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Sparse Matrix Reordering Schemes for Browsing Hypertext 

Michael W. Berry, Bruce Hendrickson, and Padma Raghavan 

ABSTRACT. Many approaches for retrieving documents from electronic databases 

depend on the literal matching of words in user’s query to the keywords defin- 

ing database objects. Since there is great diversity in the words people use to 

describe the same object, literal- or lexical- based methods can often retrieve 

irrelevant documents. Another approach to exploit the implicit higher-order 

structure in the association of terms with text objects is to compute the sin- 

gular value decomposition (SVD) of large sparse term by text-object matrices. 

Latent Semantic Indexing (LSI) is a conceptual indexing method which em- 

ploys the SVD to represent terms and objects by dominant singular subspaces 

ST that user queries can be matched in a iower-rank semantic space. This pa- 

per considers a third, intermediate approach to facilitate the immediate d+= 
‘:Lon ,of aocu.ment (or term) ciuscers. We demo~strate both traditiena! sparse 

r-. arrix reordering schemes (e. g., Reverse Cuthill-McKee) and spectral-based 

a~proaches (e.g., Correspondence Analysis or Fiedler vector-based spectral bi- 

sxtion) that can be used to permute original term by document (hypertext) 

.=. atrices to a narrow-banded form suitable for the detection of document (or 

Ierm] clusters. Although thk approach would not exploit the higher-order se- 

mantic structure in the database, it can be used to develo<p browsing tools for 

E>-pertext and on-line information at a reduced computational cost. 

1. Introduction 

L+cz! matcbin~ methods for information retrieval can be quite inaccurate 
wh:n ;E:j- are used for query processing. Given the common occurrence of syn- 

on:-m= a.nc polj-semu, v:ords, a more desirable approach for retrieval would allow 
UXE ;.z r~;rieve inforlnat,ion from databases according to a relevant topic or mean- 
ing. L ZT.2E; semantic ])l~exing (LSI) [B DO$M, DDF’+9CI] is an example of a uector 

sport ‘3:G:mation retrieval model which addresses the problems of lexical match- 

ing rt;ze~al methods by using statistically derived conceptual indices instead of 
ind;~< <:al words for retrieval. Assuming an underlying or latent structure in word 
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1=> -= :i ;,; is somewhat obscured by variability in word choice, LSI employs a trun- -.-a. 
.= ...: . ...+ =::.<.llar value decompositioli (!5VD) [GL89] to estimate the structure in word 
L:Z;E z :. ss doculnents. Retrieval is then performed using th~ database of singu- 
.?: -.-z.; :s and v:c; ors obtained fro, n the ~rul~cated S\”D. F,mpirical d:~ta suggest 
-n=-- --- ~+ ST atis~ic ally derived vectcrs ar; more rebus<. indicators of meaning than 

i-. :::.-: i- z. T ,’rnls vhen applied to a .vi(ie va. riet~- of te:;t collections. 
11: -ie\-al metliods can be appli:d to edge-vertex incidence matrices [O SG92] 

~:,:: -~:.- nciing to graphs of hypertext, i.e., text objects with links or cross-references 
‘~, < : .,7, - :+ :. : ~enl [BD 095]. The link structure can “be represented by the nonzero pat- 
~~:~1> :: ; 5$ sparse document-by-link incidence matrices associated with hypertext 

~Siz94- l\”hereas LSI can use relevant information stored in links, current hy- 

pe:~~::; ~~~ich implementations based on keyword or string search do not usually 
:Xpir; :: ~:nk structure. We propose a new approach for utilizing the information 

~zs~c::: ?? with links by permuting the corresponding document-by-link incidence 

m2:r. .7> ;2 . . reveal document and link clusters. 
T ~.< ~:lnlary focus of this work is to compare a variety of sparse matrix reorder- 

ing s.::;n~es (spectral and symbolic) for generating narrow-banded (or clustered) 
no:lzs:: ~~t terns from hypertext incidence matrices. Such nonzero patterns al- 
!0[1.- ::.: :crnediate detection of document and link clusters, and serve as textual 
b:c..l>y., ----- ~ar hypertext and other similar on-line information. The detection of 
xi;::: :2: ?r tmpiicit hypertext links is also improved using these narrow-banded 

n cm;:: pat t ems so M to facilitate automatic hypertext construction. Vector space 
]nf~rn: ~: mq retrieval models such as LSI, which are based on spectral decomposi- 
l!Gr15 + ~. 51’D), can exploit banded incidence matrices through reduced indirect 
~ddr~~::=-~ ~ band storage rather than gather-scatter access) and optimal partition- 

~ng c,: n:lr.zer o elements (weighted term frequencies) across processors for parallel 
irnpl<n:+a~ at ions of sparse matrix-vector multiplication (used by iterative methods 
:11,:.~] x !ZZCZOS [Ber92]). 

<>-- -- ~ reviews some of the basic concepts needed to understand IR mod- . . . . . . .- 

ti: SI: ::. :.s L S1, and provides a sample term-by-document matrix corresponding 
<~ ~ >~. a 1 rest collectioil. In Section 3, both symbolic and spectral approaches 
for i~~: ~~~ing document-by-link incidence matrices are presented. The term-by- 
doc]lr.=a~ ~latrix from the constructive LSI example in Section 2 is used to explain 
k ~Qrh so+ci :al and nonspectral approaches iil Section 3. A performance comparison 

of rh< ‘~~ii+~ methods from Sections 3 using sparse hypertext-based document-by- 
link n: z; ~: :es generated from the Condensed Columbia Encyclopedia, UNIX BSD 
4.3 In:-. p>ges, and a subset of HyperText Markup Language (HTIML) pages from 

:ht 3-z: :cnal High-performance Software Exchange (NHSE) on the World-Wide- 
tt-sb i~.-~i”tt-) is provided in Section 4. Finally, a brief summary and discussion of 
fu~llz~ x>:k comprise Section 5. 

2. Background 

T:= i oit ial phase of most vector space information retrieval models such as —-. 
La[er.: S:nlantic Indexing [DDF+90, FD92], involves the construction of a term- 
b>--dc.:-::~ls:l! matrix. Each element of a term-by-document matrix reflects the 

OC:U::+T, .-+ of a particular word in a particular document, i.e., 
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wher~ ;:. is the number of times or frequency in which term i appears in document 
j. .ls on< does not expect that each word will appear in every document, the matrix 

.}>ically sparse with rarely any :~oticeable nonzero structure. As discussed in .4 ~~ - 

[DUIQ9 1:. local and global weighings can be applisd to either increm+: or decrease 
the i:z;.:,:~am:e of terms withiii or arr. cmg docurr.ent~ so that ;ach element may be 
c&. : =_< 

(2.2;, a,j = L(i, ~) x G(i). 

;rh; r< - _ i. j) is the local weighting for term i in document j, and G(i) is the global 
JYei~k:i=z for term i. 

2.1. singular value Decomposition. LSI [BD 095] exploits the factoriza- 

tiofi c; :“ze matrix A into the product of 3 matrices using the singular value decom- 
posl:i:= \S1’D). Given an m x n matrix A, where m z n and rank(A) = r, the 
sin<l~l=_- \-alue decomposition of A is defined as 

(2.:3) A = UEVT 

L =VTV=In and X=diag(ol, . . ..an). o: >Oforl <i<r, uj = wh;:~ :-~”- 
0 for ‘ > r -1. The first r columns of the orthogonal matrices U and V define the 

or! 5:c; :~ual eigenvectors associated with the r nonzero eigenvalues of AAT and 
AT: :=pectively. The columns of U and V are referred to as the left and right 

-- -.-e. xors, respectively, and the singu!ar values of A are the dizgonal elements smz’: ___ 
of E .:: : LS n~nrmgative sq~ale roots of the n eigen}-alues of A AT [G L89]. 

.1= ;sfiaed by Equation (2.3), the SVD is used to represent the original relation- 
shi~ =Z.~= -- m terms and documents as sets of linearly-independent vectors or jactor 
~a~f~,~: ~-sing k factors or the k-largest singular values and corresponding singular 
vec:~~s :,n~ can encode (see [BD 095]) the original term-by-document matrix as 
a ~~r.~=- . . ~ aad more reliable) collection of vectors in k-space for conceptual q~ery 
proxs= g 

79 Sample Term-by-Document Matrix. For purposes of comparing the ---- 
reGI,<=:--: schemes discussed in the next section, consider the small database Gf 
B~l}c::+ :a<hnica! memoranda first presented in [D DF+90]. In Table 1, a total 
of tic; :~~~es of technical memoranda with five of them (c1-c5) related to human- 
cor~o ~:sr +Qt eraction and four of them (ml-m4) related to graph theory. All 
[he bold-<aced words in Table 1 denote keywords which are used a~ referents to 

the r:::=. The parsing rule used for this sample database required that keywords 
appe~- 3 more than one title. Of course, alternative parsing strategies can increase 
or de::<.=~t The number of indexing keywords (or terms). 

C.: =esponding to the text in Table 1 is the 12 x 9 term-by-document matrix 
shGvc i~ Table 2. The elements of this matrix are the frequencies in which a term 
OCCU:: i= z document or title. For example, in title c5, the fifth column of the 
twn-”: >--i mmlent matrix, response, time, and user all occur t)] ice. For si~nplicit y, 
ter.~. ~;<:<~~lng was not used to construct this sample matrix, 

3. Reordering Techniques 

1;,”; ~:.,~- ci>nsider the use of symbolic and spectral n, [ { is to permute the 
rer.~t-i.:.:-:n:.~j~t matrix defined in Equation (?. I ~ The goal r .;j{h permutations is 

tO .T, Z<: ;:..: j, .:tion of docllrnent (or hypcrl <i’ ‘lusters 111( ~ .mmediate without 
h~:iz; -:: ~ ier high-dim sional repres-]jtat - such as ~ : -F used ili LSI. One 
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T.<BLE 1. Database of titles from Bellcore technical memoranda. 

Bold-faced keywords appear in more than one title. 

‘-- -— -–-= Tides 

Hu,n:m machine interface f>r Lab ‘iBC con~puter app’ic ition~ 
A survey of user opinion of compucer systen, response time 
Tile EPS user interface mana~ement system 
System and human system engineering testing of EPS 
Relation of user-perceived response time to error measurement 

The generation of random, binary, unordered trees 
The intersection graph of paths in trees 
Graph minors IV: Widths of trees and well-quasi-ordering 
Graph minors: A survey 

I.+BLE 2. The 12 x 9 term-by-document matrix corresponding to 
zb~ technical memoranda titles in Table 2. 

T~rms — 
— 

computer 
EPS 
human 
interface 
response 
system 
time 
wm 
graph 
minors 
survey 
trees —. . 

Documents —— --— 
c1 c2 c3 c4 c5 ml m2 m.o m4 

11 0000000 
001100000 
100100000 
101000000 
010010000 
011200000 
0100 [0000 
Oilo lo coo 
o () 0000111 
Ouoooooll 
01 0000001 
0 :) 0001110 — 

desiraii< form for the detection of such clusters is a banded or nearly diagonal matrix 
in wh: :E all the nonzero values (weighted term frequencies) fall within a band in 
each r:= and column. Specifically, the nonzero values should all fall near the line 
from ~;.= upper left to the lower right of the matrix. Such a nonzero structure 
(or pa::<m) facilitates the identification (demonstrated in Section 4.3) of term or 
docurr:n: clusters having sllnilar meaning and context. 

3.1. Metrics for Evaluating Term-Document Matrix R.eorderings. Term- 
docur.s=~ matrices are sparse, nonsymmetric and typically, highly overdetermined. 
.1s m<:::~ned abo~e, it is <1 ~irable that these matrices be reordered so that nonze- 
roes a~= :Iustered e~enly al ~~ut a line from the upper left to the lower right corner of 
the m~z~ix. This line, th<]l~~l vis~~ally a diagonal. is not the conventional diagonal 
of a ~:=square matrix -‘ \ :Icfi i: metrics SLlit.cih,ie f ‘r evalllating reordering by 
adap~::-z so!ne well t f:1 I I ,Il{,ric. used it, ~~ :[!I ‘: 1 r! al ri:” computations. 
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Th: tcndwidth (B) and envelope size (~) are two measures used in the context of 
s~-mme:~i: sparse matrices reordered to a band form. Let C be an n x n symmetric 

matrix: 5,. the bandwidth of row i, is tle ditierence between i (the row nun’.ber) 
an i -1:~ sn-. al!est the coiumn number j N :h timt Ci,J + 0. Let O & tile maxilnum 
of b~.r.~w-lctf. v;jllles over all rOWS, i.e., H = m.i<~~ {+7i }. The bard( ~cth is ~.efined 

~~ 1? = “15 --1. W.; chose this definition m er ot le. alternali’.es (SU -h as defin. n~, the 
bmdv zizh a< ,B) because its natural ext .msion to overdeterlllined I erm-docul~lent 
matricss seems more suitable as a metric for evaluating reordering. The envelope 

of C ir;o.~orates the variation in band~vidth over all rows. The envelope size S is 
de finec + 

Obserl-= ~hat these terms capture the distance from the diagonal to the farthest 
nonzero zn each row of the matrix. 

To sx~end these definitions to evaluate reordering of a nonsymmetric m x n 
term-dc,=mment matrix A, we consider the straight line from the upper left (row 
1. COIU.V-Z 1) to the lower right (row m, column n) corner. The equation to this 
\-isual tiizsonal line can be easily computed; the diagonal subscript di of a row ri 

is defin~t ~~ the abscissa obtained using ri as the ordinate value in this equation. 

TC acco-:n: for nonsymmetry, we define Di, the bandwidth of row i. ?S the largest 
diiferefic+ ?,etween di and any column number j such that Ai,j + O. The bandwidth 

.8 and :>= srwelope size S are as defined as earlier but using the the new definition 
of /3i. D+king 1? as twice the maximum over row bandwidths measures how evenly 
the nonzso clusters are centered about the diagonal. 

FVe zim provide values of ~, a quantity which measures the size of the nonzero 

band bu; dike 1? does not take into account the displacement from the diagonal. 

Let ~i ‘- ~he difference between the largest and smallest nonzero subscript in row 
i of the =atrix. Define y as the maximum of ~i over all rows; nov~ ; differs from 

8 in no: ~=:ag relative tc the diagonal. Ilowever, the sum of ~i a~-er all rows is stili 
the sam< ~J S which was defined earlier in terms of pi. 

3.2. Sarnplc Hypertext Matrices. Four hypertext matrices used for per- 

forrna~,c+ comparisons among the symbolic and spectral-based methods presented 
in Sectic.~s 3.3 through 3.5 are listed in Table 3. The first two matrices, NAN1 and 

MAN2, K-=:e constructed from the See Also entries of the BSD 4,3 Unix manpages. 
The mupage of who, for example, contains the See Also entries getuid and utmp. 
Hence. =C links are associated with who, namely who++ getuid and who++ utmp. 
Parsing fl 62.5 manpages produced 1853 links, and hence the rows and columns of 
!fANl co.-espond to links and manpages, respectively. The nonzero elements of both 
w~Nl ~z ~ u_~2 are all I‘s and simply reflect the incidence rather than frequencY of 

iinkage Tie HAN2 matrix was derived from the MAN1 matrix by removing duplicate 
]Inks (i a aho+getui.d is the same as getuid++who) and removing 18 maupages 

{colurrms I whose links were not connected to the main graph of the MAN 1 matrix. 

The res-~ing MAN2 matrix had 1426 1~}) ] que links corresponding to 607 manpages. 
ThE S513 entries under the letter A the Concise Columbia Encyclopedia (1989 

Seconc ~r~ition, on-line version) pro, f iced the 1778 cross-references or links for 

.he CCE-i matrix listed in Table 3. [ t the 14-th entry ABt)osf~~ shown below, 
: here .Z:S ~Ye cross- references or links i~ !icatecl by brackets: [stomach], [liver], \j; all 
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~,]ad~e:” :pancreas], and [kidneys]. Hence, the 14-th column of CCE–A liti~ Ji v<, 
:“. nz.~~ ,5 ~: 1’s) in row positions 2.5 ([stomach]) througl~ 29 ([kidneys]), w!lill 
:C -resr z i :0 the links in order of their occurrence in ti-~ text. 

\-51XJ}[EN m ve txbrat :s, ;>ortion of the tru~~ be wsen the di 
-- -- ~LTm ln(~ .ower ~elvis. In hlmans the abdurr imd cavity is linei 2, _.= 
:v::k a thin membrane, the peritoneum, which encloses the [stomach ~, 
:L; ~s~ ines, [liver], and [gall bladder]. The [pancreas], [kidneys], UIL 
;. Z;Y ‘bladder, and, in the female, reproductive organs are also locate, 

~~n~kin the abdominal cavity. 

This !C+3E matrix in Table 3 was derived from 400 of the distributed J1 J M J. 
documt=; s accessible from the National HPCC Software Exchange (or N 11 S1 ) 
:BDG–95- homepagel on the World Wide Web (WWW). The selectc[f ( ~ 
ments i<~l uilder the NHSE’S HPCC Programs and Activities heading, o)]~j i 
breadth-i::: tree search of links of the form <A HREF=” . . . “</A> to 3 (1J I 
m-hich ~:><uced a total of 4“233 hypertext links. 

TFIS ~~~sity and average number of nonzeros per row (p. ) and CO] IIJJI ,, 

tach o: :E: four hypertext matrices are also provided in Table 3. ‘J’11( l) 
s?ch ~-.a: ::> is defined to be tfie ratio (hTonzmos) / (R,OWS x Colurn]]s). 

ihese rI:z::..:es are quite sparse with ~nlj~ 1 or 2 hnks associated with each !! 
, manpz<~, ~rticle, or HTJL4L page). 

TABLE 3. Sparse hypertext matrix specifications. 

Da:z Source Rows Columns Nonzeros Density(%~ -“/1. \ ;’ 
MA!< : BSD 4.3 1853 625 3706 0.003 51”5-1 7fi I 

ML!;: BSE 4.3 1426 607 2852 0.003 d.’~ ! : 

CCE-4. C-L- Press 1778 850 2388 0.002 ;),[: ; 
: ~L.: :: l--niv. TIN 4233 400 5119 . 0.003 12.81 : — .. —.- .— 

Tab+ + lists the bandwidth B , envelope size S , and the alternative b:l]:cl~’ ‘ ‘ 
rneasc= - ,,see in Section 3.1) for each of the hypertext matrices, :: !~~l 
illust raz- : he nonzero patterns for three of the four matrices cou: )d( ~, 
upper-::: a:gular structure for the nonzeros of matrices MAN2? ancl CC}.;- 4 rci i , 

]dentifi: ~:]~n of links (cross-references) in their order of occurrence in the (’I 
1 on-lir. < i<.<t. 

Tk< <:al of the techniques in the next two sections will be to reorder T ~ I 
colum=s CI< zhe term-by-document matrix to reduce both Band t. A s,n)ila, 
~or syr.~~:: ric matrices arises in the context of sparse Cholesky fad (.jliz:ii i 
[he CEJiSky decomposition is stable under any symmetric perl,,ltaii(l 
scherms ka~ e been proposed to reorder the rows and colurrlns to recll!c< ~ 

‘her of :+~:i~ted nonzero values during the factorization. Several of tbc tc ,, 
5erivei ‘=,~;~w have their antecedents m symmetric envelope reduction a!, ‘ 
The c::~=?ondence analysis technique described in Section 85 is 11 ~ ~ 
::eptioc. s:zce its expense is too large for the Cholesky rmrd,,v~ng prol.,]( I 

1 >-=.S= home page the W’ rld LVide Web i> , ~ : :ible v;. 
http. / ‘= :.etlib. org/nhse 
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( a) ‘t~-i:; 5~~plicate links {1853 x 625): MAN1 (b) Without duplicate links (1426 x 607). 
; hT 2 

\ ~ 

. . 

‘. 

\ —. 

(c) 1778 cross-references by 85(I articlc,s r CL73-A 

FIG L-RE 1. Hypertext matrices created from BSD 4.3 i ‘nix man- 

pzges (L4.LX 1, }1AN2) and the Letter A of the Concise Columbia 
~ ~: ~.,. . . lopedia (CCE-A). 
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T.4BLE 4. Profiles of the hypertext matrices prior to reordering; ~is 
:be en~-elope size, 13denotes the bandwidth, and ~ is the alternative 
~ nomd, ~gond) bandwidth measure. 

i MATJ2 : 1426 607 231,723 ; 1137 583 [ 
~ CCZ-A 1778 850 119,322 1667 834 
/ NHSE 4233 400 35.491 / 775 392 

3.3. Sy-rnbolic Reordering Methods. The envelope minimization problem 
for a ter=l. bj-.document, (or hypertext) matrix can be formulated and solved in 

purely s}~balic terms by reordering vertices in a suitable graph representation of 
? be ma~r~x. The graph methods we describe in this section are based on reordering 

. . ..-. Yo: spar~c s> mmetric matrices for Cholesky factorization. 
perh~p: the most widely used envelope minimization method for symmetric 

s->arse ~-. ~trice~ is the Reverse Cuthill-McKee (RCM) method of .41an George 

~Geo71- wi~ich is applied to the graph of the matrix. For an n x n symmetric 

n~zrrix ~. T1:< graph G(B) = (V, E) is undirected with n vertices each coriespond- 

:Z< 10 a ro,. or column and edges correspcmding co each nonzero, i.e. e,j 6 E i~~ 

3:: # ~{ Tie RCM method generates a new labeling or ordering of the rows and 
coltimns :,f 3. observe that if BUU # O, Bzv # 0, row u has been labeled, but rows 

~ and = EZY< not, then, to minimize the bandwidth of row u, v should be numbered 
as soon ~ possible. Furthermore, to minimize the bandwidth of row z, z should 
Z& be ~.mr5wred as soon as possible after u and v. In terms of G(B), notice that 
. is adj a<-sn.; 10 v which is in turn adjacent to u. The RCM method makes use 
~~ ~hi~ :~~e:va~ion. The main step involves a modified breadth first search (level 
s:arch: : ~;i a designated starting vertex; the modification to breadth first search 
~S That -, L. T’-< —. .-- . . . ors of a given vertex are explored in increasing order of degree. The 

RC\l nunlb<iing is obtained by reversing the breadth first search numbering, i.e., 
if vertex v i: The i-th vertex to be explored then its RCNl labeling is n — i + 1. This 
:.:versa~ w-as skio-. vn to produce a better envelope [LS 76]. The choice of the starting 
~-~rtex is l-er~- significant and a ~eriPheral vertex is desired. The implementation of 

-: RCJI ~GLS 1] uses an approximation to a peripheral vertex by choosing a vertex ,. . 
A= high smenrncityj i.e., ,. . a vertex whose distance to some other vertex in the graph 
i: ,u]o~e ;.=, ~~e nlaximum distance between any two vertices in the graph. 

FOI zcms}-mmetric overdetermined hypertext matrices, bipartite graphs provide 
~. natu:< e~-iension of the graph model for symmetric matrices. For the m x 

-: hyper:sx~ matrix .4, the associated undirected bipartite graph is denoted by 
‘-~ .1) z: ~ h~is m row vertices and n column vertices. The row vertices are labeled 

.5 -. -.. -% :nd the column vertices are labeled 1,2, . . . . n. The graph has an edge 

‘. c) t,=:~e::z row vertex ? and column vertex c for each Arc # O. To compute 
:+arder:=.~s oi .4 we apply RCM to H but we maintain two distinct numbering 
s:quen:a’ clu~ing modified breadth first search: one for the row vertices and another 
~:i the ::,~u:nn vertices. we obtain the final reordering by reversing each of these 

s?quencs. For example, if ? is a row (column) vertex numbered ~ (1) during the 

sxarch. :~sn i: is given the final number m – ~ + 1 (n – 1 +- 1). Figure 2 illustrates 



:~.\RSE 11.4TR[X REoRDERING sCHEMES FOR BRO\VSI.SG HYPERTEXT 

[he mac s~rp in RCJI for the 12 x 9 term-by-document matrix from Section 
and Tak:l~ .5 sho~rs the reordered matrix. 

9 

2.2 

“ .’%a’kJ j%?ac~ ‘~~6) nor: L @ d~ human eps survey m4 trees 

(1. 12) (4, 9) 
24 

‘8”) <~ “2’1) 
system user graph 

(5, 8) (9, 4) (11.2) 
~IG:’RE 2. Main step in RCM for the 12 x 9 example: the search 
~ca:’ner. and the final RCM number are shown in parentheses for 
:lOW ).ertices. 

T.<~~~ 5. The reordered 12 x 9 term-by-docunlent matrix of the 
:s;h::ira! memoranda titles using RCJI on a bipartite graph rep- 

:tse:Tarion. 

Terms 
—.. 

Documents 

7 

—--- 
ml m2 m3 m4 C5 C3 C2 C4 ‘ “L 

~ rees 1110 OOdod 
graph 0111 0 (1 (j () () 
minors 0011 c o 0 0 ‘? 
wer i(l O 0 011 ljo( 
s mvey 000 1 (! o 1/0 
Time 000 01 01/00 
response , 0 0 0 01 

u-u 

The :a~:plexity of the RCM for ordering H is proportional to the product of 

tl. -: ma~=.m~~:~i degree of :iny vertex in 1{ and the total number of eci,ges (nonze roes 
i: ~he rr:zzrix .~). For hy~~ertext matrices with small maximum deg~ ee, the method 
would b< ex:remely fast. The strength of the method is its low time complexity 
b:: it cL:.= su<er from c.-rtain drawbacks. The heuristic for find, ug the starting 
t :cex is :Zf.~<nced by t 1 s initial numbering of ~crtices and so t]] quality of the 

~-::deri=~ c=: vary sli;’ t !y for the same problelli ~’{lr different initial numbering.s. 
~,:xt, tl.~ c,Y<:z1l mettv I does not accomn~odate d(~lse ro~~s (e.g., a common link 

‘:s?d in =-.-+~} iacumel, ~nd if a row has a siirlifici]:ly lar- ~un]}-. r of nonzero 
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it ~ili~lli “D? ‘Test to process it separately; i.e. , extract the dense rows, reorder the 
remaining :::~trix and augment it by the dense rows (or common links) numbered 
las~. 

3. ~. Fiedler Ordering. A recen 1> proposed heurisl. ic for the symm,tric en 
\ ~i ]C e mini:: iizatiorl ~ roblern invoives sorting zh i ro~vs/columns of the mat ix b! 

[h-- . aluss c: .asociattd entries in th ~ Fi,.dler wctor of the graph of nonzelo en- 
t ri~s. T!lis ~.~proach was proposed at about the same time by several difierenl 
researchers BPS93, JM92, PMGM94a. PMGM94b], and seems to often pro- 
duce ‘5e~zer ~rderings than more traditional combinatorial methods, albeit at a 
seme~vhat iz :reased cost. & analysis of this approach based upon the quadratic 

asslgnm;ni ;mblern can be found in [G P94]. In this section the symmetric ma- 
trl.x :PCE,3:C-~ !s u -. ~eneralized to produce both row and column orderings for the 
nons>-m:z~ei::: probiem. 

Gil-:11 ; graph G, with vertex set V and weighted edges E, the heuristic de- 
scribed i~ ~i:s section will use an eigenvector of L, the (weighted) Lap/acian matriz 

of G. If :,- ~ E. then elements (i)j) and (j, i) of L are set equal to –~(e;j). The 
dia.gona~ I; : “:.en constructed to make row sums equal to zero. More formally, 

(31’ 

{ 

~e,.eE ‘(eik) if i =.1 
L(i, j) = –w(e;j) if e~j ~ L 

o cthcrw]w. 

The Laplac:~.n. matrix has a number of nice properties. it is symmetric and positive 
se:n!defizi;: The constant vector is an eigenvector with zero eigenvalue, and if the 
graph is :~:.:s:ted then all other eigenvalues are positive. If the eigenvalues are 
sorted by i: ::easing value, an eigenvector of L corresponding to the second eigen- 
value is knc=o m a Fiedler vector in recognition of the pioneering work of Miroslav 

Fizdler IFie73. Fie75j. The Fiedler vector has been used in heuristics for a num- 
ber of g:zp~ :~.anipulations including partitioning [PSL90], linear labeling [JM92] 
and ?nl-e!c,~’ n’.inimization as alluded to above. For a survey of applications of the 
F[<.dl:r i-::~.: see [Moh91, Moh92]. 

Ih: FIsi:<: vector has a nice interpretation which helps to explain these ap- 

pli:a~lo::s. C.~mider the problem of embedding a graph in the line in such a way 
t h;t al] ; h~ +ge lengths are kept short, That is, if eij c E, then vertices i and ~ 

should i,+ ~.: :.; each other; particularly if the corresponding edge weight is large. 
L<rting :: :< the location in the line of vertex i, one way to express .fie embedding 
prablem n:z:i~matically is to try to minimize the following sum. 

F(z) = ~ ~(eij)(~(i) – Z(j))2 

e,,~l? 

\lzTelj n.:::.:::-:.ing F leads to a problem with an infinite number of solutions since 

[1:< nlinin::n: is invariant under translations. This can be dealt with by making 
[fit averz:: J value equal to zero; that is, adding the constraint that x~e = O. As 

,. :jlem now has a trivial solution obtained by setting all the z values p,~~~~, [i; -- 

equzl to z+;: This can be avoided by adding a normalization constraint on the x 
~~-r,nr, I< 5 l;.< LO the following probleni. . . . 
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It [m< out that the solution to (3.2) is a Fiedler vector. The objective function 
F(z) can & rewritten as z~Lz, where L is the Laplacian matrix of the graph. The 

first eigenl-~::or is e, so it is excluded by ~he first constraint. The solutiori i. tilcn 

seen TO be ;3~ secmd ei~envector. 
The Fisiei vector approach also provid:s a plausible heuristic for the syJ, 1 m et- 

ric en~elo- :ecu :tion problem. Consider t lle g:aph of nonzeros of the sylm, le,ric 
matfix. TLS gra;}h has a vertex for each row, and an edge eij if elen)(ut (~ J”: ~?f 

the matrix 2 nonzero. INOW embed this graph the line via the Fiedlcr vector, !;iIIre 

edge len-g~< are short, the edges incident to vertex ~ shouldn’t Corlnec(, T,( , ,,( H ) ( (::; 

which are g~Jmetrlcally distant from i. NOW order the rows (and CO)UI I IrI:) ~ I i,h{, 
,, 

mat my b~- sorcurg the corresponding values In the Fledler vector. S]])( c i(i,j ~:,< r t~ . . 

vertices ar~ I<ar each other in the embedding, they should be near eacj i Of her ]]) 
the ordering -which is the goal of a small envelope ordering. Although OU( caii cc)li 

strucz grzp~~ for which this approach works poorly [GM95], in practice it usually 
pe~-oi~< ~=~. 

II is nc= possible to describe a heuristic for reordering a term-by-do( (i )rlell i, 
or hyperzexn matrix baaed upon the Fiedler vector. First, construct the I>]paltitt 
graph of Ih< hypertext (link-by-document) matrix. Embed this graph iu the line 
with ~he FI+<ler vector. This embedding will combine links and doc, ) rnrl 1(,s i 1 t 

such a ~~-a>- :iat terms try to be near the documents which include LIICJII, ait[l 

ciccl.mez:s Z:S near the hnks they include Nlot,e that if two links are s/j,; I c. i 1,, 

~e~-:id ti:c ==ents therl they are iikely to land r,ear each other in the cr-r,lc.;~ n}, 
N-OW orde: ;is links by sorting their values in the Fiedler vector and do the same 

for docum~=~s. Since links [documents) which share documents (Iin]w) ~ w i I ~ r 
each otb~r ‘~ the embeddmg, they should be near each other in the [,, O, ;, 
d~iid. Tails 6 illustrates the reordering using the derived Fiedler vect{) f<, ~, 
12 x 9 nl zrT_~: defined in Table 2. 

T.~~L~ 6. The Fiedler ordering of the 12 x 9 term-by-document 
ma:y-x of the technical memoranda titles. 

Terms Documents 

ml .m2 m3 m4 C2 C5 C3 C4 cl 
trees 1110 010000” 
graph 0111 00000 
minors 0011 00000 
survey 00011 0000 
time 0000 1 10 00 
response 0000 1 10 00 
Tuser 0000 111 00 
computer o 000 1 0001 
$>-stem 0000 10120 
EPS 0000 00110 
interface 0000 00101 
human 0000 00011 
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3.5. Correspondence Analysis. Correspondence analysis [Gre84] is a geometric- 
based .m~~i:d for displaying the rows and columns of a matrix (or a two-way con- 
tingsn:: : z: le) as points in Iual low-dimensional vector spaces. In contingency 
tabl>s ‘Gi:_32~ or term-by-document matrices such as the m x n matrix A defined 
ir EQA1-a~.: z 2. 1), the cell or matrix element O,ij coiltain~ t!le frequency with which 
rcliv c;-.:c~::, (keyword) i co-c ccurs with coiumn category (doculnent) j. 

D<fi~: L, as the i x 1 ~ector of .41 1’s. Tnen, r = .LIWn and c = .4TUIm 
define r<:: :YS of row and column sums, respect~vely. It then follows that ,u = 
wg .4 ?J. = .<7 ‘c = w~r is the sum of all the nonnegative matrix elements aij. 

Let D.” ZZ; i), define diagonal matrices composed of the elements of vectors r 

and c. re-~+:tively. As originally described by Benz6cri in [Ben73], the goal of 

Correspoz;=nce Analysis is to find another matrix representation (say matrix X) 
of the ro=s ~f.4 such that the Euclidean distances between rows in X approximate 
certain -c-:,<leq distances between the rows of A. Simultaneously, another matrix 
represen: z:iun (say matrix Y) of the columns of A is desired whose Euclidean 
dist anc~ zzong columns approximate certain projile distances between columns of 
A. 

T,!x s;;zied distance or ,y2 distance 6~j between rows i and j’ of the matrix A 

is defi.n~j =-: 
~ 

(3.31 x( 
a~k & = ~ _ ajk 

) 
/ck , 

, ~“t ~j” 
k 

where r, == ~ Ci denote the i-th and k-th elements of the column vectors r and c, 

“- It can easily be shown that h~j is the same squared Euclidean distance respec~ir<.: 
bet~veer, ::=s i and j for the matrix B = [bij] whose elements arfc defined bj 

‘Z’= (:) k)’ 
The ::1:.Y:Q: 3 can also be written as B = @D; lAD~l’2 so that 
for an}- E: :l~tieail representation X of B (see [Gif90]). 

Out :::ivation of the Euclidean representation .X is given by 

Equati~r. ~12B = D~~12ADC 2 s]) of B = ~Dr ‘1’2 defined by 

(3.4) ~ = ~~~T, 

--- T --- _ where /. — ~-T~ = In, and ~ = diag(til, . . . ,tin). By defining 

(3..5:1 X = @D;112~? 

it f0i!0r:5 ;=at 

–1/2fi~2~rT D;l/2 . 
xXT = /uDv 

Using Eq--<~ion (3.4), it follows that 

XXT = pD; lAD:l ATD; l = BBT , 

BBT = ‘k-.k’T 

the SJ-D (see 

and heat< :5: Euclidean distances among the rows of X are equal to the Euclidean 

discancfi zmong the rows of B. 

2 Zhe ::.a pr:,fi[e as used in [Gre84] refers to a set of relative freq,,cncies fo,,,,,~ f,, ~ 1,,, 
reprfienta:,:.z of a data matrix as a long, flat table having frequencies in each row expresseJ as 

percsnrag~ :< their respective row sums. 
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The ma:~:x .Y by construction will have one coiumn of constant elements (or 
equal to 71-, wi~h appropriate scaling). This can be easily shown by first noting 

that [h? i~~;~:~ & has a si. [gular t:”i!]let corrmpouding to the largest singular valtle 
--–-:/2 61 = l. i.?..._. ~– ~’zt.:.. } This ~rlplet cm be deri~-~d from the follotvi]g Wp, ,l, c , 

equ2!:c}:s 

ED; ‘>? = D~~[2 41~~1/:(I~~f2u=) = i>; “ Awn = D;12wm, and 

Consequen:~y :he scaled right singular vector (corresponding to 61 = 1) given by 

l/&D~[z z-. has unit length so that @D~ l[Z l/@D~’2w~ = Wm is a column 
of the matrix .1”. This constant column of X does not contribute to the distance 
betw~n an:,- :=-c rows of X, and can be removed by computing the SVD 

–1[2 
~vhich de fia:s ~: prevents the trivial singular vectors (D; 11 z Km, Dc Wn ) from 
occurring. H<~ce. this correction yields a Euclidean representation of 

ratner ?ha~ :i.a: of the matrix B. 
\f-hereas ~ke rows of the matrix X (see Equation (3.5)) have the same profile 

distances of ;he rows of matrix A, the columns of the matrix Y = @Dc-112~ 

have the sari:: ~mfile distances of the columns of A. Not, I hat X = D;lAY. As 
discuss~d in ~Gif90]. this suggests that the row elements of the matrix X are, in 

fact. zh~ ccn::r ~-f grauity or centroid of the elements of the column elements of .4, 
weighted by T?<;: frequency in the row pro file3. 

If ;he n-.z:::x representation Y for the matrix .4 had initialiy been sought, X2 

dista~c=s bc~~s=c columns of A (as opposed to the rows of .-l) would be used to 
produce col:~:~ elements of the matrix Y which are at the centroid of the row 
elements of .:.. (-sing the same SVD from Equation (3.4), the derived matrix Y 
and carrespc=~in < matrix X are given by 

–~~z~~, X = @D~llzi Y = +Dc 

.In alter~ a:ive formulation for the matrix X determined i]v correspondence 
-1 in [Gre84]. Here the generalized singular va~ c dw, Tllposition analysls IS d~s:uss:t 

[GL89: 

i=l 

whe: an. ~ .1, are the i-th rows of the matri~, 4 and .Y, . ; ~ely, all i 

D, -( ----- r~). The k-largest generalz:t ~~ .,y,,l~ar triplets ,, Equati~ 
(3,, :,::: ~ptimal matrix X in Equation (l! f : ank k [Mi16t: 

., - 
ze:lz.~ 5en73] referred to this as /e principle ha-,; 
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For the :i~n~ generalized singular vectors ~ = [Z71, J2, . . . . &] from Equation 
(3.6). :hs firs: i: column vectors til, , VI are referred to as the k principal axes 
o.’ !he r’.’w: f .4 Fhe total variatic n or inertia of th, ,matrix A or how well A is 

r :Fres-c-ec. -::: D: [he k principal zxes is give~ by 

(:,.s’, 

i=l i=l 

l~hert >: is : R.+ :- I h largest generalized singular value (diagonal element of ~) 
fro[ll Equa~;::. l,:; &. The unexplained variation when approximating A via Ak = 

Gk $; i-;T v“!.!?? :he subscript k denotes the first k columns of each factor of the 
geneiz!ized s:=.:.. ar value decomposition in Equation (3.6), is given by 

n 

Since :ht t::> .:er~ia is decomposed along the principal axes [Gre84], the i-th 
princ}oz! a:,::s 3 ::?l:: ]rs for an amount of if? of the total inertia in Equation (3.8). 

\\:5.?E !.>=: ?.: permutation vectors for th~ :’(JWS and colurm]s of an m x n matrix 
.4, ril= ; D::? . . . . . . ---s1 ~xes of the rows and cc,itlmns of A (i.e., {;-j, , ?)k) aud 

{,;2 -i< :-:?sf-rively) as cler,ermined by 13qu2tiGns (3.4) Oi (3.6) can prod~ce 
a reor<erin~ :i i :.: ,orlginal matrix A having more banded (or block diagonal) form 

[Gre84. ~jz. :~.~}-. the elements of the second largest left and right generalized 
Sln,<u!ar ye,-- -: .~,;q ., 02} ) are sorted in ascending order to produce the required 

ro!v and coi_=::i ~::mutations. Table 7 illustrates the reordering using the 
large:: gene:z:zsi singular triplets from Equation (3.6) when A is the 12x 9 
defin~~ in Tz”:. = ~ 

T.~s;= - The reordered 12 x 9 term-by-document matrix of the 
tec~.; : :3. :::emoranda titles using Correspondence Analysis. 

— 
-’?:T.S Documents 

I C4 cl C3 C5 C2 m4 m..3 m2 ml 
:)’- ::: 3n 1 1000 0000 
E?s 1 0100 0000 
::.: <:jace 01100 0 000 
:,, S::m 20101 0000 
;: :::~uter 01001 0000 
_>, : 00 111 0000 
. . . ,.. ..: 00 011 0000 

:<s~:nse 00 011 0000 
. - .,-~y 0000111000 

second 
matrix 

-d-iLi4L._.!...(H 
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4. Performance on Hypertext Matrices 

In this section, examples of the reduction in envelope size (S ) and bandwidth 

(B ) for tlw test collection of hypertext matrices lis~ed In Table 3 are provided. 
E.xecuti~rr times (in elapsed CPU seconds) fm ‘he s:imlbc,lic (RC.VI) and spectral 
( Fied!w end Correspondence Ana!ysis) on a S~n SP.\IiCstztiol, 20 (50 MHz) are 

also prcl-i ded. The notation ‘CACS(i) and CANC(i) is used to represent the cases 
~vhen Corrtipondence Analysis (see Section 3..5) is used with and without. Xz dis- 

tances (~ Equation (3.3)), respectively, for the i-th largest pair of principal axes. 
Wit h C.ll-C( 1 ). for example, D, = Im and D= = 1,. (i.e., no weighting) so that 

~ = .4 in Equation (3.4). In this case, row and column permutations are solely 
determined b>- the left and right singular vectors of A (ii ~, fil ) corresponding to the 
largest singular I-alue 61. 

4.1. Bandwidth Reduction. As indicated by values in Tables 8 through 10, 

~ , B . ~and ~ are ~-ery large for the hypertext matrices in their natural ordering. 
Values i~ Table S show that ~ is substantially reduced for all orderings with the 

largest <a~-elope reduction obtained by the Fiedler vector approach discussed in 
Sect ion 3.-1. It-ith respect to B , however, the RCM ordering achieves the greatest 
bandwiith reducrion (see Table 9). Notice that for some matrices (CCE-A, NHSE), 
the value of 7 she-s-n in Table 10 is significantly lower than that of B This is due 
to the clustering C: nonzeros in a narrow band but the band itself is significantly 

clisplaca< from ~k~ Ahigonui. Also, the orderings using Correspondence .$ nalysis 
withoul ~ 2 distmces (see Section 3.5) tend to produce ~’s more similar to those of 
RCM th.m the Fider approach. 

Tak }e 11 illu:~iates the effects of choosing different pairs of principal axes for 

CorresWndence .%nalysis with X2 distances (CACS). Since the 8-largest generalized 
singula: values (s~e Equation 3.6) for these matrices were all approximately equal 
to 1 (i.c.. form a cluster of generalized singular values near 1), it is not clear which 
pairs oi princ~pal axes best explains the variation in Equation (3.8). By selecting 
the 10-:i pair ~o: 10-th largest) of principal axes, a reductiorl in & of 43% and 
17’% caz be obraked for MAN I and NHSE, respectively. CACS( 10) also achi~ ~m an 
average reduction of 25% for f? and 29’%0 for ~ for these matrices. 

T.+IILE $. Envelope size (~ ) of the hypertext matrices after re- 

arderings: CACS(2) denotes the use of Correspondence Analysis 
using ~z distances and the second principal axes, and CANC(l) 
,denot,e~ Ih? use of Correspondence Analysis with no X2 distances 

and the fi--st principal axes. 

Envelope Size (~) 
Jfatrix ~ Original RCM Fiedler CACS(2) CANC(l) 
?fAIil 308,583 154,240 73,554 113,413 147,399 
‘f.4N2 

6420.. Ei-iErI 
f ~31,723 123,959 65,305 

CCE-A 119,322 12,380 
:ms: ~ 35,491 18,937 11)058 —. 

Fi:-::+s 3 ; iuuugh 5 illustrate th(’ reordering , ~ !)tained for a few of the sample 
hyperr<::- ::Jal r :S discussed in Secticjn 3.2. Of p:, ‘ ular interest is the similarity of 
rec,rd:: -’--d by the pairs (R(;M, C,INP jr ,_ L_.. and (l?i~dler, CACS(2)) f]r the 
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T.i BLE 9. Bandwidth (1?) of the hypertext matrices after reorder- 
ing: C.lCS (2) denotes the use of Correspondence Analysis using 

yz dkt antes and the second principal axes, and C.iNC(l) denotes 
: h< Ls< c,f Correspondence An dysis with no XZ dist anres and the 
;r:t pr- n,:ipal axes. 

I Bandwidth (t? ) 
~ 31aTrix Original RCM Fiedler CACS(2) CANC(l) 

I M1-!il i 1,197 267 599 723 335 
\ !MN2 ~ 1,137 297 663 653 337 
; CC5-A 1 1,667 245 409 427 895 
i Niisz 775 179 197 375 201 

T.ABLE 10. l-on-diagonal bandwidth (~) of the hypertext matri- 
ces af~~: ieorderings; CACS(2) denotes the use of Correspondence 
.Inalj-s:s ~ C.%) using Xz dist antes and the second principal axes, 
and C.SC~l) denotes the use of CA with no Xz distances and the 
first p:i3cipal axes. 

I 

11 zz:ix original P.CM Fiedle~ CACS(2) C,4NC(1) -———— 
600 ~— 214 382 ~1 ~ 2i8 

/ y~~cs ~ 583 211 380 379 210 
CCZ-A 834 88 205 298 510 

; W.SE 1 392 122 131 219 120 

T.%BLE 11. Effects of using different principal axes in Correspon- 
dence .Inal!sis with X2 distances. CACS(2) and CACS(10) denote 
[he IX< Of ; h? second and tenth principal axes, respectively. 

—— ,. 
.t3 

Matrix C.iCS~2, ‘CACS(10) CACS(2) CACS(10) CACS(2) 7CACS(10) 
MAN1 j 113.413 63,842 723 559 511 360 

1 NHSE i 17.725 14,719 375 277 219 157 

~lANl and MLN2 mzi rices. For the other two matrices (CCE-A, NHSE) whose average 
number of documen~s per link (see pr from Table 3) is smaller, the similarities were 
not as prornin=zi. .ts shown in Figure 4, the near-diagonal clusterings obtained 
are quite diffe~<n~ In particular, CANC( 1) produces a definite block-diagonal 
pattern of nonz=ros but at the expense of the largest bandwidths (1? and ~) among 
all reord<rings c’; ~ ile four test matrices (see Tables 9 and 10). The reduction in 
bandwidtb achi:~eti by CACS(10), i.e., using the 10-th largest pair of principal axes 
or left and righ: gmeralized singular vectors of A in Equation (3.6), is illustrated 
in Figure .5 for ;I!e YAN1 matrix. 

The piop<~ s=!ec[ion of principal axes for Correspondence Analysis with Xz 
distances wher. ;he hypertext matrix A has clustered generalized singular values 
(tii’s from Eq~~ii~i~ (3.8)) is problematic, Nevertheless, an iterative procedure 

~. 
‘iv Ilch c~c]<s T:-.:,:,.;<j a subse. of the largest gcner:, llzod singular VR. LOH : 0.4 as 
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computed b!- ~ LM]czos or block Lanczos SVD method (see [B+93]) is plausible. 
Future resear---- :. ~ 11? use of prin, ipal axes for bancl[ridth reduction in [he presence 
of clmt - rd .sF-- ‘::] is fvarranted 

4.2. Can.durational Tiltl[. ‘f’F1 > exccutio’1 1 im: (in ‘I:ipsed L’ P(j seconds) 
for tle ‘h-s=. :: T... --i,lg ~cllemes 11 .c~~s d {n Secti, IU J ]!a\~f k,ecn obtained ou a SU1l 

31icrmj .St--rli: 5 ‘ 1 IICst ation 2U (.30 M H,L). The 11( ‘h; reorcbring ~ra.s iinplemented 
using t 1~.e For I:~:-. -~de from Sparspak {C GLN84]. riie Fieciler reordering was pro- 
ducecl using T:-= L ~i),’zos (with selectiv,~ re-orthogonaliz ation) software from Chaco 
2.0 [H L94~. z:. : -1:-> reordering using Correspondence .knalysis were derived using 
the block La:. -::s routine (bls2) from Sl~DP.lCKC [B+93]. Table 12 lists the 
actual rwrd+r:::< : imes obtained by each met hocl for the four hypertext, matrices 
presented in 5= ‘1::] 3.2. 

T.+BLE 12. Elapsed CPL time (in seconds) on a Sun SP.lRCstation 20 (50 
lIHz t 1:: +ac-b reordering method; number of multiplication by .-l and .4T 

for rh; s~-=:[ ral methods are in parenthesis). 

I Elapsed CPU Time (seconds) 
‘ >!--. ”::1 I RChI Fiedlera c.Acs(2)~ CAXC( l)’ 
“:}-. . ..—. - I 0.019 2.36 (210) 2.00 (236) 0.!36 (74) 
K .:.; :: ( u. fll:3 1.64 (180) 1..53’ {193) C.S2 (i-i) 
~:~.~ 0.025 2.49 (220) 3.21 (380) 0.9.5 (.56) 

; ?,:~: ~ 0.0:37 12.72 (720) 3.18 (362) 1.4:3 (74) 

‘z Using La:.’: ~s ivith selective re-orthogonalizatiou from Chaco 2.0 [HL9c4] 
~Using blc -,: L jnczos routine bls2 from S\ ’D PACKC [B+93] with a 
blocksiz~ : I 1 ~i~d maximum Krylov subspace dimension of 18. 

Consist ~:::- ::.: ~he analytic complexity discussed in Section 3.3, tile execution 
time recluired ::. RCJI is indeed low. In fact, the spectral-based reordering schenles 
require at leas: :-:<: orders of magnitude (i. e., 100 times) more execution time than 
RCII for thes~ ~ar:icwlar hypertext matrices. The dominant computational cost of 
the spe::trai-’oa~ad methods involves multiplications by the sparse matrix .4 ~iind 
.~~ ) as they L:;-tir?.ily arise in iterative methods such as Lanczos for conlp II I iIIg 

singular triple:< The total number of multiplications of the form y = .Az or 
gT = ~T~ for ~..:,:~, spectral methods is provided in Table 12. Clearly. the cost of 
computing [116 ;:~?st singular triplet (first pair of principal axes) with C.lN~ ‘(1) 
is far less tha:. :Esr of computing the second-largest singular triplet by C.4C’S(2) 
or the seconcl-~n~~.l!~st eigenvectors of the (m + n) by (m + n) Laplaciau matrix L 

in Equation (3 1 ~> rl~e Fiedler approach. However, as illustrated in Figures 3 and 

4. the sal-ings ::. :?arse matrix multiplications (a factor ranging from 3 to .5 [rem 
the results in =~”:< 12) for CANC(l) may be offset by an inferior I,andwiclt]l and 
en~”elope reduc-::: for hypertext clustering (e. g., sw Figure -!(d)). (. UFIYSpOIILlellCe 

.Inalysi,s v:ith -, : ~is~ances (i.e., CACS(2)) would appear to be more competitive 
~vith respect [C ‘: >:~cl!vidth (and envelope) reduction it an increased collil,~~tational 
cost 

4.3. 13rou-sing Clusters. The reordering of rf’rl angular hj”pertext ]t,Il rices 
f“ c m be <-:.. - :?IT.=.;. :1s:’ ul in the developlnent of r u,: I,rousers for findiug ~ , 1 }I,ed 
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—— —4 

~-I ,-. - ?.= 3. Reordering of the 18.5:3 x 62.5 MAN I matrix. 
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information. Such ie,~l~ can aid users in locating documents relevant to specific 
queries ill an imm~~i:;~r fashion (i.e., by clusters of hypertext). From Figure 4, 
for example. ~ve -az <x[ract the cluster of articles (see Fi~ure 6) froln tile !ef ter 

.l of Condells, d (’c ::-.:bia Encyclopedia related to peopl( and regions o] Persia 
arc,u.ld 3(]0 13C. .I-l:,~...: rhat in <raph depicted in Figure ~, t!lere ire sev~:ral re!at>d 

\ not, in the Collection (i. e., 850 letter .l art ~cles) ~rllit h are ar; icles (~hc}vll In Y2c X 
links contaiile,l in i.fl- reut but related letter .4 articles: Demosthenes, Diadochi, 
Greece, Macedon. ?elcponnesus, Persia, and Phillip II. This cluster of related 
hypertext informati:,~ 15 fully contained within a sub~rindof~- of each of reorderiIgs 
for the 177S links b) S.50 articles CCE-A matrix shown in Figure ‘7. The di.splaj- of 

graphs such as tha: i:: Figure 6 coupled with windowing capabilities (e. g.. mouse 
dragging) in a visuali: ~rion tool for hypertext browsing would be highl~ effective 
for scoping the con~=x~ of large and possibly distributed databases. 

If the e[ltire ,:,:,~!~:~lon of articles (letters A through Z) of t,he Condensed 

Columbia EBC>C1OP22::. were distributed across a network (local or even the iVorld- 
I\-ide-\Yeb). the g-zpi n Figure 6 as traced by the windows in Figure 7 ~vould alloiv 
a user to select i~-elj :SI rieve foreign or remote documents (e.g., articles from let- 
ters B through Z ~~ ii~k~d to rele~-ant local documents (e.g., articles from letter .1). 

The relationship (c,: :=:::~~e documents with both local and other remote documents 
\vould be imnledi.ai=;j d~termined by providing a road map of related information 

across the nerwork ,l-ichout sI.tI:h hypertext clusteri:~g, re!a~ed local do(. umenis 

SIUC1l as Achaea an~ l.:cadia from Figure 6 might be difficult to associaie N itllollt 
knowing their cOlli~l.– --- linkage to remote documents such as Peloponnesus and 
Greece a priori. Ti~.: is. there would be RO need to retrie~-e the actual texts of 
Achaea and Arcad:~ :r [heir links) to discover their similarity. 
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5. Summary and Future Work 

Thre recrd.-,ri r, ~ schemes have been used to produce uarro(v- l]a~lded hypertext 

matrices foc :iu:t<r idei~t.ification, IWlereas the spectral-based methocis (Fiedl,=r 
and Correspc a~:lic< Al:alysis) t.el)d to produce matrices with smaller envelopes. 

the symbolic R ~ers: C .lt!lill-Mtkee (R CM) method produces smaller band~vi-ltli> 
at a substanr:~.’!y rs,~~lc~d cjmputatioual cost. 

The r-eor lCI;CI !:~-pertex~ matrices facilitate the development of bro~vsing tools 
for isolating d~~umci:i clusters of related information. Such tools are greatly needed 
to navigate large aw.~ .=r distributed databases with hypertext, links. The ability 
to identify (wir hou~ necessarily retrieving) remote documents thi-ough their links 
to a\”ailable t local~l d xuments on a network is possible. In addition to browsing. 
indexing ~ch+ni<: ba.A on terrmdocument (or hypertext, ) matrices such as Latent 
Semantic Indexing ! LSI’, can exploit the reordering presented for a more equitable 

distribution of nonz<rm across processors or nodes of a network. 
Future ~T:ork on The reordering of hypertext matrices involves (i) the consider- 

ation of much larger !l~-~wrtext collections, (ii) the development of a visual browser 
tool for the 111 Rel=asse .5 \Vindows environment for extracting hypertext clusters 
of related informiati,cil, 1 iii ) the use of separator-basecl reordering schemes (e.g., 

-1 ~ ir) the exploration of direct methods (as opposed to it- nested disse[-~i,:, n;. ~:i. 

erati~-e .schem~ :uc!~ + Lanczos) for computing the siuglilar value decomposition 
(S1-l)) of ballj=d !i}-?;::?sl nlatrices. 
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