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Abstract: Finite element mesh adaptation methods can be used to improve
the efficiency and accuracy of solutions to computational modeling prob-
lems. In many applications involving hexahedral meshes, localized modifica-
tions which preserve a conforming all-hexahedral mesh are desired. Effective
hexahedral refinement methods that satisfy these criteria have recently be-
come available; however, due to hexahedral mesh topology constraints, little
progress has been made in the area of hexahedral coarsening. This paper
presents a new method to locally coarsen conforming all-hexahedral meshes.
The method works on both structured and unstructured meshes and is not
based on undoing previous refinement. Building upon recent developments in
quadrilateral coarsening, the method utilizes hexahedral sheet and column op-
erations, including pillowing, column collapsing, and sheet extraction. A gen-
eral algorithm for automated coarsening is presented and examples of models
that have been coarsened with this new algorithm are shown. While results
are promising, further work is needed to improve the automated process.

Keywords: Hexahedral, Mesh, Coarsening, Simplification, Adaptiv-
ity, Refinement

1 Introduction

The efficiency and accuracy of a finite element computational modeling solu-
tion are greatly influenced by the distribution of elements in the finite element
mesh. In a given model, there are usually regions that require greater mesh
density than others. A higher concentration of elements in these regions may
be necessary to reduce error in the finite element approximation, increase
resolution where there are high gradients, or more accurately represent the
model geometry. Regions where high accuracy is not critical or where gra-
dients are low can generally be modeled with lower mesh density. Since the
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computational time required in a finite element analysis is directly related to
the number of elements in the model being analyzed, it is advantageous to
produce a mesh that has as few elements as possible. Therefore, in an ideal
analysis, each region in the model should have enough elements to produce a
good solution, but no more.

For most real-world finite element models, current mesh generation algo-
rithms are unable to create an initial mesh that optimizes both accuracy and
efficiency in the finite element solution. Although some control over mesh den-
sity is possible, an initial mesh will almost always contain regions that have
too few elements, regions that have too many elements, or both. In addition,
some finite element applications require mesh density to evolve throughout
an analysis as areas of high and low activity change with time [1, 2, 3, 4]. For
these reasons, much research has been devoted to the development of mesh
adaptation tools that make it possible to adjust element density in specific
regions either before or during analysis.

Mesh adaptation consists of both refinement and coarsening. Refinement
is the process of increasing mesh density by adding elements to a mesh, while
coarsening is the process of decreasing mesh density by removing elements
from a mesh. By refining areas that have too few elements and coarsening
areas that have too many elements, a more accurate and efficient analysis can
be performed.

To satisfy the requirements of some finite element solvers, a mesh must be
topologically conforming and contain only one element type. In general, a con-
forming all-tetrahedral mesh can be locally modified with much greater ease
than a conforming all-hexahedral mesh. However, in many modeling appli-
cations, hexahedral elements are preferred over tetrahedral elements because
they provide greater efficiency and accuracy in the computational process
[1, 5]. For this reason, work has been done to improve hexahedral mesh adap-
tation methods. As a result, robust hexahedral refinement algorithms are be-
coming available [6, 7, 8, 9]. However, few developments have been seen in
the area of hexahedral coarsening. The lack of effective coarsening methods
creates a major gap in the field of hexahedral mesh adaptation.

To effectively achieve the objectives of mesh adaptation, a truly general
hexahedral coarsening algorithm should:

1. Preserve a conforming all-hexahedral mesh
2. Restrict mesh topology and density changes to defined regions
3. Work on both a structured and unstructured mesh
4. Not be limited to only undoing previous refinement

Although hexahedral coarsening has been utilized in some modeling appli-
cations, no single algorithm has been developed that satisfies all the criteria
listed above. This is, in large part, due to the topology constraints that exist
in a conforming all-hexahedral mesh. These constraints make it difficult to
modify mesh density without causing topology changes to propagate beyond
the boundaries of a defined region [10, 11].
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Since current hexahedral coarsening methods are unable to satisfy all the
requirements listed above, they have limited applications. For example, to
prevent global topology changes, some algorithms introduce non-conforming
or non-hexahedral elements into the mesh [1, 2, 12, 13, 14]. While this is a
valid solution for some types of analysis, not all finite element solvers can
accommodate hanging nodes or hybrid meshes. Other algorithms maintain
a conforming all-hexahedral mesh, but they generally require either global
topology changes beyond the defined coarsening region [11, 15, 16], structured
mesh topology where predetermined transition templates can be used [8, 15],
or prior refinement that can be undone [2, 12, 13]. These weaknesses severely
limit the effectiveness of these algorithms on most real-world models.

This paper presents a new method to locally coarsen conforming all-
hexahedral meshes. The method works on both structured and unstructured
meshes and is not based on undoing previous refinement. The remainder of
this paper is organized as follows. Section 2 provides an overview of some basic
hexahedral mesh operations. Section 3 shows how these operations have been
combined to produce localized hexahedral coarsening and how the coarsening
process has been automated. In Section 4, some examples of models which
have been coarsened are shown. Finally, in Section 5, some areas of future
work are discussed.

2 Hexahedral Mesh Operations

In recent years, a greater understanding of hexahedral mesh topology has led
to the development of many new hexahedral mesh operations [17, 18, 19].
In this section, three operations which are useful for hexahedral coarsening
are presented. These operations are based on hexahedral sheets and columns,
which are topology-based groups of hexahedra that always exist in a conform-
ing hexahedral mesh.

2.1 Hexahedral Sheets and Columns

A hexahedral element contains three sets of four topologically parallel edges,
as shown in Figure 1. Topologically parallel edges provide the basis for hexahe-
dral sheets. The formation of a sheet begins with a single edge. Once an edge
has been chosen, all elements which share that edge are identified. For each of
these elements, the three edges which are topologically parallel to the original
edge are also identified. These new edges are then used to find another layer
of elements and topologically parallel edges. This process is repeated until no
new adjacent elements can be found. The set of elements which are traversed
during this process makes up a hexahedral sheet. Figure 2 shows a hexahedral
mesh with one of the sheets in the mesh defined.

A hexahedral element also contains three pairs of topologically opposite
quadrilateral faces, as shown in Figure 3. Topologically opposite faces provide
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Fig. 1. A hexahedral element’s three sets of topologically parallel edges.

Fig. 2. A hexahedral sheet: (a) A hexahedral mesh with one sheet defined. (b) A
view of the entire sheet.

the basis for hexahedral columns. The formation of a column begins with
a single face. Once a face has been chosen, the elements which share that
face are identified. For each of these elements, the face which is topologically
opposite of the original face is also identified. These new faces are then used to
find another layer of elements and topologically opposite faces. This process
is repeated until no new adjacent elements can be found. The set of elements
which are traversed during this process makes up a hexahedral column. An
important relationship between sheets and columns is that a column defines
the intersection of two sheets. This relationship is illustrated in Figure 4.

Fig. 3. A hexahedral element’s three pairs of topologically opposite faces.
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Fig. 4. A hexahedral column: (a) Two intersecting sheets. (b) The column that
defines the intersection of the two sheets in (a).

2.2 Sheet and Column Operations

Hexahedral sheet and column operations can be used to modify a hexahedral
mesh without introducing non-conforming elements. One such operation is
known as sheet extraction [16]. Sheet extraction removes a sheet from a mesh
by simply collapsing the edges that define the sheet and merging the two nodes
on each edge, as shown in Figure 5. Merging nodes in this manner decreases
element density in the vicinity of the extracted sheet and guarantees that the
resulting mesh will be conforming.

Fig. 5. Sheet extraction: (a) A sheet is selected for extraction. (b) The edges that
define the sheet are collapsed. (c) The two nodes on each edge are merged, which
eliminates the sheet and preserves a conforming hexahedral mesh.

Another hexahedral mesh operation that involves sheets is pillowing
[19, 20]. Unlike sheet extraction, which removes an existing sheet from a mesh,
pillowing inserts a new sheet into a mesh. As demonstrated in Figure 6, pil-
lowing is performed on a contiguous group of hexahedral elements which make
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up a ‘shrink’ set. These elements are reduced in size and pulled away from
the rest of the mesh, leaving a gap. A new sheet is then inserted into the gap
by reconnecting each of the separated node pairs with a new edge. The new
sheet increases element density in the vicinity of the shrink set and ensures
the preservation of a conforming hexahedral mesh.

Fig. 6. Pillowing: (a) A shrink set is defined. (b) The elements in the shrink set are
reduced in size and separated from the rest of the mesh. A sheet is inserted to fill in
the gap and preserve a conforming hexahedral mesh. (c) The newly inserted sheet.

A third hexahedral mesh operation is known as column, or face, collapsing
[18, 21]. A column is collapsed by merging diagonally opposite nodes in each
quadrilateral face that defines the column, as shown in Figure 7. Since a
quadrilateral face has two pairs of diagonally opposite nodes, a column can
be collapsed in one of two different directions.

Fig. 7. Column collapse operation.

As previously mentioned, a column defines the intersection of two sheets.
When a column is collapsed, two intersecting sheets are altered such that they
no longer intersect, as illustrated in Figure 8. The paths of the new sheets
are determined by the direction of the collapse. Just like sheet extraction
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and pillowing, the column collapse operation always preserves a conforming
hexahedral mesh. In addition, similar to sheet extraction, the column collapse
operation decreases element density in the vicinity of the collapsed column.

Fig. 8. Redirection of intersecting sheets through column collapsing: (a) Two in-
tersecting sheets. (b) The column defining the intersection is collapsed. (c) The two
sheets no longer intersect.

3 Hexahedral Mesh Coarsening

Utilizing the sheet and column operations described in Section 2, the hexahe-
dral coarsening method presented in this section builds upon recent develop-
ments in quadrilateral coarsening [21]. While it is true that some quadrilateral
coarsening operations can be directly extended to hexahedral coarsening, by
themselves, these operations are not always able to prevent changes in ele-
ment density from propogating beyond the boundaries of a defined hexahedral
coarsening region.

3.1 Previously Developed Coarsening Techniques

As illustrated in Section 2.2, sheet extraction decreases mesh density by re-
moving elements from a mesh. Therefore, sheet extraction is a very useful tool
for hexahedral coarsening. However, sheet extraction by itself is generally not
sufficient when localized coarsening is desired. This is due to the fact that
sheets are rarely contained entirely within a region that has been selected for
coarsening. As shown in Figure 9, extracting a sheet that extends beyond the
boundaries of a defined region decreases mesh density in areas where coars-
ening is not desired. Therefore, before sheet extraction can occur, it is often
necessary to modify the mesh in such a way that produces sheets which are
contained entirely within the boundaries of a defined coarsening region.
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Fig. 9. Global coarsening: (a) A sheet passes through a region selected for coars-
ening. (b) When the sheet is extracted, mesh density is decreased both inside and
outside the defined coarsening region.

As described in Section 2.2, the paths of intersecting sheets can be altered
using the column collapse operation. Figure 10, shows how this operation can
be used to create a sheet that is contained entirely within a defined region.
Such a sheet can then be extracted to coarsen the region without affecting
any other part of the mesh.

The coarsening region shown in Figure 10 extends from the top to the
bottom of the mesh. Suppose the coarsening region is modified so that it only
extends a few layers from the top of the mesh, as shown in Figure 11. In this
case, the column collapse operation can be used twice to produce a sheet that
is contained entirely within the coarsening region. However, as seen in the
figure, the first collapse operation is performed on a column which extends
beyond the boundaries of the region. Collapsing this column modifies mesh
topology and density in areas where coarsening is not desired. This shows that
entirely localized coarsening cannot always be accomplished with the column
collapse and sheet extraction operations alone.

3.2 Entirely Localized Coarsening

The previous examples demonstrate that entirely localized coarsening requires
all operations to take place within the boundaries of the selected coarsening
region. Referring to Figure 11, it can be seen that the second collapse op-
eration was performed on a column contained within the coarsening region.
Collapsing this column produced a sheet contained within the region without
affecting any other part of the mesh. Of course, the formation of this column
was accomplished through a previous collapse operation that did affect areas
outside the coarsening region. Therefore, a critical aspect of entirely localized
coarsening is the creation of local columns. Such columns must be formed in
the coarsening region without affecting areas outside the region.
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Fig. 10. Localized coarsening: (a) Two intersecting sheets pass through a region
selected for coarsening. (b) The column defining the intersection of the two sheets in
(a) is collapsed to produce a sheet contained entirely within the coarsening region.
(c) The sheet that will be extracted. (d) When the sheet in (c) is extracted, mesh
density is only decreased within the defined coarsening region.

One way to create local columns without affecting areas outside the coars-
ening region is through pillowing. As illustrated in Section 2.2, pillowing is
a form of refinement because it increases mesh density in the vicinity of the
shrink set. For this reason, pillowing is not an obvious solution for coars-
ening. However, due to the topology constraints that exist in a conforming
all-hexahedral mesh, adding elements appears to be a necessary step when
coarsening some regions.

Figure 12 shows how pillowing can be used to produce entirely localized
coarsening. By pillowing the coarsening region, a sheet is inserted around the
region. This sheet intersects other sheets that pass through the coarsening
region and provides columns which follow the boundary of the region. Such
columns can be collapsed to form sheets contained within the coarsening re-
gion without modifying mesh topology or density in areas where coarsening is
not desired. These sheets can then be extracted to locally coarsen the region.
It should be noted that many of the elements added through pillowing are
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Fig. 11. Semi-localized coarsening: (a) Two intersecting sheets pass through a region
selected for coarsening. (b) The column defining the intersection of the two sheets
in (a) is collapsed. A sheet formed by the collapse and another intersecting sheet are
shown. (c) The column defining the intersection of the two sheets in (b) is collapsed
to produce a sheet contained entirely within the coarsening region. (d) The sheet
that will be extracted. (e) When the sheet in (d) is extracted, mesh density is only
decreased within the defined coarsening region.

removed through sheet extraction. Only those elements which are necessary
to transition from higher to lower mesh density are left in the mesh. As long
as the number of elements removed through sheet extraction is greater than
the number of elements added through pillowing, the final mesh density in
the coarsening region will be lower than the initial mesh density.

3.3 Automated Coarsening Algorithm

For a given region, the process of pillowing, column collapsing, and sheet ex-
traction can be repeated multiple times to achieve various levels of coarsening.
A simple algorithm has been developed to automate this process for an arbi-
trary region and level of coarsening. The overall structure of the algorithm is
briefly described by the following steps.

1. A coarsening region is defined and a target mesh density for that region
is determined based on input given by a user.
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Fig. 12. Entirely localized coarsening: (a) A coarsening region is defined. (b) The
sheet that forms when the coarsening region is pillowed. This sheet provides columns
which follow the boundary of the region. (c) Collapsing the columns in (b) produces
sheets contained entirely within the coarsening region.

2. Every sheet that passes through the coarsening region is found. Sheets
contained entirely within the coarsening region are distinguished from
those that extend beyond the region.

3. Due to a variety of geometry and mesh topology constraints, each sheet is
examined to see if it will facilitate valid collapses and extractions during
the coarsening process. Sheets that are unable to facilitate valid collapses
and extractions are ignored from this point on.

4. For each acceptable sheet, a shape quality metric [22] is used to estimate
how the quality of the mesh will be affected if that sheet, or the portion
of that sheet contained in the coarsening region, is extracted. Sheets that
will potentially produce a higher mesh quality are given higher priority.

5. If there are any sheets contained entirely within the coarsening region,
then valid combinations of those sheets are analyzed. The combination
that, when extracted, will produce a mesh density that is closest to the
target mesh density without over-coarsening is saved. If no acceptable
combination is found, the algorithm moves to step 6. Otherwise, steps 6
through 8 are skipped because no other operations are needed before sheet
extraction.

6. If there are any sheets that extend beyond the coarsening region, then
valid combinations of those sheets are analyzed. For each combination,
two coarsening options are possible, as shown in Figure 13. These two
coarsening options are distinguished by which direction the columns are
collapsed. The combination that will produce a mesh density that is clos-
est to the target mesh density without over-coarsening is saved. If no
acceptable combination is found, steps 7 through 9 are skipped.

7. A sheet is inserted around the boundary of the coarsening region through
pillowing.

8. Columns in the pillow sheet are collapsed in directions which were pre-
viously determined when the best sheet combination was saved. These
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collapses form sheets which are contained entirely within the coarsening
region.

9. Sheets contained entirely within the coarsening region are extracted.
10. Steps 2 through 9 are repeated until the target mesh density is achieved

(within a certain tolerance) or no more valid sheet combinations are found.
11. If coarsening took place, the remaining elements in the region are smoothed

to improve mesh quality [23].

Fig. 13. Two coarsening options: (a) Columns selected for collapsing. (b) The sheets
that will form if the columns are collapsed one way. (c) The sheets that will form if
the columns are collapsed the other way.

4 Examples

The following three examples show some results of the automated coarsening
algorithm described in Section 3.3. In each example, the goal was to remove
25, 50, and 75 percent of the elements in the region selected for coarsening,
while maintaining acceptable element quality. Quality was measured using the
scaled Jacobian [24].

The first example was performed on a structured mesh of a cube, as shown
in Figure 14. The second example was performed on an unstructured multiple-
source to single-target swept mesh of a mechanical part, as shown in Figure 15.
The final example was performed on an unstructured mesh of a human head
generated with an octree based, sheet insertion algorithm [25], as shown in
Figure 16. For both the mechanical part and human head models, refinement
was performed prior to coarsening to create a higher starting mesh density.

Tables 1, 2, and 3 provide element removal, element quality, and coarsening
time results for each model. In almost every case, acceptable element quality
was maintained and a density that very nearly reflects the target mesh density
was achieved.
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Fig. 14. Structured cube example: (a) Original mesh with coarsening region defined.
(b) 25 percent coarsening. (c) 50 percent coarsening. (d) 75 percent coarsening.

Table 1. Coarsening Results for Cube Model

Target Percent Elements in Actual Percent Min. Scaled Coarsening
Removal Region Removal Jacobian Time (sec)

0 1331 – 1.00 –
25 1056 20.7 0.47 0.7
50 684 48.6 0.41 0.9
75 355 73.3 0.34 1.1
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Fig. 15. Unstructured mechanical part example: (a) Original mesh with coarsening
region defined. (b) 25 percent coarsening. (c) 50 percent coarsening. (d) 75 percent
coarsening.

Table 2. Coarsening Results for Mechanical Part Model

Target Percent Elements in Actual Percent Min. Scaled Coarsening
Removal Region Removal Jacobian Time (sec)

0 7641 – 0.77 –
25 5807 24.0 0.59 5.3
50 4057 46.9 0.32 9.6
75 2205 71.1 0.22 12.5
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Fig. 16. Unstructured human head example: (a) Original mesh with coarsening
region defined. (b) 25 percent coarsening. (c) 50 percent coarsening. (d) 75 percent
coarsening.

Table 3. Coarsening Results for Human Head Model

Target Percent Elements in Actual Percent Min. Scaled Coarsening
Removal Region Removal Jacobian Time (sec)

0 10080 – 0.48 –
25 7953 21.1 0.29 13.0
50 5129 49.1 0.17 17.9
75 2615 74.1 0.22 22.5
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5 Future Work

The automated coarsening algorithm described in Section 3.3 takes advantage
of sheets already existing entirely within the coarsening region which can be
extracted without any previous operations. However, it does not take advan-
tage of columns already existing entirely within the coarsening region which
can be collapsed without any previous operations. Modifying the algorithm to
take advantage of such columns would improve the efficiency and effectiveness
of the coarsening process in certain situations.

While the automated coarsening algorithm guarantees a topologically con-
forming mesh, it does not guarantee that the final quality of the mesh will be
acceptable. Further research is needed to ensure that hexahedral coarsening
does not degrade mesh quality below an acceptable threshold. This might be
accomplished through more sophisticated methods which prevent poor qual-
ity elements from forming, or through cleanup operations which fix bad ele-
ments without significantly affecting mesh density. Many effective methods to
cleanup a quadrilateral mesh have recently been developed. It is hoped that
further research will lead to similar methods for a hexahedral mesh.

The coarsening method presented in this paper has been shown to work on
unstructured meshes. However, even though these meshes are considered to
be unstructured, they are usually structured in one dimension. Little work has
been done to test this method on completely unstructured meshes. In theory,
the method should work for any hexahedral mesh. However, it is likely that
some meshes cannot be coarsened without degrading element quality below
an acceptable level. Further work is needed to determine the limits of this
coarsening method.

6 Conclusion

By utilizing sheet and column operations such as pillowing, column collaps-
ing, and sheet extraction, entirely localized coarsening can be achieved in
conforming all-hexahedral meshes. This method of coarsening works on both
structured and unstructured meshes and is not based on undoing previous re-
finement. Although not fully developed, automation of this hexahedral coars-
ening method has already shown promising results. However, further work is
needed to ensure acceptable element quality and to improve the efficiency of
the overall process.

References

1. Biswas Rupak and R. C. Strawn. Tetrahedral and hexahedral mesh adaptation
for CFD problems. Applied Numerical Mathematics, 26:135–151, 1998.



Localized Coarsening of Conforming All-Hexahedral Meshes 17

2. Don Morton and J. M. Tyler. A new 3D adaptive finite element scheme
with 1-irregular hexahedral element meshes. In Proceedings of the 2000 ACM
Symposium on Applied Computing, pages 99–104, 2000.

3. A. Tam, D. Ait-Ali-Yahia, M. P. Robichaud, M. Moore, V. Kozel, and W. G.
Habashi. Anisotropic mesh adaptation for 3D flows on structured and un-
structured grids. Computer Methods in Applied Mechanics and Engineering,
189:1205–1230, 2000.

4. Peter A. Cavallo, N. Sinha, and G. M. Feldman. Parallel unstructured mesh
adaptation for transient moving body and aeropropulsive applications. 42nd
AIAA Aerospace Sciences Meeting and Exhibit, pages 6555–6565, 2004.

5. Steven E. Benzley, Ernest Perry, Karl Merkley, and Brett Clark. A comparison
of all hexagonal and all tetrahedral finite element meshes for elastic and elasto-
plastic analysis. In Proceedings, 4th International Meshing Roundtable, pages
179–191. Sandia National Laboratories, October 1995.

6. Ko-Foa Tchon, Julien Dompierre, and Ricardo Camarero. Conformal refine-
ment of all-quadrilateral and all-hexahedral meshes according to an anisotropic
metric. In Proceedings, 11th International Meshing Roundtable, pages 231–242.
Sandia National Laboratories, September 2002.

7. Nathan Harris, Steven E. Benzley, and Steven J. Owen. Conformal refinement of
all-hexahedral meshes based on multiple twist plane insertion. In Proceedings,
13th International Meshing Roundtable, pages 157–168. Sandia National Labo-
ratories, September 2004.

8. Steven E. Benzley, N. J. Harris, M. A. Scott, M. J. Borden, and S. J. Owen. Con-
formal refinement and coarsening of unstructured hexahedral meshes. Journal
of Computing and Information Science in Engineering, 5:330–337, 2005.

9. Michael Parrish, M. J. Borden, M. L. Staten, and S. E. Benzley. A selective
approach to conformal refinement of unstructured hexahedral finite element
meshes. In Proceedings, 16th International Meshing Roundtable, pages 251–
268. Sandia National Laboratories, September 2007.

10. Timothy J. Tautges and Sarah Knoop. Topology modification of hexahedral
meshes using atomic dual-based operations. In Proceedings, 12th International
Meshing Roundtable, pages 415–423. Sandia National Laboratories, September
2003.

11. Alla Sheffer and Alper Ungor. Efficient adaptive meshing of parametric models.
Journal of Computing and Information Science in Engineering, 123:366–375,
2001.

12. C. K. Choi, E. J. Lee, and W. J. Yu. Adaptive mesh refinement/recovery strat-
egy for FEA. Structural Engineering and Mechanics, 17:379–391, 2004.

13. Yannis Kallinderis and C. Kavouklis. A dynamic adaptation scheme for general
3D hybrid meshes. Computer Methods in Applied Mechanics and Engineering,
194:5019–5050, 2005.

14. Benjamin S. Kirk, J. W. Peterson, R. H. Stogner, and G. F. Carey. libmesh:
A c++ library for parallel adaptive mesh refinement/coarsening simulations.
Engineering With Computers, 22:237–254, 2006.

15. R. Taghavi. Automatic, parallel and fault tolerant mesh generation from CAD.
Engineering With Computers, 12:178–185, 1996.

16. Michael J. Borden, Steven E. Benzley, and Jason F. Shepherd. Coarsening and
sheet extraction for all-hexahedral meshes. In Proceedings, 11th International
Meshing Roundtable, pages 147–152. Sandia National Laboratories, September
2002.



18 Woodbury, Shepherd, Staten, Benzley

17. Peter J. Murdoch and Steven E. Benzley. The spatial twist continuum. In
Proceedings, 4th International Meshing Roundtable, pages 243–251. Sandia Na-
tional Laboratories, October 1995.

18. Jason F. Shepherd. Topologic and Geometric Constraint-Based Hexahedral
Mesh Generation. Published Doctoral Dissertation, University of Utah, May
2007.

19. Karl Merkley, Corey D. Ernst, Jason F. Shepherd, and M. J. Borden. Meth-
ods and applications of generalized sheet insertion for hexahedral meshing. In
Proceedings, 16th International Meshing Roundtable, pages 233–250. Sandia
National Laboratories, September 2007.

20. Scott A. Mitchell and Timothy J. Tautges. Pillowing doublets: Refining a mesh
to ensure that faces share at most one edge. In Proceedings, 4th International
Meshing Roundtable, pages 231–240. Sandia National Laboratories, October
1995.

21. Matthew L. Staten, S. E. Benzley, and M. A. Scott. A methodology for quadri-
lateral finite element mesh coarsening. Engineering With Computers, 24, 2008.

22. Patrick M. Knupp. Algebraic mesh quality metrics for unstructured initial
meshes. Finite Elements in Analysis and Design, 39:217–241, 2003.

23. Patrick M. Knupp. Hexahedral and tetrahedral mesh shape optimization.
International Journal for Numerical Methods in Engineering, 58(1):319–332,
2003.

24. Patrick M. Knupp. Algebraic mesh quality metrics. SIAM J. Sci. Comput.,
23(1):193–218, 2001.

25. Jason F. Shepherd, Yongjie Zhang, Claurissa Tuttle, and Claudio T. Silva. Qual-
ity improvement and boolean-like cutting operations in hexahedral meshes. In
Proceedings, 10th Conference of the International Society of Grid Generation,
September 2007.


