USING EXPRESSION GRAPHS IN OPTIMIZATION
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Abstract. An expression graph, informally speaking, represents a function in a
way that can be manipulated to reveal various kinds of information about the function,
such as its value or partial derivatives at specified arguments and bounds thereon in
specified regions. (Various representations are possible, and all are equivalent in com-
plexity, in that one can be converted to another in time linear in the expression’s size.)
For mathematical programming problems, including the mixed-integer nonlinear pro-
gramming problems that were the subject of the IMA workshop that led to this paper,
there are various advantages to representing problems as collections of expression graphs.
“Presolve” deductions can simplify the problem, e.g., by reducing the domains of some
variables and proving that some inequality constraints are never or always active. To
find global solutions, it is helpful sometimes to solve relaxed problems (e.g., allowing
some “integer” variables to vary continuously or introducing convex or concave relax-
ations of some constraints or objectives), and to introduce “cuts” that exclude some
relaxed variable values. There are various ways to compute bounds on an expression
within a specified region or to compute relaxed expressions from expression graphs. This
paper sketches some of them. As new information becomes available in the course of a
branch-and-bound (or -cut) algorithm, some expression-graph manipulations and pre-
solve deductions can be revisited and tightened, so keeping expression graphs around
during the solution process can be helpful. Algebraic problem representations are a
convenient source of expression graphs. One of my reasons for interest in the AMPL
modeling language is that it delivers expression graphs to solvers.
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1. Introduction. For numerically solving a problem, various prob-
lem representations are often possible. Many factors can influence one’s
choice of representation, including familiarity, computational costs, and
interfacing needs. Representation possibilities include some broad, often
overlapping categories that may be combined with uses of special-purpose
libraries: general-purpose programming compiled languages (such as C,
C++, Fortran, and sometimes Java), interpreted languages (such as awk,
Java, or Python), and “little languages” specialized for dealing with par-
ticular problem domains (such as AMPL for mathematical programming
or MATLAB for matrix computations — and much else). Common to
most such representations is that they are turned into expression graphs
behind the scenes: directed graphs where each node represents an oper-
ation, incoming edges represent operands to the operation, and outgoing
edges represent uses of the result of the operation. This is illustrated in
Figure 1, which shows an expression graph for computing the f : R — R
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FIG. 1. Expression graph for f(z,y) = (x — 3)? + (y + 4)?

for computing the function f(z,y) = (x — 3)? + (y + 4)2, which involves
operators for addition (+), subtraction (—) and squaring (()"2).

It can be convenient to have an explicit expression graph and to com-
pute with it or manipulate it in various ways. For example, for smooth
optimization problems, we can turn expression graphs for objective and
constraint-body evaluations into reasonably efficient ways to compute both
these functions and their gradients. When solving mixed-integer nonlinear
programming (MINLP) problems, computing bounds and convex underes-
timates (or concave overestimates) can be useful and can be done with ex-
plicit expression graphs. Problem simplifications by “presolve” algorithms
and (similarly) domain reductions in constraint programming are readily
carried out on expression graphs.

This paper is concerned with computations related to solving a math-
ematical programming problem: given D CR", f: D - R, ¢c: D — R™,
and £,u € DU{—o00, co}" with ¢; < u; V i, find «* such that x = z* solves

Minimize f(z)

(1.1) subject to £ < ¢(x) < u

and x € D.
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For MINLP problems, D restricts some components to be integers,
e.g.,

(1.2) D =RP x 79,

with n =p+q.

One of my reasons for interest in the AMPL [7, 8] modeling language
for mathematical programming is that AMPL makes explicit expression
graphs available to separate solvers. Mostly these graphs are only seen and
manipulated by the AMPL /solver interface library [13], but one could also
use them directly in the computations described below.

There are various ways to represent expression graphs. For exam-
ple, AMPL uses a Polish prefix notation (see, e.g., [31]) for the nonlinear
parts of problems conveyed to solvers via a “nl” file. Kearfott [21] uses
a representation via 4-tuples (operation, result, left, and right operands).
Representations in XML have also been advocated ([9]). For all the specific
representations I have seen, converting from one form to another takes time
linear in the length (nodes + arcs) of the expression graph.

The rest of this paper is organized as follows. The next several sec-
tions discuss derivative computations (§2), bound computations (§3), pre-
solve and constraint propagation (§4), convexity detection (§5), and outer
approximations (§6). Concluding remarks appear in the final section (§7).

2. Derivative computations. When f and ¢ in (1.1) are continu-
ously differentiable in their continuous variables (i.e., the first p variables
when (1.2) holds), use of their derivatives is important for some algorithms;
when integrality is relaxed, partials with respect to nominally integer vari-
ables may also be useful (as pointed out by a referee). Similarly, when
f and c are twice differentiable, some algorithms (variants of Newton’s
method) can make good use of their first and second derivatives. In the
early days of computing, the only known way to compute these derivatives
without the truncation errors of finite differences was to compute them by
the rules of calculus: deriving from, e.g., an expression for f(x) expres-
sions for the components of Vf(x), then evaluating the derived formulae
as needed. Hand computation of derivatives is an error-prone process, and
many people independently discovered [18] a class of techniques called Au-
tomatic Differentiation (or Algorithmic Differentiation), called AD below.
The idea is to modify a computation so it computes both function and
desired partial derivatives as it proceeds — an easy thing to do with an
expression graph. Forward AD is easiest to understand and implement:
one simply applies the rules of calculus to recur desired partials for the
result of an operation from the partials of the operands. When there is
only one independent variable, it is easy and efficient to recur high-order
derivatives with respect to that variable. For example, Berz et al. [3, 4]
have done highly accurate simulations of particle beams using high-order
Taylor series (i.e., by recurring high derivatives).
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Suppose [ is a function of n > 1 variables and that computing f(x)
involves L operations. Then the complexity of computing f(z) and its
gradient V f(z) by forward AD is O(nL). It can be much faster to use
“reverse AD” to compute f(x) and V f(x). With this more complicated
AD variant, one first computes f(z), then revisits the operations in reverse
order to compute the “adjoint” of each operation, i.e., the partial of f
with respect to the result of the operation. By the end of this “reverse
sweep”, the computed adjoints of the original variables are the partials
of f with respect to these variables, i.e., Vf(x). The reverse sweep just
involves initializing variables representing the adjoints to zero and adding
partials of individual operations times adjoints to the adjoint variables
of the corresponding operands, which has the same complexity O(L) as
computing f(z). For large n, reverse AD can be much faster than forward
AD or finite differences.

The AMPL/solver interface library (ASL) makes arrangements for re-
verse AD sweeps while reading expression graphs from a “nl” file and
converting them to internal expression graphs. This amounts to a prepro-
cessing step before any numerical computing is done, and is one of many
useful kinds of expression-graph walks. Many ways of handling implementa-
tion details are possible, but the style I find convenient is to represent each
operation (node in the expression graph) by a C “struct” that has a pointer
to a function that carries out the operation, pointers to the operands, and
auxiliary data that depend on the intended use of the graph. For exam-
ple, the “expr” structure used in the ASL for binary operations has the
fields shown in Figure 2 when only function and gradient computations
are allowed [12], and has the more elaborate form shown in Figure 3 when
Hessian computations are also allowed [14]. The intent here is not to give
a full explanation of these structures, but just to illustrate how represen-
tations can vary, depending on their intended uses. In reality, some other
type names appear in the ASL, and some fields appear in a different order.
Figures 2 and 3 both assume typedefs of the form

typedef struct expr expr;
typedef double efunc(expr*);

so that an “efunc” is a double-valued function that takes one argument,
a pointer to an “expr” structure. Use of such a function is illustrated in
Figure 4, which shows the ASL’s “op” function for multiplication. This is
a particularly simple binary operation in that the left partial is the right
operand and vice versa. Moreover the second partials are constants (0 or
1) and need not be computed. In other cases, such as division and the
“atan2” function, when Hessian computations are allowed, the function
also computes and stores some second partial derivatives.

Once a function evaluation has stored the partials of each operation,
the “reverse sweep” for gradient computations by reverse AD takes on a
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struct expr {

efunc *op; /* function for this operation */
int a; /* adjoint index */
real dL, dR; /* left and right partials */
expr *L, *R; /* left and right operands */
};

Fic. 2. ASL structure for binary operations with only f and V f available.

struct
expr {

efunc *op; /* function for this operation */
int a; /* adjoint index (for gradient comp.) */
expr *fwd, *bak; /* used in forward and reverse sweeps */
double dO; /* deriv of op w.r.t. t in x + txp */
double a0; /* adjoint (in Hv computation) of op */
double adO; /* adjoint (in Hv computation) of d0 */
double dL; /* deriv of op w.r.t. left operand */
expr *L, *R; /* left and right operands */
double dR; /* deriv of op w.r.t. right operand */
double dL2; /* second partial w.r.t. L, L */
double dLR; /* second partial w.r.t. L, R */
double dR2; /* second partial w.r.t. R, R */
};

F1G. 3. ASL structure for binary operations with f, Vf, and V2f available.

very simple form in the ASL:

do *d->a.rp += *d->b.rp * *d->c.rp;

(2.1) while(d = d->next);

in which d->a.rp points to an adjoint being updated, d->b.rp points to an
adjoint of the current operation and d->c.rp points to a partial derivative
of this operation. Thus for each of its operands, an operation contributes
the product of its adjoint and a partial derivative to the adjoint of the
operand.

Hessian or Hessian-vector computations are sometimes useful. Given
a vector v € R™ and a function f : R? — R represented by an expression
graph of L nodes, we can compute V2f(x)v in O(L) operations by what
amounts to a mixture of forward and reverse AD, either applying reverse
AD to the result of computing ¢'(0) with ¢(7) = f(z + 7v) (computing
#(0) and ¢'(0) by forward AD), or by applying forward AD to vTV f(z),
with V f(x) computed by reverse AD. Both descriptions lead to the same
numerical operations (but have different overheads in Sacado context dis-
cussed below). The ASL offers Hessian-vector computations done this way,
since some nonlinear optimization solvers use Hessian-vector products in it-
erative “matrix-free” methods, such as conjugate gradients, for computing
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double
f_OPMULT (expr *e A_ASL)
{
expr *eL = e->L.e;
expr *eR = e->R.e;
return (e->dR = (*elL->op) (elL))
* (e->dL = (*eR->op) (eR));

Fic. 4. ASL function for multiplication.

search directions.

Many mathematical programming problems (1.1) involve “partially
separable” functions. A function f : R™ — R is partially separable if it has
the form

flz) = Z fi(Aiz),

in which the A; are matrices having only a few rows (varying with ¢) and
n columns, so that f; is a function of only a few variables. A nice feature
of this structure is that f’s Hessain V2 f(z) has the form

V2 f(x) =Y ATV fi(z) A,

(3

i.e., V2f(x) is a sum of outer products involving the little matrices A; and
the Hessians V2 f;(z) of the f;. Knowing this structure, we can compute
each V2 f;(x) separately with a few Hessian-vector products, then assemble
the full V2f(z) — e.g., if it is to be used by a solver that wants to see
explicit Hessian matrices.

Many mathematical programming problems involve functions having
a more elaborate structure called partially-separable structure:

(2.2) f(x)zZHi i:fij(Aijx) ;

in which 6; : R — R is smooth and each A;; matrix has only a small
number of rows. The full V2f(xr) is readily assembled from the pieces of
this representation (and their partials). By doing suitable expression-graph
walks, the ASL finds partially-separable structure (2.2) automatically and
arranges for it to be exploited when explicit Hessians are desired. More
graph walks determine the sparsity of the desired Hessians — usually the
Hessian of the Lagrangian function. See [14] for more details. (For use in
a parallel computing context, I have recently been convinced to add a way
to express the Lagrangian function as a sum of pieces and to arrange for



USING EXPRESSION GRAPHS IN OPTIMIZATION ALGORITHMS 7

efficient computation of the Hessian of each piece, with the sparsity of each
piece made available in a preprocessing step.)

The expression-graph walks that the ASL does once to prepare for later
numerical evaluations make such computations reasonably efficient, but, as
illustrated in the above reverse-sweep loop and in Figure 4, some pointer
chasing is still involved. With another kind of graph walk, that done by
the nlc program described in [13], we can convert expression graphs into
Fortran or C (C++), eliminating much of the pointer chasing and some
unnecessary operations, e.g., addition of zero and multiplication by +1.

The expression graphs that AMPL uses internally often involve loops,
i.e., iterating something over a set, so dealing with loops in expression
graphs is not hard. For simplicity in the ASL, the graphs that AMPL
writes to “.nl” files to represent nonlinear programming problems are loop-
free, with all operations explicit. Perhaps sometime this will change, as
it somewhat limits problems that can be encoded in “.nl” files and some-
times makes them much larger than they might be if they were allowed
to use looping nodes. This current limitation is somewhat mitigated by
an imported-function facility that permits arbitrary functions to be intro-
duced via shared libraries. When such functions are involved in gradient
or Hessian computations, the functions must provide first or first and sec-
ond partials with respect to their arguments, so the ASL can involve the
functions in the derivative computations.

Some languages, such as Fortran and C++, allow operator overloading.
With overloading, one can use the same arithemetic operators and func-
tions in expressions involving new types; thus, after modifying source code
by changing the types of some variables, one can leave the bulk of the source
code unchanged and obtain a program with altered (ideally enhanced) be-
havior. Operator overloading in suitable languages provides another way to
make AD computations conveniently available. An early, very general, and
often used package for AD computations in C++ codes is ADOL-C [20],
which operates by capturing an expression graph (called a “tape” in [20])
as a side effect of doing a computation of interest, then walking the graph
to compute the desired derivatives. Because Sandia National Laboratories
does much C++ computing and because more specialized implementations
are sometimes more efficient, it has been worthwhile to develop our own
C++ package, Sacado [2, 33], for AD. The reverse-AD portion of Sacado
[15] does a reverse sweep whose core is equivalent to (2.1).

Computations based on operator overloading are very general and con-
venient, but present a restricted view of a calculation — somewhat like
looking through a keyhole. As indicated by the timing results in Table
1 below, when a more complete expression graph is available, it can be
used to prepare faster evaluations than are readily available from over-
loading techniques. Table 1 shows relative and absolute evaluation times
for function and gradient evaluations of an empirical energy function for
a protein-folding problem considered in [17]. This problem is rich in tran-
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scendental function evaluations (such as cos(), sqrt(), atan()), which masks
some overhead. Computations were on a 3GHz Intel Xeon CPU; the times
in the “rel.” column are relative to the time to compute f(z) alone (the
“Compiled C, no Vf” line), using a C representation obtained with the
nlc program mentioned above. The “Sacade RAD” line is for C++ code
that uses reverse-mode AD via operator overloading provided by Sacado.
(Sacado also offers forward-mode AD, which would be considerably slower
on this example.) The two ASL lines compare evaluations designed for
computing f(z) and V f(x) only (“ASL, fg mode”) with evaluations that
save second partials for possible use in computing V2 f(x) or V2 f(x)v. The
“nlc” line is for evaluations using C from the nlc program; this line excludes
time to run nlc and compile and link its output. Solving nonlinear mathe-
matical programming problems often involves few enough evaluations that
ASL evaluations make the solution process faster than would use of nlec, but
for an inner loop repeated many times, preparing the inner-loop evaluation
with nle (or some similar facility) could be worthwhile.

Eval style sec/eval  rel.

Compiled C, no Vf 2.92e5 1.0

Sacado RAD 1.90e4 6.5

nlc 4.78¢-5 1.6

ASL, fg mode 9.94e-5 3.4

ASL, pfgh mode 1.26e-4 4.3
TABLE 1

Evaluation times for f and V f: protein folding (n = 66).

One lesson to draw from Table 1 is that while operator overloading
is very convenient in large codes, in that one can significantly enhance
computations by doing little more than changing a few types, there may be
room to improve performance by replacing code involved in computational
bottlenecks by alternate code.

Hessian-vector computations provide a more dramatic contrast be-
tween evaluations done with operator overloading (in C++) and evalua-
tions prepared with the entire expression graph in view. Table 2 shows
timings for Hessian-vector computations done several ways on the Hessian
of a 100 x 100 dense quadratic form, f(z) = %mTQx. (Such evaluations only
involve additions and multiplications and are good for exposing overhead.)
The kinds of evaluations in Table 2 include two ways of nesting the forward
(FAD) and reverse (RAD) packages of Sacado, a custom mixture (“RAD2”)
of forward- and reverse AD that is also in Sacado, and the “interpreted”
evaluations of the AMPL/solver interface library (ASL) prepared by the
ASL’s pfgh_read routine. The computations were again on a 3GHz Intel
Xeon CPU.



USING EXPRESSION GRAPHS IN OPTIMIZATION ALGORITHMS 9

Eval style sec/eval  rel.

RAD o FAD 4.70e-4 18.6

FAD o RAD 1.07e-3 423

RAD2 (Custom mixture) 2.27e-4 9.0

ASL, pfgh mode 2.53e-5 1.0
TABLE 2

Times for V2 f(x)v with f = %$TQx,n = 100.

For much more about AD in general, see Griewank’s book [19] and the
“autodiff” web site [1], which has pointers to many papers and packages
for AD.

3. Bound computations. Computing bounds on a given expression
can be helpful in various contexts. For nonlinear programming in general
and mixed-integer nonlinear programming in particular, it is sometimes
useful to “branch”, i.e., divide a compact domain into the disjoint union of
two or more compact subdomains that are then considered separately. If
we find a feasible point in one domain and can compute bounds showing
that any feasible points in another subdomain must have a worse objective
value, then we can discard that other subdomain.

Various kinds of bound computations can be done by suitable expres-
sion graph walks. Perhaps easiest to describe and implement are bound
computations based on interval arithmetic [24]: given interval bounds on
the operands of an operation, we compute an interval that contains the
results of the operation. For example, for any a € [a,a] and b € [b,b], the
product ab = a - b satisfies

ab € [min(ab, ab, ab, ab), max(ab, ab, ab, ab)].

(It is only necessary to compute all four products when max(a,b) < 0
and min(a,b) > 0, in which case ab € [min(ab, @b), max(ab,ab)].) When
computing with the usual finite-precision floating-point arithmetic, we can
use directed roundings to obtain rigorous enclosures.

Unfortunately, when the same variable appears several times in an
expression, interval arithmetic treats each appearance as though it could
have any value in its domain, which can lead to very pessimistic bounds.
More elaborate interval analysis (see, e.g., [25, 26]) can give much tighter
bounds. For instance, mean-value forms [25, 28] have an excellent outer
approximation property that will be explained shortly. Suppose domain
X C R" is the Cartesian product of compact intervals, henceforth called
an interval vector, i.e.,

X = [£17j1] X X [&nvfn]
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Suppose f: X — R and we have a point ¢ € X and another interval vector
S C R™ with the property that

(3.1) for any x € X, there is an s € S
’ such that f(z) = f(c) + s7(x — ¢);

if f € CY(R), i.e., f is continuously differentiable, it suffices for S to enclose

{Vf(x):2z € X}. Then any enclosure of

(3.2) {fle)+sT(x—¢c):z e X,se S}

also encloses f(X) = {f(x) : ® € X}. For an interval vector V' with
components [v;,T;], define the width w (V') by w(V) = max{v; —v; : 1 <i <
n}, and for an interval enclosure F' = [F, F] of f(X), define inf{f(X)} =
inf{f(x) : x € X}, sup{f(X)} = sup{f(z) : € X}, and €(F, f(X)) =
max(inf{f(X)} — E, F —sup{f(X)}), which is sometimes called the excess
width. If f € C*(R) and S = Vf(X) = {Vf(z) : * € X}, and F =
{f(c)+sT(x—c):s €S,z X}, then (F, f(X)) = O(w(X)?), and this
remains true if we use interval arithmetic (by walking an expression graph
for f) to compute an outer approximation S of Vf(X) and compute F
from S by interval arithmetic. If V f(¢) # 0, then for small enough h > 0
and X = [¢; — h,¢1 + h] X -+ X [¢, — h, ¢, + h], the relative excess width
(w(F) —w(f(X))) /w(X) = O(h), which is the excellent approximation
property mentioned above. This means that by dividing a given compact
domain into sufficiently small subdomains and computing bounds on each
separately, we can achieve bounds within a factor of (1 + 7) of optimal for
a specified 7 > 0.

We can do better by computing slopes [23, 28] rather than interval
bounds on V f. Slopes are divided differences, and interval bounds on them
give an S that satisfies (3.1), so an enclosure of (3.2) gives valid bounds.
For ¢ € C1(R) and &, ¢ € R, the slope ¢[¢, (] is uniquely defined by

_{ @& =e(Q)/(€-C) i EFC,

Slopes for functions of n variables are n-tuples of bounds on divided differ-
ences; they are not uniquely defined, but can be computed (e.g., from an
expression graph) operation by operation in a way much akin to forward
AD. The general idea is to compute bounds on f(X) = {f(z) : z € X}
by choosing a nominal point z, computing f(z), and using slopes to bound
flx) — f(2) for x € X:

n

f(X) C {f(z)+zsi($i—2i)3$€X7Si € fIX, 2]i}

i=1

where the i-th component f[X, z]; of an interval slope is a bound on (f(x+
Te;) — f(x))/7 (which is taken to be df(x)/0z; if 7 = 0) for x € X; and
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FIG. 5. Slopes and derivatives for ¢(z) = x2, x € [~.5,1.5], c=0.5 .

7 such that x + 7e¢; € X. Most simply X; = X for all ¢, but we can get
tighter bounds [32] at the cost of more memory by choosing

Xi = [z, %] x - [z, T X {eip1} x - x {en},

e.g., for ¢; = %(L + T;). With this scheme, permuting the variables may
result in different bounds; deciding which of the n! permutations is best
might not be easy.

Figure 5 indicates why slopes can give sharper bounds than we get from
a first-order Taylor expansion with an interval bound on the derivative.
Bounds on ¢’(X) give S = [—1, 3], whereas slope bounds give S = [0, 2].

Sometimes we can obtain still tighter bounds by using second-order
slopes [39, 36, 37], i.e., slopes of slopes. The general idea is to compute a
slope matrix H such that an enclosure of

FO+Vf(e)(z—c)+(z—c) H(z —0)

for x € X gives valid bounds on f(X). (To be rigorous in the face of
roundoff error, we must compute interval bounds on V f(c).) Bounds com-
puted this way are sometimes better than those from the mean-value form
(3.2). In general, whenever there are several ways to compute bounds, it
is usually best to compute all of them and compute their intersection; this
is common practice in interval analysis.
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As described in [16], T have been modifying some ASL routines to do
bound computations from first- and second-order slopes. The computations
are similar to forward AD, which greatly simplifies the .nl file reader in
that it does not have to set up a reverse sweep. One small novelty is my
exploitation of sparsity where possible; the preliminary expression-graph
walk done by the .nl reader sets things up so evaluations can proceed more
quickly. Table 3 summarizes the bound computations available at this
writing, and Table 4 shows the widths of two sets of resulting bounds. In
Table 3, F' denotes an outer approximation of f. See [16] for details and
more references. Explicit expression graphs are convenient for this work,
in which the main focus is on properties of particular operations.

interval  F(X) D f(X)
Taylor 1 f(z) + F/(X)(X — 2)
slope 1 f(2)+ F[X,2](X —2)
slope 2 f(2) + f'(2)(X — 2)
+F[X,z,2)(X — 2)?
slope 2*  slope 2 plus Theorem 2 in [16]
TABLE 3
Bound computations
Method Barnes  Snb25
interval ~ 162.417 0.7226
Taylor 1 9.350 0.3609
slope 1 6.453 0.3529
slope 2 3.007 0.1140
slope 2* 2.993 0.1003
true 2.330 0.0903
TABLE 4

Bound widths

4. Presolve and constraint propagation. Often it is worthwhile to
spend a little time trying to simplify a mathematical programming problem
before presenting it to a solver. With the help of suitable bound compu-
tations, sometimes it is possible to fix some variables and remove some
constraints. Occasionally a problem can be completely solved this way,
but more likely the solver will run faster when presented with a simpler
problem.

For linear constraints and objectives, computing bounds is straightfor-
ward but best done with directed roundings [6] to avoid false simplifications.

For nonlinear problems, we can use general bounding techniques, such
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as those sketched in §3, along with specific knowledge about some nonlinear
functions, such as that sin(x) € [—1, 1] for all .

Another use of bounding techniques is to reduce variable domains. If
we have rigorous bounds showing that part of the nominal problem domain
is mapped to values, all of which violate problem constraints, then we
can discard that part of the nominal problem domain. In the constraint-
propagation community, this is called “constraint propagation”, but it can
also be regarded as “nonlinear presolve”. See [35] for more discussion of
constraint propagation on expression graphs.

In general, a presolve algorithm may repeatedly revisit bound compu-
tations when new information comes along. For instance, if we have upper
and lower bounds on all but one of the variables appearing in a linear in-
equality constraint, we can deduce a bound on the remaining variable; when
another deduction implies a tighter bound on one of the other variables,
we can revisit the inequality constraint and tighten any bounds deduced
from it. Sometimes this leads to a sequence of deductions tantamount to
solving linear equations by an iterative method, so it is prudent to limit the
repetitions in some way. Similar comments apply when we use nonlinear
bounding techniques.

As mentioned in §3, it is sometimes useful to branch, i.e., divide the do-
main into disjoint subdomains that are then considered separately, perhaps
along with the addition of “cuts”, i.e., inequalities that must be satisfied
(e.g., due to the requirement that some variables assume integer values).
Any such branching and imposition of cuts invites revisiting relevant pre-
solve deductions, which might now be tightened, so an expression-graph
representation of the problem can be attractive and convenient.

5. Convexity detection. Convexity is a desirable property for sev-
eral reasons: it is useful in computing bounds; convex minimization (or
concave maximization) problems can be much easier to solve globally than
nonconvex ones; and convexity enables use of some algorithms that would
otherwise not apply. It is thus useful to know when an optimization prob-
lem is convex (or concave).

An approach useful for some problems is to use a problem specification
that guarantees convexity; examples include CVXMOD [5] and Young’s
recent Ph.D. thesis [38]. More generally, a suitable expression-graph walk
[10, 27, 29, 30] can sometimes find sufficient conditions for an expression to
be convex or concave. As a special case, some solvers make special provi-
sions for quadratic objectives and sometimes quadratic constraints. Walk-
ing a graph to decide whether it represents a constant, linear, quadratic,
or nonlinear expression is straightforward; if quadratic, we can attempt to
compute a Cholesky factorization to decide whether it is convex.

6. Outer approximations. Finding outer approximations — convex
underestimates and concave overestimates — for a given expression can
be useful. By optimizing the outer approximations, we obtain bounds
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on the expression, and if we compute linear outer approximations (i.e.,
sets of linear inequalities satisfied by the expression), we can use a linear
programming solver to compute bounds, which can be fast or convenient.
It is conceptually straightforward to walk an expression graph and derive
rigorous outer approximations; see, e.g., [11, 22] for details. Linear outer
approximations are readily available from first-order slopes; see §7 of [35].

7. Concluding remarks. Expression graphs are not convenient for
users to create explicitly, but are readily derived from high-level represen-
tations that are convenient for users. Once we have expression graphs,
it is possible to do many useful sorts of computations with them, includ-
ing creating other representations that are faster to evaluate, carrying out
(automatic) derivative computations, computing bounds and outer approx-
imations, detecting convexity, and recognizing problem structure, and sim-
plifying problems. Internal use of expression graphs can be a boon in opti-
mization (and other) algorithms in general, and in mixed-integer nonlinear
programming in particular.
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