
On Identifying Strongly Connected Components

in Parallel?

Lisa K. Fleischer1, Bruce Hendrickson2, and Ali P�nar3

1 Industrial Engrg. & Operations Research, Columbia Univ., New York, NY 10027
lisa@ieor.columbia.edu

2 Parallel Computing Sciences, Sandia National Labs, Albuquerque, NM 87185-1110
bah@cs.sandia.gov

3 Dept. Computer Science, University of Illinois, Urbana, IL 61801
alipinar@cse.uiuc.edu

Abstract. The standard serial algorithm for strongly connected com-
ponents is based on depth �rst search, which is di�cult to parallelize.
We describe a divide-and-conquer algorithm for this problem which has
signi�cantly greater potential for parallelization. For a graph with n ver-
tices in which degrees are bounded by a constant, we show the expected
serial running time of our algorithm to be O(n log n).

1 Introduction

A strongly connected component of a directed graph is a maximal subset of ver-
tices containing a directed path from each vertex to all others in the subset. The
vertices of any directed graph can be partitioned into a set of disjoint strongly
connected components. This decomposition is a fundamental tool in graph the-
ory with applications in compiler analysis, data mining, scienti�c computing and
other areas.

The de�nitive serial algorithm for identifying strongly connected components
is due to Tarjan [15] and is built on a depth �rst search of the graph. For a graph
with m edges, this algorithm runs in the optimal O(m) time, and is widely used
in textbooks as an example of the power of depth �rst search [7].

For large problems, a parallel algorithm for identifying strongly connected
components would be useful. One application of particular interest to us is dis-
cussed below. Unfortunately, depth �rst search (DFS) seems to be di�cult to
parallelize. Reif shows that a restricted version of the problem (lexicographical
DFS) is P-Complete [14]. However, Aggarwal and Anderson, and Aggarwal, et al.
describe randomized NC algorithms for �nding a DFS of undirected and directed
graphs, respectively [1, 2]. The expected running time of this latter algorithm is

? This work was funded by the Applied Mathematical Sciences program, U.S. Depart-
ment of Energy, O�ce of Energy Research and performed at Sandia, a multiprogram
laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the
U.S. DOE under contract number DE-AC-94AL85000.

2 Fleischer, Hendrickson and P�nar

O(log7 n)1, and it requires an impractical n2:376 processors. To our knowledge,
the deterministic parallel complexity of DFS for general, directed graphs is an
open problem. Chaudhuri and Hagerup studied the problem for acyclic [5], and
planar graphs [10], respectively, but our application involves non-planar graphs
with cycles, so these results don't help us. More practically, DFS is a di�cult
operation to parallelize and we are aware of no algorithms or implementations
which perform well on large numbers of processors. Consequently, Tarjan's al-
gorithm cannot be used for our problem.

Alternatively, there exist several parallel algorithms for the strongly con-
nected components problem (SCC) that avoid the use of depth �rst search. Gazit
and Miller devised an NC algorithm for SCC, which is based upon matrix-matrix
multiplication [9]. This algorithm was improved by Cole and Vishkin [6], but still
requires n2:376 processors and O(log2 n) time. Kao developed a more complicated
NC algorithm for planar graphs that requires O(log3 n) time and n= logn pro-
cessors [11]. More recently, Bader has an e�cient parallel implementation of
SCC for planar graphs [3] which uses a clever packed{interval representation of
the boundary of a planar graph. When n is much larger than p the number of
processors, Bader's approach scales as O(n=p). But algorithms for planar graphs
are insu�cient for our needs.

Our interest in the SCC problem is motivated by the discrete ordinates
method for modeling radiation transport. Using this methodology, the object
to be studied is modeled as a union of polyhedral �nite elements. Each element
is a vertex in our graph and an edge connects any pair of elements that share
a face. The radiation equations are approximated by an angular discretization.
For each angle in the discretization, the edges in the graph are directed to align
with the angle. The computations associated with an element can be performed
if all its predecessors have been completed. Thus, for each angle, the set of com-
putations are sequenced as a topological sort of the directed graph. A problem
arises if the topological sort cannot be completed { i.e. the graph has a cycle.
If cycles exist, the numerical calculations need to be modi�ed { typically by
using old information along one of the edges in the cycle, thereby removing the
dependency. So identifying strongly connected components quickly is essential.
Since radiation transport calculations are computationally and memory inten-
sive, parallel implementations are necessary for large problems. Also, since the
geometry of the grid can change after each timestep for some applications, the
SCC problem must be solved in parallel.

E�cient parallel implementations of the topological sort step of the radiation
transport problem have been developed for structured grids, oriented grids that
have no cycles [4, 8]. Some initial attempts to generalize these techniques to
unstructured grids are showing promise [12, 13]. It is these latter e�orts that
motivated our interest in the SCC problem.

1 Function f(n) = �(g(n)) if there exist constants c2 � c1 > 0 and N such that for
all n � N , c1g(n) � f(n) � c2g(n). If f(n) =
(g(n)), then this just implies the
existence of c1 and N . If f(n) = O(g(n)), then c2 and N exist.

Parallel Strongly Connected Components 3

In the next section we describe a simple divide-and-conquer algorithm for
�nding strongly connected components. In x3 we show that for constant de-
gree graphs our algorithm has an expected serial complexity of O(n logn). Our
approach has good potential for parallelism for two reasons. First, the divide-
and-conquer paradigm generates a set of small problems which can be solved
independently by separate processors. Second, the basic step in our algorithm
is a reachability analysis, which is similar to topological sort in its paralleliz-
ability. So we expect the current techniques for parallelizing radiation transport
calculations to enable our algorithm to perform well too.

2 A Parallelizable Algorithm for Strongly Connected

Components

Before describing our algorithm, we introduce some notation. Let G = (V;E)
be a directed graph with vertices V and directed edges E. An edge (i; j) 2 E is
directed from i to j. We denote the set of strongly connected components of G
by SCC(G). Thus SCC(G) is a partition of V . We also use SCC(G; v) to denote
the (unique) strongly connected component containing vertex v. We denote by
V nX the subset of vertices in V which are not in a subset X . The size of vertex
set X is denoted jX j.

A vertex v is reachable from a vertex u if there is a sequence of directed edges
(u; x1); (x1; x2); : : : ; (xk ; v) from u to v. We consider a vertex to be reachable
from itself. Given a vertex v 2 V , the descendants of v, Desc(G; v), is the
subset of vertices in G which are reachable from v. Similarly, the predecessors

of v, Pred(G; v), is the subset of vertices from which v is reachable. The set
of vertices that is neither reachable from v nor reach v is called the remainder,
denoted by Rem(G; v) = V n fDesc(G; v) [Pred(G; v)g.

Given a graph G = (V;E) and a subset of vertices V 0 � V , the induced

subgraph G0 = (V 0; E0) contains all edges of G connecting vertices of V 0, i.e.
E0 = f(u; v) 2 E : u; v 2 V 0g. We will use hV 0i = G0 = (V 0; E0) to denote the
subgraph of G induced by vertex set V 0. The following Lemma is an immediate
consequence of the de�nitions.

Lemma 1. Let G = (V;E) be a directed graph, with v 2 V a vertex in G. Then

Desc(G; v) \ Pred(G; v) = SCC(G; v):

Lemma 2. Let G be a graph with vertex v. Any strongly connected component

of G is a subset of Desc(G; v), a subset of Pred(G; v) or a subset of Rem(G; v).

Proof. Let u and w be two vertices of the same strongly connected component
in G. By de�nition, u and w are reachable from each other. The proof involves
establishing u 2 Desc(G; v) () w 2 Desc(G; v) and u 2 Pred(G; v) ()
w 2 Pred(G; v), which then implies u 2 Rem(G; v) () w 2 Rem(G; v). Since
the proofs of these two statements are symmetric, we give just the �rst: If u 2
Desc(G; v) then u must be reachable from v. But then w must also be reachable
from v, so w 2 Desc(G; v).

4 Fleischer, Hendrickson and P�nar

With this background, we can present our algorithm which we call DCSC (for
Divide-and-Conquer Strong Components). The algorithm is sketched in Fig. 1.
The basic idea is to select a random vertex v, which we will call a pivot vertex,
and �nd its descendant and predecessor sets. The intersection of these sets is
SCC(G; v) by Lemma 1. After this step, the remaining vertices are divided into
three sets Desc(G; v), Pred(G; v), and Rem(G; v). By Lemma 2, any additional
strongly connected component must be entirely contained within one of these
three sets, so we can divide the problem and recurse.

DCSC(G)
If G is empty then Return.
Select v uniformly at random from V .
SCC Pred(G; v) \Desc(G; v)
Output SCC.
DCSC(hPred(G; v) n SCCi)
DCSC(hDesc(G; v) n SCCi)
DCSC(hRem(G; v)i)

Fig. 1. A divide-and-conquer algorithm for strongly connected components.

3 Serial Complexity of Algorithm DCSC

To analyze the cost of the recursion, we will need bounds on the expected sizes
of the predecessor and descendant sets. The following two results provide such
bounds.

Lemma 3. For a directed graph G, there is a numbering � of the vertices from

1 to n in which the following is true. All elements u 2 Pred(G; v)nDesc(G; v)
satisfy �(u) < �(v); and all elements u 2 Desc(G; v)nPred(G; v) satisfy �(u) >
�(v).

Proof. If G is acyclic, then a topological sort provides a numbering with this
property. If G has cycles, then each strongly connected component can be con-
tracted into a single vertex, and the resulting acyclic graph can be numbered via
topological sort. Assume a strongly connected component with k vertices was
assigned a number j in this ordering. Assign the vertices within the component
the numbers (j; : : : ; j + k � 1) arbitrarily and increase all subsequent numbers
by k � 1.

It is important to note that we do not need to construct an ordering with
this property; we just need to know that it exists.

Corollary 1. Given a directed graph G and a vertex numbering � from Lemma 3,

then jPred(G; v) n SCC(G; v)j < �(v) and jDesc(G; v) n SCC(G; v)j � n� �(v)
for all vertices v.

Parallel Strongly Connected Components 5

The cost of algorithm DCSC consists of four terms, three from the three
recursive invocations and the fourth from the cost of determining the set of pre-
decessors and descendants. For a graph with all degrees bounded by a constant,
this last term is linear in the sizes of the predecessor and descendant sets. Let
T (n) be the expected runtime of the algorithm on bounded degree graph G with
n vertices. For a particular pivot i, let pi, di and ri represent the sizes of the recur-
sive calls. That is, pi = jPred(G; v)nSCC(G; v)j, di = jDesc(G; v)nSCC(G; v)j
and ri = jRem(G; v)j. If vertex number i is selected as the pivot, then the
recursive expression for the run time is

T (n) = T (ri) + T (di) + T (pi) +�(n� ri): (1)

Clearly, T (n) =
(n), since we eventually must look at all the vertices. Also,
in worst case T (n) = O(n2), since each iteration takes at most linear time and
reduces the graph size by at least 1. We show here that the expected behavior
of T (n) is �(n log n). The average case analysis will require summing the cost
over all pivot vertices and dividing by n. So for a graph with constant bound on
the degrees, the expected runtime, ET (n), of the algorithm is

ET (n) =
1

n

nX

i=1

[T (pi) + T (di) + T (ri) +�(n � ri)]: (2)

Theorem 1. For a graph in which all degrees are bounded by a constant, algo-

rithm DCSC has expected time complexity O(n logn).

Proof. We analyze (2) by partitioning the vertices according to their value of
ri. Let S1 := fvjr�(v) < n=2g and S2 := fvjr�(v) � n=2g. We analyze each case
separately and show that the separate recursions lead to an O(n logn) expected
run time. Thus, the average of these recursions will also.

Case 1: ri <
n
2 .

Note that Corollary 1 implies the lower and upper bounds: pi � i�1 � pi+ri
and di � n � i � di + ri. Since ri < n=2, it follows that minfi; n � ig �
ri +minfpi; dig <

3n
4 . By symmetry, it is enough to consider pi � di. Then

we can bound minfdi; ri + pig from below:

minfdi; ri + pig � minfi; n=4g: (3)

By superlinearity of T (n), we have T (ri) + T (pi) + T (di) + �(n � ri) �
T (ri + pi) + T (di) +�(n� ri). Using (3), we can bound the contribution of
each i by either T (i� 1)+ T (n� i) +�(n) or by T (n=4)+ T (3n=4)+�(n).
This latter case, through a well-known analysis, has a solution of O(n logn).
In the former, at worst, all i contributing here lie at the extremes of the
interval [1; n]. If there are 2q of them, their total contribution to (2) is at
most 2

n

Pq

i=1[T (i� 1) + T (n� i) +�(n)]. Then, an analysis similar to that

6 Fleischer, Hendrickson and P�nar

used for quicksort yields a O(n logn) recursion. We reproduce this below for
completeness.

2

2q

qX

i=1

[T (i� 1) + T (n� i) +�(n)]

= �(n) +
1

q
[

q�1X

i=1

(c1i log i) +

nX

i=n�q+1

(c1i log i)]

� �(n) +
1

q
[c1 log q

q�1X

i=1

i+ c1 logn
nX

i=n�q+1

i]

= �(n) +
c1
2
[(q � 1) log q + (2n� q + 1) logn]

= c1n logn+ [�(n) �
c1
2
(q � 1)(logn� log q)]:

The expression in brackets in the last inequality is < 0 for large enough
choice of c1.

Case 2: ri �
n
2 .

By superlinearity of T (n), we can rewrite equation (1) as T (n) � T (ri) +
T (di+ pi)+�(n� ri). If we let a = n� ri, we can rewrite this as a function
of a and n:

T2(a; n) � T (n� a) + T (a) +�(a):

By our assumptions in this case, we have that 1 � a � n=2. We show that
this recursion is O(n log n) by �rst showing that this holds for a = 1; n=2, and
then showing that T2, as a function of a in the range [1; n � 1], is convex.
Thus, its value in an interval is bounded from above by its values at the
endpoints of the interval.
It is easy to see that T2(1; n) = �(n), and T2(n=2; n) = �(n logn). We
suppose, by induction, that T (r) = c1n logn for an appropriate constant c1
for r < n, and that the constant in the � term is c2. Thus, the �rst derivative
of T2(a; n) with respect to a is

c1(log a� log(n� a)) + c2:

The second derivative is

c1(
1

a
+

1

n� a
);

which is positive for a 2 [1; n� 1]. Thus T2(a; n) is convex for a 2 [1; n=2],
and hence T2(n) = �(n logn) in this case.

4 Future Work

For the radiation transport application that motivated our interest in this prob-
lem, the graphs will often be acyclic, and any strongly connected components will

Parallel Strongly Connected Components 7

usually be small. For acyclic graphs, a topological sort, using the methodologies
being developed for this application, will terminate. By coupling a termination
detection protocol to the topological sort, we can use existing parallelization
approaches to quickly determine whether or not a cycle exists. Besides quickly
excluding graphs which have no cycles, using topological sort as a preprocess-
ing step allows for the discarding of all the visited vertices, reducing the size of
the problem that needs to be addressed by our recursive algorithm. With Will
McLendon III and Steve Plimpton, we are implementing such a hybrid scheme
and will report on its performance in due course.

Acknowledgements

We bene�ted from general discussions about algorithms for parallel strongly
connected components with Steve Plimpton, Will McLendon and David Bader.
We are also indebted to Bob Carr, Cindy Phillips, Bill Hart and Sorin Istrail for
discussions about the analysis.

References

1. A. Aggarwal and R. J. Anderson, A random NC algorithm for depth �rst

search, Combinatorica, 8 (1988), pp. 1{12.
2. A. Aggarwal, R. J. Anderson, and M.-Y. Kao, Parallel depth-�rst search in

general directed graphs, SIAM J. Comput., 19 (1990), pp. 397{409.
3. D. A. Bader, A practical parallel algorithm for cycle detection in partitioned di-

graphs, Tech. Rep. Technical Report AHPCC-TR-99-013, Electrical & Computer
Eng. Dept., Univ. New Mexico, Albuquerque, NM, 1999.

4. R. S. Baker and K. R. Koch, An Sn algorithm for the massively parallel CM-200

computer, Nuclear Science and Engineering, 128 (1998), pp. 312{320.
5. P. Chaudhuri, Finding and updating depth-�rst spanning trees of acyclic digraphs

in parallel, The Computer Journal, 33 (1990), pp. 247{251.
6. R. Cole and U. Vishkin, Faster optimal pre�x sums and list ranking, Information

and Computation, 81 (1989), pp. 334{352.
7. T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms,

MIT Press and McGraw-Hill, Cambridge, MA, 1990.
8. M. R. Dorr and C. H. Still, Concurrent source iteration in the solution of

3-dimensional, multigroup discrete ordinates neutron-transport equations, Nuclear
Science and Engineering, 122 (1996), pp. 287{308.

9. H. Gazit and G. L. Miller, An improved parallel algorithm that computes the

BFS numbering of a directed graph, Inform. Process. Lett., 28 (1988), pp. 61{65.
10. T. Hagerup, Planar depth-�rst search in O(log n) parallel time, SIAM J. Comput.,

19 (1990), pp. 678{704.
11. M.-Y. Kao, Linear-processor NC algorithms for planar directed graphs I: Strongly

connected components, SIAM J. Comput., 22 (1993), pp. 431{459.
12. S. Pautz. Personal Communication, October 1999.
13. S. Plimpton. Personal Communication, May 1999.
14. J. H. Reif, Depth-�rst search is inherently sequential, Inform. Process. Lett., 20

(1985), pp. 229{234.
15. R. E. Tarjan, Depth �rst search and linear graph algorithms, SIAM J. Comput.,

1 (1972), pp. 146{160.

