight maps, with cumulative coverage 

on the x-axis and disciplinary bias on the y-axis. One would expect disciplinary bias to start relatively 

high and slope downward, dropping rapidly at first and then slowly as one covers all of the available 

literature. 

 

Coherence of Large Clusters 

As mentioned above, clustering (see Appendix B) is performed on each map. There is general 

consensus among those clustering the scientific literature that there is a maximum cluster size. Early work 

suggested a cluster size of around one hundred papers. 7 Small imposes a more stringent size limit of fifty 

to sixty. 3 Clusters that were larger than this were considered problematic. We take a detailed look at all 

clusters with greater than fifty papers to examine their coherence.  

Coherence is defined as the maximum percentage of papers in a cluster that are in the same 

discipline. A large cluster is more coherent if most of the papers are members of the same discipline. We 

expect that coherence is negatively correlated with cluster size (the larger clusters are, as assumed by 

prior researchers, to have lower coherence). We look at two criteria with regards to cluster sizes. First, the 

numbers of large clusters (> 50 documents) for each map is calculated. Second, we determine the average 

coherence of all large clusters. 

 

Evaluation of Eight Maps of Science 

Local Accuracy 

The relative accuracies of the eight maps can be compared if one focuses on the trade-off between 

cumulative accuracy and coverage. “Accuracy vs. coverage” in this context is analogous to precision vs. 
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recall in information science. The most accurate map is not necessarily the same for each level of 

coverage.  

The curves in Figure 4 show that the modified cosine measure generates more accurate maps than 

the raw frequency measure. For current papers, the aggregated map based on the modified cosine measure 

(K50:aggregated) is superior at all levels of coverage. For reference papers, the K50:aggregated map has 

the highest accuracy from 40% to 87% coverage, and the K50:paper map has the highest accuracy from 

87% to 100% coverage. The maps based on raw frequency measures are less accurate. We can also 

observe that the curves for the current paper maps are more spread out (greater variance). This suggests 

that the choice of measure is more important when generating maps of the current literature. The choice 

of measure has less of an impact on local accuracy when generating a map of reference papers. 

 

INSERT FIGURE 4 NEAR HERE 

 

The increase in accuracy over a broad range of sampling is counter to the expected pattern. The 

expected pattern (a drop in accuracy as one increases sample size) is implicit in early decisions to select a 

very small sample of papers and use very selective clustering thresholds. This curve suggests the 

opposite: one would have a more accurate map if the sample size is larger and the clustering threshold is 

more inclusive. This is especially true for generating maps of reference papers where local accuracy 

increases to 90% of the sample, and where the best map (K50:paper) could include 99% of the data with 

negligible impact on accuracy. 

 

Regional Accuracy 

The dispersion of papers by discipline is another way to evaluate the maps. Lower overall 

dispersions means that papers that are in the same discipline are closer to each other. The total dispersions 

for all four paper-level maps and the two best aggregated maps are listed in Table 1. 
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Table 1. Regional accuracy (cumulative dispersion by discipline) for different maps. 

 Current paper maps Reference paper maps 

 Dispersion Rank Dispersion Rank 

K50:aggregated 555,197 2 469,212 1 

K50:paper 516,412 1 550,976 2 

RawFreq:paper 577,026 3 579,570 3 

 

The maps based on the modified cosine measures have greater regional accuracy. As expected, the 

K50:aggregated map was better than the K50:paper map for reference papers (for the theoretical and 

practical reasons mentioned previously). But we were surprised that this relationship did not hold for the 

maps of current papers. The aggregated map of current papers has lower regional accuracy than the non-

aggregated map of current papers. At this point, we can only guess at the reasons for this result. Perhaps 

themes (which correspond to clusters of current papers) are more multidisciplinary in nature than 

exemplars (which correspond to clusters of reference papers). Perhaps there are some disciplines that one 

would expect to be more dispersed as one shifts from a homogeneous document map to an aggregated 

document map.  

In order to explore this further, we looked at the set of disciplines that had the unexpected increase in 

dispersion. Table 2 lists the 24 disciplines with their percent differences in dispersion (as a function of 

average dispersion) for the k50:aggregated map vs. the k50:paper map.  
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Table 2. Changes in dispersion for maps of current papers by discipline. 

Decreases Increases 

 Index * ISI Discipline  Index * ISI Discipline 

1 -1.17 Space Science 10 0.06 Materials Science 

2 -0.41 Economics & Business 11 0.07 Chemistry 

3 -0.21 Psychology/Psychiatry 12 0.08 Education 

4 -0.19 Computer Science 13 0.09 Clinical Medicine 

5 -0.16 Mathematics 14 0.10 Multidisciplinary 

6 -0.14 Physics 15 0.14 Biology & Biochemistry 

7 -0.05 Engineering 16 0.15 Ecology & Environment 

8 -0.03 Molecular Bio & Genetics 17 0.16 Immunology 

9 -0.01 Geosciences 18 0.18 Neurosciences & Behavior 

   19 0.18 Social Sciences, general 

   20 0.28 Microbiology 

   21 0.30 Pharmacology 

   22 0.33 Plant & Animal Sciences 

   23 0.36 Law 

   24 0.61 Agricultural Sciences 

* (disp_k50:aggregated – disp_k50:paper/ [.5*(disp_k50:aggregated + disp_k50:paper)] 

 

Only nine of the disciplines had the expected decrease in dispersion as one shifted from the 

k50:paper map to the k50:aggregated map. This included many of the engineering/math based disciplines 

(space, computer science, mathematics and physics) and a selected set of social sciences (economics & 
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psychology). The unexpected increases in dispersions were in agricultural sciences, law, plant/animal 

sciences, pharmacology and microbiology. Many of these disciplines are associated with drug 

development. Development activities that build from engineering and math, which may be less 

multidisciplinary in nature, have the expected drop in dispersion. 

 

Disciplinary Bias 

Disciplinary bias, or the tendency to over-represent some disciplines at the expense of others, may be 

another potential source of inaccuracy. We therefore measured the disciplinary bias as one increases 

document coverage. Figure 5 shows these disciplinary bias trends for the maps of current papers and 

reference papers. As expected, the disciplinary bias declines as one increases the sample size. In both 

cases, the K50:aggregated maps are best (have the lowest disciplinary bias), even though they all 

converge at the right. Note that all curves converge at a value that is greater than zero because the 

expected disciplinary profiles were based on all papers, not just those included in the maps. For instance, 

the expected profile for current papers was based on the 833,307 papers that were bibliographically 

coupled, while only 731,289 are in the maps. 

 

INSERT FIGURE 5 NEAR HERE 

 

It is important to note that most clustering algorithms, including our modified single-link algorithm, 

start at the left of the graph with the papers that have the highest relatedness. Therefore a map that has 

very high disciplinary bias at the beginning of the clustering process will be favoring the creation of 

clusters in certain disciplines. This may be more problematic in the generating of clusters of current 

papers where the disciplinary biases are much higher. This does not seem as serious of a problem in 

generating maps of the reference papers. In either case, the K50:aggregated map has the lowest 

disciplinary bias during this critical stage of cluster formation. 
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The disciplinary bias of Small, 3 calculated from values in his paper, is also shown in Figure 5b for 

comparison. His first level of clustering included 129,581 references, and had a disciplinary bias of 

0.1745. The final level of clustering included 36,720 papers and had a disciplinary bias of 0.3899. Small’s 

two sample sizes are indicated by hash marks at the top of Figure 5b. The scales used in this graph only 

allowed us to plot one of these points (indicated by a star). An arrow is used to indicate the direction of 

the other point. The disciplinary bias that resulted from clustering is quite severe. Dropping over 21.3% of 

the documents to create the first clusters, and then dropping 72% of the remaining documents by the time 

one reaches the fourth clustering iteration, results in an exceptionally biased set of papers. 

 

Coherence of Large Clusters 

Document clusters were identified for each of our eight maps using the modified single-link 

clustering algorithm detailed in Appendix B. The distributions of cluster size were plotted in order to 

evaluate the statistical characteristics of cluster size. Figure 6a shows the distributional characteristics for 

the current paper clusters. The non-aggregated maps (the two lines with steeper slopes) generate far more 

large clusters, with the largest clusters being quite large (4,403 and 10,000 papers for the RawFreq:paper 

and K50:paper maps respectively). The aggregated maps of current papers have much flatter curves. 

There are far fewer very large clusters, and the maximum cluster sizes are much lower (348 and 131 

papers for the RawFreq:aggregated and K50:aggregated maps, respectively). 

 

INSERT FIGURE 6 NEAR HERE 

 

The difference between the lines in Figure 6a is mostly an artifact of the settings on the visualization 

algorithm that allow for edge-cutting. Many visualization programs maintain all of the edges and the 

corresponding maps do not show clearly defined cluster boundaries. By contrast, VxOrd allows cutting of 

edges after an initial solution is reached. Edge cutting has the effect of clustering the nodes. Minimum 
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cutting (not used in this study) would generate a map with less agglomeration of nodes, and would 

correspondingly result in the identification of fewer, larger clusters. The default or native setting (used to 

generate the non-aggregated maps) results in some agglomeration (formation of strings of nodes and 

clusters of nodes). The maximum setting (used to generate the aggregated maps) will tend to break up 

strings of nodes into smaller clusters that have clearly defined boundaries. This effect is clearly seen in 

the distributions in Figure 6a.  

The edge-cutting setting has a similar, but less dramatic, effect on the distribution of reference paper 

clusters (Table 6b). The curve based on the K50:aggregated map is shallower than the curve based on the 

K50:paper map. The curve based on the RawFreq:aggregated map is shallower than the curve based on 

the RawFreq:paper map. But the curves all start with one large cluster that is almost the same size for all 

four maps (approximately 1675 papers). This large cluster is dominated by papers in the Economics & 

Business discipline for all four maps. The K50:aggregated curve then drops down the fastest, and has the 

fewest large clusters. 

The best curves (K50:aggregated) have large clusters that are within a reasonable range. Small 

suggested a maximum cluster size of 50 when he clustered about 130,000 reference papers. 3 We are 

clustering over five times more papers, and have a maximum cluster size of 131 (for the map of current 

papers) and only one cluster that exceeds that number for the map of reference papers.  

The following analyses focus solely on those clusters with 50 or more papers. An analysis of 

variance was performed using the STATA statistical analysis package to evaluate the effect of different 

methodological choices (default vs. maximum cutting (i.e. aggregation); RawFreq vs. K50) on the 

percentage of papers that were in the dominant discipline. Two additional control variables were used: 

cluster size (extremely large clusters were expected to have lower percentages of papers attributable to a 

single discipline) and the discipline (large research communities in some disciplines, such as physics, may 

tend to be composed mostly of researchers from that disciplines). The ANOVA statistics are presented in 

Table 3.  
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Table 3. ANOVA for % Dominant Discipline 

Current Maps 

 
Number of obs = 6492     R-squared = 0.3361 
Root MSE = .180002     Adjusted R-squared = 0.3335 
 
Source | Partial SS df MS F Prob > F 
---------+---------------------------------------------------- 
Model | 106.059612 26 4.07921585 125.90 0.0000 
 
k50 | .105449576 1 .105449576 3.25 0.0713 
max | .281317031 1 .281317031 8.68 0.0032 
isi24 | 105.414756 23 4.58325026 141.46 0.0000 
nrc | .123902377 1 .123902377 3.82 0.0506 
 
Residual | 209.470298 6465 .032400665  
---------+---------------------------------------------------- 
Total | 315.52991 6491 .04861037 
 

Reference Maps 

 
Number of obs = 9076     R-squared = 0.3218 
Root MSE = .169165     Adjusted R-squared = 0.3198 
 
Source | Partial SS df MS F Prob > F 
---------+---------------------------------------------------- 
Model | 122.845456 26 4.72482524 165.11 0.0000 
 
k50 | .053313419 1 .053313419 1.86 0.1723 
max | .128798077 1 .128798077 4.50 0.0339 
isi24 | 120.060839 23 5.22003647 182.41 0.0000 
nrc | 2.67210381 1 2.67210381 93.38 0.0000 
 
Residual | 258.952464 9049 .028616694  
---------+---------------------------------------------------- 
Total | 381.79792 9075 .042071396 

 

 

The two ANOVA results in table 3 have one strikingly similar result – the single most important 

independent variable in each case was the discipline. Large clusters associated with certain disciplines 

tended to have a very low (or very high) percentage of papers in the cluster. Surprisingly, cluster size only 
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had an impact in one group of maps (reference paper maps) and did not have a sizable impact in the other 

group of maps. The least significant impact was associated with the methodological choices (using K50 

vs. RawFreq or level of aggregation). Their effects were barely significant in two cases and had marginal 

impacts in explanatory value in all cases.  

We therefore examined the average percentage of papers in a dominant discipline by discipline 

(Table 4). The analysis was limited to the large clusters associated with the K50:aggregated maps because 

they were the maps that had the fewest large clusters. Both maps (current papers and reference papers) 

suggest that large clusters dominated by physics, space science, and clinical medicine tend to be quite 

homogeneous. The large clusters that are dominated by pharmacology, biology & biochemistry, 

microbiology, molecular biology and genetics tend to be more multidisciplinary. This pattern is consistent 

with the observation made previously that the research communities associated with drug development 

activities are more multidisciplinary.  

 

Table 4: Fraction dominant discipline (DomD) by discipline  

(clusters from the K50:aggregated maps with 50+ papers) 

Discipline Current Papers Reference papers 

 %DomD #clusters %DomD #clusters 

Physics 83.8 57 78.6 65 

Space Science 83.2 13 83.0 25 

Clinical Medicine 70.4 194 71.6 314 

Social Sciences, general 65.4 3 47.8 9 

Plant & Animal Science 64.8 24 55.3 43 

Chemistry 64.6 22 77.0 92 

Geosciences 63.4 4 70.8 16 

Agricultural Sciences 53.8 1  0 



This paper has been accepted for publication by Scientometrics. Please do not distribute without 
permission from the authors. 

 22

Ecology/Environment 52.8 5 48.2 15 

Neurosciences & Behavior 52.0 30 60.8 95 

Economics & Business 48.4 9 60.8 13 

Immunology 47.8 16 55.0 56 

Computer Science 47.5 10 64.8 1 

Psychology/Psychiatry 46.2 10 62.8 41 

Microbiology 45.9 9 53.2 44 

Biology & Biochemistry 43.3 52 51.6 151 

Molecular Biology & Genetics 43.3 24 53.4 130 

Engineering 41.2 5 62.1 4 

Pharmacology 38.9 5 46.7 20 

Materials Science  0 49.2 1 

Law  0 38.6 3 

Mathematics  0 36.5 1 

Multdisciplinary  0 31.5 11 

Education  0  0 

 

 

Discussion 

We believe that large maps are better than small maps (e.g. maps based on a limited disciplinary 

scope) if one is interested in evaluating multidisciplinary research areas or anticipating the impact from 

cross-disciplinary research. The first large maps developed by Small were excellent illustrations of this 

principle. One could see how it would be inappropriate to only map physics, because of the important role 

of mathematics, chemistry and biology. This is even more true in the more detailed maps presented here. 

Many of the research communities are multidisciplinary (which means they would not have been properly 
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specified if one only sampled a particular discipline).  Many of the research communities in one discipline 

are related to research communities in another discipline (which means that one would have improperly 

specified the relationship between disciplines if one had a small map). 

We have also shown that the large maps presented in this paper are a significant improvement over 

maps presented by Small. Table 5 summarizes the improvements in mapping worldwide science as 

reported in this paper. We make comparison only to reference paper maps, since no all-of-science current 

paper maps are available for comparison. By utilizing hardware, software and intellectual development 

during the past 20 years, it is now possible to generate a visual map at the paper level of analysis. These 

maps have greater coverage than the co-citation analyses previously reported in the literature. They cover 

a much higher absolute and relative number of available documents. For instance, we were able to cluster 

6.6% of the reference papers. This is significantly higher than the 2.1% clustered by Small 3 in his first-

level clusters, or the 0.6% retained in his fourth-level cluster map (reproduced here in Figure 2). In 

addition, disciplinary bias is significantly less in our maps, partially due to highly increased coverage, but 

also to the fact that our ordering was based on graph distances rather than citation thresholds. 

 

Table 5. Comparison of reference paper map attributes. 

 Griffith et. al. 

(1974) 1 

Small (1999) 3 This paper 

Sample 1st Quarter 1972 1995 2002 

# Reference papers 867,600 ~6,100,000 10,911,939 

# Papers in initial sample 1,832 164,612 718,894 

# Papers in first level map 1,150 129,581 718,894 

% Papers retained 0.13% 2.12% 6.59% 

% Dropped during clustering 37.2% 34.3% 0% 
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Disciplinary bias Unknown 0.175 – 0.39 0.102 

# Clusters 41 18,938 63,369 

# Papers per cluster 28.0 6.8 11.3 

 

We identified over three times more documents clusters than Small. 3 Many of these additional 

communities had only one (or no) elite reference paper. We suggest that a high threshold level has 

resulted in underspecification of the number of research communities in science. It is quite possible that 

there are research communities with only one elite paper that forms the exemplar. And it is also easy to 

imagine that there are no elite references in some research communities, but rather just a general 

consensus on the literature that the community builds upon. 

Cluster sizes are larger in this sample for the simple reason that we did not impose an arbitrary limit. 

Our investigations suggest that the coherence of clusters with more than 50 papers is mostly a disciplinary 

effect, not a size effect. We see no reason to impose this threshold on the clustering algorithm. 

Using the results of this work, we make the following additional observations regarding the mapping 

of large-scale literature data sets. First, quantitative evaluation of maps on the scale of hundreds of 

thousands of papers is not only possible, but should be done whenever such maps are generated. We have 

introduced several metrics for such an evaluation, and have applied them to our large scale maps 

generated from citation similarities. These metrics could also be applied to text based or other similarity 

types. Our analyses suggest that accuracy can be increased by using a modified cosine relatedness 

measure rather than raw frequencies. Disciplinary biases can be reduced and accuracy increased by 

increasing coverage of the scientific literature. Much larger samples of papers can and should be used to 

create the most accurate maps of science. 

We note that our results are closely tied to the performance of the VxOrd graph layout algorithm, 

and thus we do not claim that other visualization methods will achieve similar results or findings. 

Nevertheless, VxOrd seems to have a number of unexpected side effects that are quite useful for large-
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scale graphs, including literature maps. VxOrd generates relatedness statistics that may have superior 

characteristics (in a separate study, we found that the re-estimated relatedness statistic between journals 

was more accurate than the raw relatedness statistics5). These re-estimated measures (e.g. distances 

between nodes) show that coverage can be increased without sacrificing accuracy. Fewer documents are 

dropped during clustering and disciplinary biases can be kept very low. The edge-cutting capability of 

VxOrd (see Appendix A) allows development of very good clustering algorithms. Edge-cutting seems to 

approximate the role of average-link clustering in that chaining is avoided because edges that would be 

associated with these chains are dropped during graph layout. Our results show that cluster size 

distributions are reasonable.  

We did some spot checking of abstracts and titles in order to see if the research communities had the 

type of topical focus that we expected. The membership of a representative community is listed in Figure 

7, and shows that the community does indeed have a strong topical focus. The only paper that appears not 

to fit is the sixth paper from the journal Obes Surg.  Spot checking of another 50 communities gave 

similar results. 

 

INSERT FIGURE 7 NEAR HERE 

 

Using VxOrd for graph layout, the best overall maps are obtained using the modified cosine 

similarity measure and setting the cutting parameter to create “aggregated” maps. This combination gives 

the best combination of high accuracy at full coverage, and low disciplinary bias for both current paper 

and reference paper maps.  

We invite others to test their algorithms on literature data sets of similar scale so that the results can 

be compared.  
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Appendix A: Visualization Algorithm 

VxOrd 15 is a graph layout (visualization) algorithm that calculates the positions of data objects on a 

two-dimensional plane using similarities between the data objects. In the case of this paper, the 

similarities are the paper-paper relatedness matrices, and we use only the top 10 similarities per paper 

rather than the entire matrix as input. At the most basic level the VxOrd algorithm tries to place similar 

objects close together and dissimilar objects far apart. This process is achieved by moving the objects 

randomly around the solution space via a technique similar to ‘simulated annealing’. The criteria for 

moving a node is the minimization of energy given by: 
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where Ei(x,y) is the energy of node i with n edges at a specific x y location, wi,j is the similarity between 

nodes i and j, li,j is the Euclidean distance between nodes i and j, and Dx,y is a density measure with respect 

to the area around point x,y. This density field is constructed as the sum of the energy footprints from 

each node, where the energy footprint is a function of r-2 from the node location. 

The energy equation is gradually minimized in successive phases in an iterative fashion. The first 

phase (expansion) reduces the free energy in the system by expanding vertices toward the general area 

where they will ultimately belong. The following phase (cooldown) is similar to the ‘quenching’ step that 

occurs in simulated annealing algorithms, the nodes take smaller and smaller random jumps to minimize 

their energy equations. We have found that 800 iterations work well for complex graphs ranging from 

tens to hundreds of thousands of nodes.  

VxOrd employs two additional features that lead to better graph layout: barrier jumping and edge 

cutting. Barrier jumping overcomes the situation where some nodes that belong near each other get “hung 

up” in a local minimum or behind an energy barrier. Barrier jumping is achieved by directly solving for 

the location that minimizes the attractive term in the energy equation for a single node. These calculations 

 28
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are done during the cooldown phase, and decline from 25% to 10% of all calculations over the course of 

this phase. 

Edge cutting occurs during the expansion and cooldown phases when the edge weight to distance 

ratio goes below a threshold. In essence, edge cutting involves resetting the similarity value for a 

particular edge to zero for the balance of the calculation. VxOrd allows some control over the cutting 

parameter: default values can be used (called native mode in this paper), or the threshold can be reduced 

(to enable more cutting) or increased (for less cutting). In general, approximately 40% of edges are 

removed using default cutting, while roughly 75% of the edges are removed when using maximum 

cutting (called aggregated mode in this paper). In practice, maximum cutting gives a result with very well 

defined and well separated clusters, with the majority of uncut edges remaining within clusters. With 

default cutting, the cluster boundaries are visually much less distinct.  

 

Appendix B: Clustering Algorithm 

The clustering algorithm used in this paper was designed specifically to deal with extremely large 

two-dimensional graphs such as those generated by VxOrd. The input to the clustering algorithm is the 

distance between paired papers using the x,y coordinates from the graph. The original measures of 

relatedness (that were used to generate the graphs) are not used as inputs to the clustering algorithm 

because we found in an earlier study that they are generally less accurate than the re-estimated measures 

of relatedness (the distances between nodes on the graph). 5  

We started with single-link clustering because of computational simplicity (average-link clustering 

and other more sophisticated clustering algorithms cannot easily be run on graphs with 700,000 nodes). 

Single-link clustering starts by only focusing on paired relationships that are greater than a threshold 

level. These paired relationships are ordered (from the most related pair to the least related pair). In terms 

of assigning modes to clusters, there are only three choices as one sequentially goes from the most related 

pair of nodes to the less related pair of nodes. Pairs can form a new cluster (if neither node has been 
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previously assigned to a cluster); a node can be assigned to a cluster (if one of the nodes has been 

previously assigned); or clusters can be combined (if both nodes are assigned to different clusters).  

It is the third choice that is the primary cause of the formation of very large clusters. Chaining (the 

combining of smaller clusters that just touch each other) is a common problem in single-link clustering. 

Small addresses this problem by requiring that clusters not be combined if the total size exceeds 50. 3 We 

suggest an alternative approach – generate a series of statistics that indicate the overlap between the two 

clusters that are candidates to be combined. We propose that clusters should not be combined if the 

statistic suggests that the clusters just barely touch. However, the clusters should be combined if the 

statistic suggests that the clusters overlap. Three statistics were used: the average location of the cluster, 

the number of documents in the cluster, and the average distance between documents within the cluster 

(as the documents were added sequentially). These statistics do not require additional computational 

complexity since running averages can be easily calculated. The clustering algorithm runs extremely fast 

(less than nlogn time) and is appropriate for clustering extremely large two-dimensional graphs.  

The threshold used in the clustering algorithm is based on the distributions of relatedness statistics. 

Papers are ordered in terms of the distance to their nearest neighbor from the graphs. The cumulative 

number of papers is calculated (from closest distance to furthest distance). The resulting curve has the 

minimum distance to the nearest neighbor on the y axis and the cumulative number of papers on the x 

axis. Thresholds are located where the curve bends sharply. All of the maps generated in this study had a 

clearly defined bend in these curves. 
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Figure 1. Redrawing of the map of science from Griffith et al. 1 Node sizes are scaled to the cubed 

root of the number of papers. Labels have been added for the largest nodes. Refer to the original 

paper for labeling for numbered nodes. 
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Figure 2. Redrawing of the map of science from Small 3 (Figure 3). Only the 35 fourth-level 

clusters are shown here. Third-level structure within clusters has been removed. The large 

clusters have been shrunk slightly to avoid covering smaller clusters. 
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Figure 3: Maps of current papers using raw frequency co-occurrence data. VxOrd was run in 

“aggregation” mode to generate a map of over 700,000 papers (left). An 8x enlargement of the 

central section of the map (right) shows single papers more clearly. 
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Figure 4. Accuracy vs. coverage for maps based on (a) current papers and (b) reference papers. 
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Figure 5. Disciplinary bias for maps based on (a) current papers and (b) reference papers. 
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Figure 6. Cluster size distributions for maps based on (a) current papers and (b) reference papers. 
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Scientometrics Continuity and discontinuity of collaboration behaviour since 1800  
Scientometrics Elite researchers in ophthalmology: Aspects of publishing strategies, collaboration and 

multi-disciplinarity  
Scientometrics The effect of team consolidation on research collaboration and performance of 

scientists. Case study of Spanish university researchers in Geology  
Scientometrics Recognition and international collaboration: the Brazilian case  
Obes Surg Progress of the International Federation for the Surgery of Obesity  
Scientometrics A. H. Zewail: Research collaborator par excellence  
Scientometrics Age structures of scientific collaboration in Chinese computer science  
Philos Sci The epistemic significance of collaborative research  
Braz J Med Biol Res The Brazilian investment in science and technology  
Region Anesth Pain M What do we measure by co-authorships?  
Scientometrics Authorship patterns in agricultural sciences in Egypt  

Figure 1. Membership of community 73336 from the 2002 current paper map of science. Common 

terms are highlighted to show the topical focus of the community. 

Figure 1. Membership of community 73336 from the 2002 current paper map of science. Common 

terms are highlighted to show the topical focus of the community. 
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