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ABSTRACT. Miiny approachesfor retrieving documents from electronic databases
depend on the literal matching of words in user’s query to the keywords defin-
ing database objects. Since there is great diversity in the words people use to
Jdescribe the same object, literal- or lexical- based methods can often retrieve
irrelevant documents. Another approach to exploit the implicit higher-order
structure in the association of terms with text objects is to compute the sin-
gular value decomposition (SVD) of large sparse term by text-object matrices.
Latent Semantic Indexing (LSI) is a conceptual indexing method which em-
rloys the SVD to represent terms and objects by dominant singular subspaces
so that user queries can be matched in a lower-rank semantic space. This pa-
oer considers a third, intermediate approach to facilitate the immediate detec-
-ion of document (or term) clusters. We demonstrate both traditicnal sparse
matrix reordering schemes (e.g., Reverse Cuthill-McKee) and spectral-based
approaches (e.g., Correspondence Analysis or Fiedler vector-based spectral bi-
s=ction) that can be used to permute original term by document (hypertext)
mmatrices to a narrow-banded form suitable for the detection of document (or
rerm) clusters. Although this approach would not exploit the higher-order se-
mantic structure in the database, it can be used to develop browsing tools for
bypertext and on-line information at a reduced computational cost.

1. Introduction

L=x>cal matching methods for information retrieval can be quite inaccurate
when 1zeyv are used for query processing. Given the common occurrence of syn-
onyvims and polysemus words, a more desirable approach for retrieval would allow
users 1o reirieve information from databases according to a relevant topic or mean-
ing. Lziznt Semantic ludexing (LSI) [BDO95, DDF*90] is an example of a vector

space =Tormation retrieval model which addresses the problems of lexical match-
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= <= 31 13 somewhat obscured by variability in word choice, LSI employs a trun-
.- zular value decomposition (SVD) [GL89] to estimate the structure in word
z ross docurnents. Retrieval is then performed using th2 database of singu-
ar vz 22 and vecrors obtained fro.n the iruncated SVD. Empirical data suggest

"nz7 " -- = statistically derived vectcrs ar: more robus indicators of meaning than
= 2ivi2 2 terms when applied to a wide variety of text collections.
-izval methods can be applizd to edge-vertex incidence matrices [0S G92]
-:nding to graphs of hypertext, i.e., text objects with links or cross-references
beiws=z them [BDO95]. The link structure can be represented by the nonzero pat-
terns o7 '.he sparse document-by-link incidence matrices associated with hypertext
‘Siz9¢  Whereas LSI can use relevant information stored in links, current hy-
pertext z2arch implementations based on keyword or string search do not usually

sxpleit Linx structure. We propose a new approach for utilizing the information
assorizt=d with links by permuting the corresponding document-by-link incidence
marrizes 12 reveal document and link clusters.

T-z orimary focus of this work is to compare a variety of sparse matrix reorder-

ing s2z=mes (spectral and symbolic) for generating narrow-banded (or clustered)
ronz=:: patterns from hypertext incidence matrices. Such nonzero patterns al-
iow --= :mmediate detection of document and link clusters, and serve as textual
brows:=s for hypertext and other similar on-line information. The detection of
zddi=i2=al or implicit hypertext links is also improved using these narrow-banded
nonzeI: patterns so as to facilitaie automatic hypertext construction. Vector space

infarmmztion retrieval models such as LSI, which are based on spectral decomposi-
tions < z. SVD), can exploit banded incidence matrices through reduced indirect
addrzssing {band storage rather than gather-scatter access) and optimal partition-

snzero elements (weighted term frequencies) across processors for parallel
-=niations of sparse matrix-vector multiplication (used by iterative methods

S=::icn 2 reviews some of the basic concepts needed to understand IR mod-
- =z: LSI, and provides a sample term-by-document matrix corresponding
"l text collection. In Section 3, both symbolic and spectral approaches
for rec-Zering document-by-link incidence matrices are presented. The term-by-
doenr2nt matrix from the constructive LSI example in Section 2 is used to explain
both soeciral and nonspectral approaches in Section 3. A performance comparison
of th= :=r=2 methods from Sections 3 using sparse hypertext-based document-by-
ces generated from the Condensed Columbia Encyclopedia, UNIX BSD
ges, and a subset of HyperText Markup Language (HTML) pages from
::al High-performance Software Exchange (NHSE) on the World-Wide-
\\ =b W WW) is provided in Section 4. Finally, a brief summary and discussion of
fururs worx comprise Section b.

2. Background

== initial phase of most vector space information retrieval models such as
Later: S:mantic Indexing [DDF190, FD92], involves the construction of a term-
bv-deozment matrix. Each element of a term-by-document matrix reflects the

ceoursznos of a particular word in a particular document, i.e.,

A = [ayj],
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wher= .. 15 the number of times or frequency in which term i appears in document
j. As a2e doea not expect that each word will appear in every document, the matrix
A 13 wvoically sparse with rarely any noticeable nonzero structure. As discussed in
[Durn€1 . local and global weigh:tings can be appli=d to etther increase or decrease

the i'z-o-tance of terms within or among documents so that zach element may be
cast =8

(2 a:;; = L{Z,7) x G(i),

wh=r= _ 1. ) is the local weighting for term i in document j, and G(3) is the global
weighzizz for term 1.

2.1. Singular Value Decomposition. LSI [BDO95] exploits the factoriza-
tion <7 =2 matrix A into the product of 3 matrices using the singular value decom-

positicz 1SVD). Given an m x n matrix A, where m > n and rank(A) = r, the
singulzr value decomposition of A is defined as
(2.3 A=UzvT
whars 07 =VTy =1, and £ = diag(ey, - ,0,),0i > 0forl <i<ro; =
] fo: ki _>_ 7= 1. The first » columns of the orthogonal matrices U and V define the
orthon-rmal eigenvectors associated with the r nonzero eigenvalues of AA” and

142 _'espectively. The columns of U and V are referred to as the left and right
oz vertors, respectively, and the singular values of A are the diagonal elements
~: nonnegative squate roots of the n ecigenvalues of AAY r(:rLSQ]
fined by Equation (2.3), the SVD is used to represent the original relation-
ng terms and documents as sets of linearly-independent vectors or factor
ing k factors or the k-largest singular values and corresponding singular
e can encode (see [BDO95]) the original term-by-document matrix as
- +and more reliable) collection of vectors in k-space for conceptual query

\nmca‘. memoranda first presented in [DDF+90]. In Table 1, a totdl
of niz ies of technical memoranda with five of them {c1-c5) related to human-
corzpuizr interaction and four of them (m1-m4) related to graph theory. All
the bold-:'aced words in Table 1 denote keywords whick are used as referents to

the tizi=s. The parsing rule used for this sample database required that keywords
appﬁ& Ln more than one title. Of course, alternative parsing strategies can increase
or derrzass the number of indexing keywords {or terms).

C-rresponding to the text in Table 1 is the 12 x 9 term-by-document matrix

showz iz Table 2. The elements of this matrix are the frequencies in which a term
iz z document or title. For example, in title ¢5, the fifth column of the
v-Iacument matrix, response, time, and user all occur once. For simnplicity,
term w=lzhring was not used to construct this sample matrix.

3. Reordering Techniques

W= n-ow consider the use of symbolic and spectral nicti s to permute the

zment matrix defined in Equation (2.1 The goal " such permutations is
: Jdeioction of document (or hyperiest  clusters mo: :mmediate without
= -eider high-dim: +:sional representat: .« such as i -~e used in LSI. One

term-2.
10 may

havizz

o
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TaBLE 1. Database of titles from Bellcore technical memoranda.
- Bold-faced keywords appear in more than one title.

i 2bel Titles

Human machine interface for Lab ABC computer appiicitions

2 A survey of user opinion of computer systen: response time
3 The EPS user interface management system

c System and human system engineering testing of EPS

<3 Relation of user-perceived response time to error measurement

1 | The generation of random, binary, unordered trees
m?2 | The intersection graph of paths in trees

3 | Graph minors [V: Widths of trees and well-quasi-ordering
1 | Graph minors: A survey

TaBLE 2. The 12 x 9 term-by-document matrix corresponding to
the technical memoranda titles in Table 2.

[ Terms Documents

| cl ¢2 ¢3 ¢4 ¢ ml m?2 m3 mé
computer | 1 1 0 0 0 O 0 0 0
EPS 0 0o 1 1 0 O 0 0 0
human 1 0 0 1 0 0 0 0 0
interface 1 0 1 0 O O 0 0 0
response {0 1 0 0 1 O 0 0 0
system o 1 1 2 0 0 0 0 0
time o 1 0 06 t 0 0 0 0
user o + 1 0 1 0 C 0 0
graph 6 v 0 o0 ¢ 0 1 1 1
minors 0O 0 0 0 0 0 0 1 1
survey 0 1 0 0 0 0 0 0 1
trees 'o0 9 0 0 9 1 1 1 ]

desirabiz form for the detection of such clusters is a banded or nearly diagonal matrix
in whizz all the nonzero values (weighted term frequencies) fall within a band in
each raw and column. Specifically, the nonzero values should all fall near the line
from 122 upper left to the lower right of the matrix. Such a nonzero structure
{or pait=rn) facilitates the identification (demonstrated in Section 4.3) of term or
docurrznt clusters having similar meaning and context.

3.1. Metrics for Evaluating Term-Document Matrix Reorderings. Term-
docurm.znt matrices are sparse, nonsymmetric and typically, highly overdetermined.

As m==::oned above, it is desirable that these matrices be reordered so that nonze-
roes avz clustered evenly about a line from the upper left to the lower right corner of
the mz:mix. This line, thouviy visually a diagonal, is not the conventional diagonal
of a pzzsquare matrix. '« define metrics suitable f~r evaluating reorderings by

adapti=z some well estal bt mnetrics used ip s e matrly computations.
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Thz sandwidth (B) and envelope size (£) are two measures used in the context of
- sparse matrices reordered to a band form. Let C be an n x n symmetric
matrix: =, . the bandwidth of row ¢, is the diference betwzen ¢ (the row number)
and -he smallest the column number j svch that C5; # C. Let 3 be the maxiinum
of bar.d=icth values over all rows, i.e., 3 = maxiZ0{3%}. The bardi-icth is defined
as B=77-1. Wz chose this definition over otue. alternatives (su-h as defining the
bandw:cth as J) because its natural extension to overdsterinined rerm-docuinent
matricas seems more suitable as a metric for evaluating reorderings. The envelope
of C irzorporates the variation in bandwidth over all rows. The envelope size £ is
defined ov

£ = gﬁ,
i=1

Observ: that these terms capture the distance from the diagonal to the farthest
nonzero on each row of the matrix.

To =xtend these definitions to evaluate reorderings of a nonsymmetric m x n
term-do-ument matrix A, we consider the straight line from the upper left (row
1, colum= 1) to the lower right (row m, column n) corner. The equation to this
visual d:zzonal line can be easily computed; the diagonal subscript d; of a row r;
is defin=2 as the abscissa obtained using r; as the ordinate value in this equation.
Tc accozmi for nonsymmetry, we define f;, the bandwidth of row 7. as the largest
differencs between d; and any column number j such that A; ; # 0. The bandwidtn
R and i== =nvelope size £ are as defined as earlier but using the the new definition
of 3;. D=fning B as twice the maximum over row bandwidths measures how evenly
the nonz=ro clusters are centered about the diagonal.

We ziso provide values of v, a quantity which measures the size of the nonzero
band buz unlike B does not take into account the displacement from the diagonal.
Let +; b= the difference between the largest and smallest nonzero subscript in row
i of the —artrix. Define v as the maximum of v; over all rows; now 4 differs from
Bin not ==ing relative tc the diagonal. However, the sum of +; over all rows is stili

the sarnz 3z £ which was defined earlier in terms of g;.

3.2. Sample Hypertext Matrices. Four hypertext matrices used for per-
formanos comparisons among the symbolic and spectral-based methods presented
in Secticzz 3.3 through 3.5 are listed in Table 3. The first two matrices, MAN1 and
MAN2, w=rs constructed from the See Also entries of the BSD 4.3 Unix manpages.
The manpage of who, for example, contains the See Also entries getuid and utmp.
Hence, iwc links are associated with who, namely who43getuid and whotrutmp.
Parsing =!! 625 manpages produced 1853 links, and hence the rows and columns of
¥AN1 cor~2spond to links and manpages, respectively. The nonzero elements of both
¥AN1 anZ MAN?2 are all 1’s and simply reflect the incidence rather than frequency of
linkage. The MAN2 matrix was derived from the MAN1 matrix by removing duplicate
links (1.=. whoegetuid is the same as getuid++who) and removing 18 manpages
{columrs+ whose links were not connected to the main graph of the MAN1 matrix.
The resz!ting MAN2 matrix had 1426 unique links corresponding to 607 manpages.

Th= %50 entries under the letter A+ the Concise Columbia Encyclopedia (1989
Seconc Zdition, on-line version) pro«i::iced the 1778 cross-references or links for
he CCZ-t matrix listed in Table 3. i .+ the 14-th entry ABDOMEN shown below,
:here a= “ve cross-references or links it Micated by brackets: [stomach], {liver], |all
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bladder . ‘pancreas], and [kidneys]. Hence, the 14-th column of CCE-A lus five
m nzerss or 1's) in row positions 25 ([stomach]) through 29 ([kidneys]), which
c¢resp 2= 2 o the links in order of their occurrence in tha text.

ABDOMEN in vertebratss, portion of the trunk be ween the di-
=-agm and .ower pelvis. In humans the abdominal cavity is lined
w1k a thin membrane, the peritoneum, which encloses the [stomach;,
=stines, {liver], and [gall bladder]. The [pancreas], Tkidneys], uri

=zrv bladder, and, in the female, reproductive organs are also located

wothin the abdominal cavity.

Th= X=SE matrix in Table 3 was derived from 400 of the distributed ji{nii.
documezis accessible from the National HPCC Software Exchange (or N1JS)Y)
‘BDG~95 homepage! on the World Wide Web (WWW). The selected i ¢
ments = under the NHSE’s HPCC Programs and Activities heading, and « i -

i tree search of links of the form <A HREF="..."</&>to 3 tli
which p->cuced a total of 4233 hypertext links.

Th= Zeasity and average number of nonzeros per row (u,) and colv-
zach of ¢ four hypertext matrices are also provided in Table 3. The 1
zach matrix is defined to be the ratio (Nonzeros) / (Rows x Columus).
ihese m:2il:ces are quite sparse with only 1 or 2 links associated with eacli .

’ ¢=. article, or HTML page).

TABLE 3. Sparse hypertext matrix specifications.

| Dzazz Source | Rows | Columns | Nonzeros | Density(%) ,)}. |
M%:  BSD 4.3 1853 625 3706 0.003| 5.9 ( 9. u |
MLXZ  BSD 4.3 1426 607 2852 0.003 | 4.7 1"
ccz-4 C-U Press | 1778 850 2388 0.002] w8

' NEST Univ. TN | 4233 400 5119 0.003 | 12.8 !

Sy

Tab = < lists the bandwidth B, envelope size £, and the alternative bandy
measurs ~ see in Section 3.1) for each of the hypertext matrices, nnd *
illustrai=s the nonzero patterns for three of the four matrices considi ..
upper-:rangular structure for the nonzeros of matrices MAN2 and CCk- 4 rcii.
identifizztion of links (cross-references) in their order of occurrence in the o -
ron-lins . 1ext.

Tkr= zoal of the techniques in the next two sections will be to reorder ro»
columzs of the term-by-document matrix to reduce both Band £. A similai .
for syrmmetric matrices arises in the context of sparse Cholesky factorizuty:
the C::MA\ decomposition is stable under any symmetric perns.iaiion
schem=z ~ave been proposed to reorder the rows and columns to reduce
Der of :fzfnted nonzero values during the factorization. Several of the tedh,
z=low have their antecedents in symmetric envelope reduction al:

The c::rrespondence analysis technique described in Section ¢ % is the o
ceptioz. since its expense is too large for the Cholesky reordering probler.

h home page i the W.rld Wide Web is .icoocsible  vio
http./’s+s.zetlib.org/nhse,
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FIGURE 1. Hypertext matrices created from BSD 4.3 { nix man-
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TaBLE 4. Profiles of the hypertext matrices prior to reordering; £is
the envelope size, Bdenotes the bandwidth, and v is the alternative
(non-diagonal) bandwidth measure.

labsl | Rows Columns & v B ¥
MAUL | 1853 025 | 308,583 1197 | 600
MAN2 | 1426 607 | 231,723 1137 | 583
ccz-a | 1778 850 | 119,322 | 1667 | 834
NHSE | 4233 400 | 35491 | 775 | 392

L

3.3. Symbolic Reordering Methods. The envelope minimization problem
for a term-by-document (or hypertext) matrix can be formulated and solved in
purely symbolic terms by reordering vertices in a suitable graph representation of
the matrix. The graph methods we describe in this section are based on reorderings
{or sparss svmmetric matrices for Cholesky factorization.

Perhap: the most widely used envelope minimization method for symmetric
sparse matrices is the Reverse Cuthill-McKee (RCM) method of Alan George
‘GeoT1 which is applied to the graph of the matrix. For an n x n symmetric
marrix 2. the graph G(B) = (V, E) is undirected with n vertices each correspond-
ing to 2 row or column and edges corresponding to each nonzero, ie. e;; € Eiff
B, £ ﬂ. T2 RCM method generates a new labeling or ordering of the rows and
mlumn: sf 3. Observe that if By, # 0, B,y # 0, row u has been labeled, but rows
: and = kzve not, then, to minimize the bandwidth of row u, v should be numbered
soon as possible. Furthermore, to minimize the bandwidth of row z, z should
also be num>ered as soon as possible after 4 and v. In terms of G{B), notice that
: is adjaceni 1o v which is in turn adjacent to u. The RCM method makes use
7 this ohservation. The main step involves a modified breadth first search (level
>:arch; oo a designated starting vertex; the modification to breadth first search
1s that z=ighbors of a given vertex are explored in increasing order of degree. The
RCM numbsring is obtained by reversing the breadth first search numbering, i.e.,
if vertex u is the i-th vertex to be explored then its RCM labeling is n — i+ 1. This
raversai was shown to produce a better envelope [LS76]. The choice of the starting
vartex is very significant and a peripheral vertex is desired. The implementation of
27 RCM 'GLS81] uses an approximation to a peripheral vertex by choosing a vertex
o7 high =-centricity, i.e., a vertex whose distance to some other vertex in the graph
is close to the maximum distance between any two vertices in the graph.

For monsymmetric overdetermined hypertext matrices, bipartite graphs provide
= natura’® extension of the graph model for symmetric matrices. For the m x
= hypertext matrix A, the associated undirected bipartite graph is denoted by
Z4) a=2 has m row vertices and n column vertices. The row vertices are labeled

2. +n and the column vertices are labeled 1,2,...,n. The graph has an edge

5

*.¢) batwesn row vertex 7 and column vertex ¢ for each A,. # 0. To compute
s=orderizzs of 4 we apply RCM to H but we maintain two distinct numbering
szquenc== Juring modified breadth first search: one for the row vertices and another
‘21 the >>lumn vertices. We obtain the final reordering by reversing each of these
s=quence=. For example, if # is a row {column) vertex numbered & (I) during the
szarch. 1=2n 1t 1s given the final number m — 41 (n —1+41). Figure 2 illustrates
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the maiz step in RCM for the 12 x 9 term-by-document matrix from Section 2.2
and Tablis 5 shows the reordered matrix.

oCmputer response 6.7

oy -
c2
s ¥\ -
\‘l ) 3] (&) m3
mterfac
2. 10) \ :
. mi
2 ( s
12 VI &9 8.5) :
system user graph
.8 . 4) (11.2)

FIGURE 2. Main step in RCM for the 12 x 9 example: the search
zumoer. and the final RCM number are shown in parentheses for
TOW vertices.

Tas% 5. The reordered 12 x 9 term-by-document matrix of the
techzical memoranda titles using RCM on a bipartite graph rep-
resentation.

Terms Documents

ml m2 m3 m4 c5 <3 o2 o4 ﬁ
trees 1 I 1 00 0 00 7
graph 0 1 1 r{o 0 9 0 0
minors 0 0 1 L {6 0 0 0 n
user 0 0 0 0 I 1 10 n»
survey 0 0 0 1 ¢ 0 10
time 0 0 00 1 0 1[0 0
response 0 0 o0 0O 1 0 140
svitem 0 0 0 0 o411 2
eps 0 0 0 0 o1 0 1 o0
interface 0 0 0 0 a1 0 0 1
computer | 0 0 0 0 010 1 0 1
human 0 0 0 0O ¢6l0 0 1 1

The complexity of the RCM for ordering H is proportional to the product of
12 max:mur degree of uny vertex in /7 and the total number of edges (nonzeroes
iz the matrix 4). For hynertext matrices with small maximum degree, the method
would be exiremely fast. The strength of the method is its low time complexity
tut it de=s sufer from cortain drawbacks. The heuristic for find, ug the starting
virtex is infuenced by th e initial numbering of vertices and so the quality of the
reorderinz can vary slig'itly for the same problem for different initial numberings.
Next, the overzll meth | does not accommodate dense rows (e.g., a common link
used in svery cocumen  and if a row has a sipnificnst!y lares number of nonzeror-
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1t might bs 2est to process it separately; i.e., extract the dense rows, reorder the
remaining matrix and augment it by the dense rows (or common links) numbered
las:.

3.4. Fiedler Crdering. A recen:ly proposed heuristic for the symmetric en
velope mininuzation problem invoives sorting she rows/columns of the mat.ix by
the ~alues ¢ associated entries in the “icdler vector of the graph of nonzero en-
tri=s. This zpproach was proposed at about the same time by several difierent
researchers BPS93, IM92, PMGM94a, PMGM94b], and seems to often pro-
duce better orderings than more traditional combinatorial methods, albeit at a
somewhat i1z:reased cost. An analysis of this approach based upon the quadratic
assignme=nt rroblem can be found in [GP94]. In this section the symmetric ma-
trix techniqu2 is generalized to produce both row and column orderings for the
nonsyvmmeizi: problem.

Given & zraph G, with vertex set V and weighted edges E, the heuristic de-
scribed in 17z section will use an eigenvector of L, the (weighted) Laplactan matriz
of G. If ;- = £. then elements (3, j) and (j, ) of L are set equal to —w(e;;). The
diagona! 15 172n constructed to make row sums equal to zero. More formally,

Yoenepwlen) if i=7j

{3.1; L{i,j) = - *(eij) if ei; & E
J ctherwise.
The Laplaciz matrix has a number of nice properties. it is symmetric and positive

semidefinitz The constant vector is an eigenvector with zero eigenvalue, and if the
graph s ¢ ted then all other eigenvalues are positive. If the eigenvalues are
sorted by asing value, an eigenvector of L corresponding to the second eigen-
value is know1 as a Fiedler vector in recognition of the pioneering work of Miroslav
Fiedler Fie73. Fie75]. The Fiedler vector has been used in heuristics for a num-

ber of grap- manipulations including partitioning {PSL90], linear labeling [JM92]

and envelap: minimization as alluded to above. For a survey of applications of the
Fizdler ve see [Moh91, Moh92)].
Ths Fiziler vector has a nice interpretation which helps to explain these ap-

plicatiors. «
that all the =dige lengths are kept short. That is, if e;; € E, then vertices i and j
should be =:3: each other; particularly if the corresponding edge weight is large.
Letting zi7. == the location in the line of vertex i, one way to express .he embedding
zematically is to try to minimize the following sum.

Fz)= Y wleis)(z(i) — 2(j))?

e ;€EE

= zing F leads to a problem with an infinite number of solutions since
- s invariant under translations. This can be dealt with by making
value equal to zero; that is, adding the constraint that zTe = 0. As
th: 7r>blem now has a trivial solution obtained by setting all the z values

. This can be avoided by adding a normalization constraint on the z
vector, Jez2inz to the following problent.
(3.2 Minimize F{z) = Z wies;)(z(i) — x(5))*
ey el

Subject to: e and 2Tzl
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It turns out that the solution to (3.2) is a Fiedler vector. The objective function
F{z) can b= rewritten as 7 Lz, where L is the Laplacian matrix of the graph. The
first eigenvacior is e, so it is excluded by the first constraint. The solution i- then
seen 10 be 172 second eigenvector.

The Fi=dler vactor approach also provides a plausible heuristic for the svrimet-
ric envelop= recuction problem. Consider the graph of nonzeros of the symuneric
matrix. TE’s gravh has a vertex for each row, and an edge e;; if elemcnt (v 7 of
the matrix s nonzero. Now embed this graph the line via the Fiedler vector. Simce
edge lengths are short, the edges incident to vertex i shouldn’t connect to vertices
which are g=ometrically distant from i. Now order the rows (and colunins) of the
matrix by sorting the corresponding values in the Fiedler vector. Since sdjsc nt.
vertices are near each other in the embedding, they should be near each other n
the ordering which is the goal of a small envelope ordering. Although ouc cau con
struct grapzs for which this approach works poorly [GM95], in practice it usually
performs w=il.

It is ncw possible to describe a heuristic for reordering a term-by-documentt
or hyperiext matrix based upon the Fiedler vector. First, construct the bipartite
graph of th: hypertext (link-by-document) matrix. Embed this graph in the line
with the Fi=Zler vector. This embedding will combine links and documnents in
such 2 way that terms try to be near the documents which include them, and
dccuments =2 near the links they include. Note that if two links are shircet by
sevzial acczmments then they are likely to land near each other in the embedding,
Now order sz= links by sorting their values in the Fiedler vector and do the same

for docume=is. Sipce links (documents) which share documents (links) sve wor
each other i the embedding, they should be near each other in the or i

desired. Tazi: 6 illustrates the reordering using the derived Fiedler vector for b
12 x @ mar-x defined in Table 2.

Taszz 6. The Fiedler ordering of the 12 x 9 term-by-document
mairx of the technical memoranda titles.

Terms Documents

ml m2 m3 m4 c2 ¢b c3 c4 cl
trees 1 1 1 0 o/0 0 0 O
graph 0 1 1 1 00 0 0 O
MINors 0 0 1 1 00 0 0 O
survey 0 0 0 1 1({0 0 0 0
time 0 0 0 0;1 1 070 O
response 0 0 0 cl1 1 010 O
user 0 0 0 0 1 1 110 O
computer | 0 0 0 0 1 0 0 0 1
system 0 0 0 0 1 0 1 2 0
EPS 0 0 0 0/0 0 1 1 0O
interface 0 0 0 0j0 0 1 0 1
human 0 0 0 6j0 0 0 1 1
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3.5. Correspondence Analysis. Correspondence analysis [Gre84] is a geometric-
based meiz=d for displaying the rows and columns of a matrix (or a two-way con-
ting=ncy 1zzle) as points in Jdual iow-dimensional vector spaces. In contingency
tables :Gi:“Q'T' or term-by-document matrices such as tke m x n matrix A defined

ir Equaizz= 2.1), the cell or rmatrix element a;; contains the frequency with which
row cztez:my (keyword) ¢ co-cecurs with column category (docuinent) j.

D= v as the 7 x 1 vector of all I’s. Then, r = Awy and ¢ = AT w,,
define v=-izrs of row and column sums, respectively. It then follows that p =
wh Av. = wTe = wlr is the sum of all the nonnegative matrix elements a;;.

Let D. z=Z D, define diagonal matrices composed of the elements of vectors r
and c. rescectively. As originally described by Benzéceri in [Ben73], the goal of
CorrespozZznce Analysis is to find another matrix representation (say matrix X)
of the rows of 4 such that the Euclidean distances between rows in X approximate
certain srorile’ distances between the rows of A. Simultaneously, another matrix
represen-z:ion (say matrix Y) of the columns of A is desired whose Euclidean
distances z=ong columns approximate certain profile distances between columus of

ared distance or x? distance Jl?j between rows i and j of the matrix A

(3.3 53,.:,12(%5 “J“) Jck

koM
where r; =3 ¢ denote the i-th and k-th elements of the column vectors r and c,
respectiv:.y. It can easily be shown that ij is the same squared Fuclidean distance
betweer. z=ws 7 and j for the matrix B = [b;;] whose elements arc defined by

= =
w=(2)GE)

The mat-ix B can also be written as B = \/;TD,,'IADC—V2 so that BBT = xx7T
for anyv E::lidean representation X of B (see [Gif90]).
Orns zzrivation of the Euclidean representation X is given by the SVD (see
Equatior 2 .3)) of B = \/_DUZB DY ADIY? defined by
(3.4) B=0%VvT,
where 777 = VTV = I, and £ = diag(&y, - - - ,65). By defining
(3.5 X = uD;Y?0%
it foilows 1zat

XXT = uD7V2u2?0T DY
Using Eqguztion (3.4), it follows that
XXT = uD7*AD;'ATD = BBT |

and hence 122 Euclidean distances among the rows of X are equal to the Euclidean

“The 12 profile as used in [Gre84] refers to a set of relative frequencies found in the
of a data matrix as a long, flat table having frequencies in each row expressed as

perc=ntages o7 their respective row sums.
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The mainix X by construction will have one column of constant elements {or
equal to w~ with appropriate scaling). This can be easily shown by first noting

that the mai-ix B has a siiigular triplet corresponding to the largest singular valuve
. —i/2 —1/2
[s3

D5 W, ) w- }. This sriplet car be derived from the following

BD: ", = D7Y2ADTY(D ?u,) = DY Aw, = D/ ?wpy, and

BT DX " = D7YV2AT DIV (DY ) = DIY2 AT v, = DY .
Consequently. the scaled right singular vector {corresponding to &, = 1) given by
1/\/;7./9:/2&.., has unit length so that \/ED:I/ZI/\/ﬁD}/zwm = w,;, 1s a column
of the martrix X. This constant column of X does not contribute to the distance
between any two rows of X, and can be removed by computing the SVD

: o com
B — = (DM*wnwl DI/?) = TEVT,
I

) C ~1/2 ~1/2
which deflates or prevents the trivial singular vectors (D; / W, De / wy) from
t

A=
occurring. Hsnce. this correction yields a Euclidean representation of
1
B—-— (Di/zwmeDi/2> .
4

2 of the matrix B.

rather thah -
k2 rows of the matrix X (see Equation (3.5)) have the same profile

Whereas
distances of the rows of matrix A, the columns of the matrix ¥ = \/ﬁDgl/sz
have the sam= profile distances of the columns of A. Notc that X = DAY . As
discusszd in ‘Gif90], this suggests that the row elements of the matrix X are, in
fact. tha centzr of gravity or centroid of the elements of the column elements of A,
weighted by iZ2ir frequency in the row profiled.

£ the m3:7ix representation Y for the matrix A had initially been sought, x?
distances betws:zn columns of A (as opposed to the rows of 4) would be used to
producs colu lements of the matrix Y which are at the centroid of the row
elements of 2. Using the same SVD from Equation (3.4), the derived matrix Y
and correspozding matrix X are given by

Y = ED;YPUE, X = JuD7t*y

Arn alterzative formulation for the matrix X determined bLv correspondence
analysis is discuss2d in [Gre84]. Here the generalized singular val'ie deccrnposition
[GL89

(3.6) 1=U%SVT, where UTD, U = I, = VT D, V.
s used to mimimize
m

(3.7 A= X|p.p, =D _ri(Ai — X)T 1 (A4 - Xy,

: =1
wher an2 X, are the i-th rows of the matric- 4 and X. . »» vely, and
D, “ir mo o ry). The k-largest generalized gular triplets . Equatic
3.0 - + 1z¢ optimal matrix X in Equation {3 i of rank & [Mir6u

“Zz2nzé - SenT3] referred to this as le principle bary
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For the rizht generalized singular vectors V = [v1, v2, ..., ¥,] from Equation
(3.67. ~h= firss & -olumn vectors ¥y, ..., Uy are referred to as the k principal axes
o7 the rows -7 4 The total variaticn or inertia of the matrix A or how well A4 is
ropres=ntec zi2nc the k principal axes is giver by

& k
2 N AT 4 = N a2
(0.8 lAllp, b, = 2 rid; DA = Tis

i=1 i=1
where &; is 12 :-1h largest generalized singular value (diagonal element of L)
from Equatiz= {3.6i. The unezplained variation when approximating A via Ay =
U S V] whzrs the subscript k denotes the first & columns of each factor of the
generalized =~ zu.ar value decomposition in Equation {3.6), is given by

n
2 _ ~2
lA— Akllp, b, = Z g; -
i=k+1

Since the o7zl izertia is decomposed along the principal axes [Gre84], the i-th

principal ax:s 2o 2unts for an amount of &2 of the total inertia in Equation (3.8).
When 522 z: permutation vectors for the rows and columns of an m x n matrix
4. the k primoiral axes of the rows and columns of A (e, {vo, ..., v} and
{1is. .- respecrively) as determined by Equations (3.4) o (3.6) can produce
a reordering 7 122 original matrix A having more banded (or block diagonal) form

‘iv. the elements of the second largest left and right generalized
iy, U3 }) are sorted in ascending order to produce the required
rmutations. Table 7 illustrates the reordering using the second
ingular triplets from Equation (2.6) when A is the 12 x9 matrix

singular vest:

row and col
larges: gene

defined in Tzz .= T

Tazzz 7 The reordered 12 x 9 term-by-document matrix of the
tech - -z m2moranda titles using Correspondence Analysis.

Terms Documents
cd ¢l c3 ¢5 ¢2 m4d m3 m2 ml
1 1 0 0 0O 0 0 0
i 0o 1 0 010 0 0 0
o 1 1 0 070 0 0 0
2 0 1 0 1 0 0 0 0
0 1 0 0 1 0 0 0 0
6 o1 1 140 0 0 0
0 010 1 1 0 0 0 0
0 010 1 1410 0 0 0
0O 0 0 01 1 0 0 0
0 0 0 070 1 1 0 0
6 0 0 010 1 1 1 0
0 0 0 0l0 O I 1
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4. Performance on Hypertext Matrices

In this section, examples of the reduction in envelope size (£ ) and bandwidth
(B ) for the test collection of hypertext matrices listed in Table 3 are provided.
Execution times (in elapsed CPU seconds) for the syvmbolic (RCM) and spectral
(Fiedler end Correspondence Analysis) on a Sun SPARCstation 20 (50 MHz) ar=
also provided. The notation CACS(i) and CANC(3) is used to represent the cases
when Correspondence Analysis (see Section 3.3) is used with and without x? dis-
tances (see Equation (3.3)), respectively, for the i-th largest pair of principal axes.
With CANC(1). for example, D, = I, and D. = I, {i.e., no weighting) so that
B=2Ain Equation (3.4). In this case, row and column permutations are solely
determined by the left and right singular vectors of A (a1, 71) corresponding to the
largest singular value &;.

4.1. Bandwidth Reduction. As indicated by values in Tables 8 through 10,
£, B . znd v are very large for the hypertext matrices in their natural ordering.
Values in Table & show that £ is substantially reduced for all orderings with the
largest =nvelope reduction obtained by the Fiedler vector approach discussed in
Section 3.4. With respect to B, however, the RCM ordering achieves the greatest
bandwidth reduction (see Table 9). Notice that for some matrices (CCE-A, NHSE),
the values of 4 shown in Table 10 is significantly lower than that of B. This is due
to the clustering of nonzeros in a narrow band but the band itself is significantly
dispiac=i from the diagonai. Also, the orderings using Correspondence Analysis
without y? distances (see Section 3.5) tend to produce v’s more similar to those of
RCM thzn the Fiedler approach.

Tabis 11 illustrates the effects of choosing different pairs of principal axes for
Correspondence Analysis with x2 distances (CACS). Since the 8-largest generalized
singular values (see Equation 3.6) for these matrices were all approximately equal
to 1 (i.c.. form a cluster of generalized singular values near 1), it is not clear which
pairs of principal axes best explains the variation in Equation (3.8). By selecting
the 10-7a pair {or 10-th largest) of principal axes, a reduction in £ of 437% and
17% can be obtained for MAN1 and NHSE, respectively. CACS(10) also achicves an
average reduction of 25% for B and 29% for v for these matrices.

TaBLE & Envelope size (£ ) of the hypertext matrices after re-
orderings: CACS(2) denotes the use of Correspondence Analysis
using y? distances and the second principal axes, and CANC(1)
denotes 1k= use of Correspondence Analysis with no x? distances

and the fi-st principal axes.

‘ : Envelope Size (£)

Matrix | Original RCM Fiedler CACS(2) CANC(I)
MANT - 308,583 154,240 73,554 113,413 147,399
vinz | 231,723 123,959 65305 62278  119.746

oCE-t 119,322 12,380 6,420 11399 37,540

CNHSE | 35,491 18,937 11,058 17,725 19,821

Figuz2s 3 inrough 5 illustrate the reorderings ohtained for a few of the sample
hypertzx- matriz=s discussed in Section 3.2. Of pa i+ -ular interest is the similarity of
recrdzzi - oroZuzed by the pairs (ROM, CANCY  and (Fiedler, CACS(2)) for the
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TABLE 2. Bandwidth (B) of the hypertext matrices after reorder-
ings: CACS(2) denotes the use of Correspondence Analysis using
v? distances and the second principal axes, and CANC{1) denotes
h: st of Correspondence Analysis with no x? distances and the
qrst principal axes.

| Bandwidth (B)
i Matrix | Original RCM Fiedler CACS(2) CANC{l)

MENL 1,197 267 599 723 335
MLN2 1,137 297 663 653 337
CC=-4 1,667 245 409 427 895
NESE 775 179 197 375 201

TaBLE 10. Non-diagonal bandwidth (y) of the hypertext matri-
ces after reorderings; CACS(2) denotes the use of Correspondence
Analvsis (CA) using x? distances and the second principal axes,
and CANC 1) denotes the use of CA with no x? distances and the
first principal axes.

1
|

‘ v
Msizix “ Original RCM Fiedler CACS(2) CANC(I)

THEx: 800 214 382 511 218
luwexz | 583 211 380 379 210
ccz-x 0 834 88 205 298 510
‘NEsE | 392 122 131 219 120

TaBiLr 11. Effects of using different principal axes in Correspon-
dence Analysis with x? distances. CACS(2) and CACS(10) denote
the sz of the second and tenth principal axes, respectively.

: s B v
Matrix - CACS{27 CACS(10) [ CACS(2) CACS(10) | CACS(2) CACS(10)
MAN1 § 113.413 63,842 723 559 511 360
NHSE | 17.725 14,719 375 277 219 157

MAN1 and MAN2 meirices. For the other two matrices (CCE-A, NHSE) whose average
number of documents per link (see p, from Table 3) is smaller, the similarities were
not as promin:nt. As shown in Figure 4, the near-diagonal clusterings obtained
are quite differsnt. In particular, CANC(1) produces a definite block-diagonal
pattern of nonzzros but at the expense of the largest bandwidths (B and v) among
all reord=rings of the four test matrices (see Tables 9 and 10). The reduction in
bandwidth achizved by CACS(10), i.e., using the 10-th largest pair of principal axes
or left and righi generalized singular vectors of A in Equation (3.6), is illustrated
in Figure 5 for the MAN1 matrix.

The proper szlection of principal axes for Correspondence Analysis with x?2
distances wher ihe hvpertext matrix A has clustered generalized singular values
{¢;’s from Equziion (3.8)) is problematic. Nevertheless, an iterative procedure
which cyvcles tnrough a subsel of the largest generaiized singular veciors f A as
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computed by = Lanczos or block Lanczos SVD method (see [BT93]) is plausible.
Future resear-z = the use of principal axes for bandwidth reduction in the presence
of clustered sp=-:ra1s warranted.

4.2. Con.putational Time. The execution time (in ~lapsed CPU seconds)
for the "hres . -Z:ming schemes hscussod in Section 3§ have been obtained on a Sun
Micresyst=ms = ARCstation 20 {30 MH:). The RCM reord:ring was implemented
using the Forrzaz code from Sparspak [CGLIN84]. Tlie Fiedler reordering was pro-
duced using ti= Lf:nczos {with selective re-orthogonalization) software from Chaco
2.0 [HL94 . 2x = -=» reorderings using Correspondence Analysis were derived using
the block La** -s routlne (bls2) from SVDPACKC [B*93]. Table 12 lists the
actual reorderizz times obtained by each method for the four hypertext matrices
presented in S=-1i>n 3.2

TaBrz 12. Elapsed CPU time (in seconds) on a Sun SPARCstation 20 (50
MHz: 7=z 2ach reordering method; number of multiplications by 4 and AT
=:tral methods are in parenthesis).

a’ \ Elapsed CPU Time (seconds)
: { RCM  Fiedler® CACS(2)” CANC(1)
10.019 2.36 (210) 2.00 (236) 0. 96 (74)
0013 164 (180)  1.52 (199)  C.82 (74)
Cz-2 l 0.025 2.49 (220) 3.21 (380) O. 93 (56)
CNEST [ 0.037 1272 (720) 3.18(362) 1.43 (T4)
“Using Larczas with selective re-orthogonalization from Chaco 2.0 [HL94].
®Using blc-= Lanczos routine bls2 from SVDPACKC [B193] with a
blocksize -7 7 and maximum Krylov subspace dimension of 18.
Consiztans «112 the analytic complexity discussed in Section 3.3, the execution

time required =3 RCM s indeed low. In fact, the spectral-based reordering schenies
require at leas: w2 orders of magnitude (i.e., 100 times) more execution time than
RCM for these sarticular hypertext matrices. The dominant computational cost of
the spectral-bzs=d methods involves multiplications by the sparse matrix 4 (and

A') as theyv nzturally arise in iterative methods such as Lanczos for compm mg
sinoular triplezs. The total number of multiplications of the form y = Az or
yT = 2T 4 for == spectral methods is provided in Table 12. Clearly, the cost of
computmg the Ia-zest singular triplet (first pair of principal axes) with CANC'(1)

is far less thar 1zat of computing the second-largest singular triplet by CACS(2)
or the second-sallest eigenvectors of the (m+n) by (m + n) Laplacian matrix L
in Equarion (3.7 v the Fiedler approach. However, as illustrated in Figures 3 and
4. the savings iz sparse matrix multiplications (a factor ranging from 3 to 5 {rom
the results in Tzzi= 12) for CANC(1) may be offset by an inferior handwidth and
envelope reductizz for hypertext clustering (e.g., sce Figure 4(d)). Correspondence
Analysis with + - distances (i.e., CACS(2)) would appear to be more competitive
with respect to Zzandwidth (and envelope) reduction at an increased computational
cost.

4.3. Browsing Clusters. The reordering of rectangular hypertext miatrices
can be exrrem= useful in the developiaent of vivuv! Lrowsers for finding rointed
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information. Such tools can aid users in locating documents relevant to specific
queries in an imme=diate fashion (i.e., by clusters of hypertext). From Figure 4,
for example. we can extract the cluster of articles (see Figure 6) from the letter
A of Condens:d Cc unibia Encyclopedia related to people and regions of Persia
arcuad 300 BC. Notce that in graph depicted in Figure 6 there are several related
ariicles (shewn in b ack) not in the collection (i.e., 850 letter A articles) which are
links contained n c:if-rent but related letter A articles: Demosthenes, Diadochi,
Greece, Macedon. Pelcoponnesus, Persia, and Phillip II. This cluster of related
hypertext information is fully contained within a subwindow of eact of reorderings
for the 1778 links by 350 articles CCE-A matrix shown in Figure 7. The display of
= Figure 6 coupled with windowing capabilities (e.g.. mouse

graphs such as that 1

dragging) in a visuzli-ation tool for hypertext browsing would be highly effective
for scoping the cont=xt of large and possibly distributed databases.
If the entire coll=ction of articles (letters A through Z) of the Condensed

Columbia Encyclop=1:z were distributed across a network (local or even the World-
Wide-Web). the grapk in Figure 6 as traced by the windows in Figure 7 would allow
irieve foreign or remote documents {e.g., articles from let-
ters B through 7 link=d to relevant local documents (e.g., articles from letter A).
The relationship of ~=m2ote documents with both local and other remote documents
would be immediat=ly Jdetermined by providing a road map of related information
across the nerwork. Without such hypertext clustering, related local documents
such as Achaea ana ircadia from Figure 6 might be difficult to associaie without
knowing their commz:z linkage to remote documents such as Peloponnesus and
Greece a priori. [zz is. there would be no need to retrieve the actual texts of
Achaea and Arcacdiz :or their links) to discover their similarity.

a user to selectivelv
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5. Summary and Future Work

Three recrdsrinz schemes have been used to produce narrow-banded hypertext
matrices for ciuster identification. Whereas the spectral-based methods {Fiedler
and Correspcncance Aralysis) tend to produce matrices with smaller envelopes.
the symbolic Reverss Cuthill-Mckee (RCM) method produces smaller bandwidths
at a substantia !y r=3ucad computational cost.

The reorder=d Lyvpertext matrices facilitate the development of browsing tools
for 1solating documeni clusters of related information. Such tools are greatly needed
to navigate large an< . or distributed databases with hypertext links. The ability
to identify {without necessarily retrieving) remote documents through their links
to available rlocall documents on a network is possible. In addition to browsing,
indexing schemi=s based on term-document (or hypertext) matrices such as Latent
Semantic Indexing (LS1i can exploit the reorderings presented for a more equitable
distribution of nonzeros across processors or nodes of a network.

Future work on the reordering of hypertext matrices involves (i) the consider-
ation of much larger hypertext collections, (i7) the development of a visual browser
tool for the X11 Relsase 5 Windows environment for extracting hypertext clusters
of related information. 1iii) the use of separator-based reorderings schemes (e.g..
nested dissectianj. and ir) the exploration of direct methods (as opposed to it-
erative schemes such as Lanczos) for computing the singular value decomposition
{SVD)) of band=d hyo=riext matrices.
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