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Abstract

Graph partitioning is a fundamental problem in many scienti
c contexts� This
document describes the capabilities and operation of Chaco ���
 a software package
designed to partition graphs� Chaco ��� allows for recursive application of several

methods for 
nding small edge separators in weighted graphs� These methods include
inertial
 spectral
 Kernighan�Lin and multilevel methods in addition to several simpler
strategies� Each of these approaches can be used to partition the graph into two
 four
or eight pieces at each level of recursion� In addition
 the Kernighan�Lin method can be

used to improve partitions generated by any of the other algorithms� Brief descriptions
of these methods are provided
 along with references to relevant literature� Chaco ���
can also be used to address various graph sequencing problems
 and this capability is
brie�y described� The user interface
 input�output formats and appropriate settings for

a variety of code parameters are discussed in detail
 and some suggestions on algorithm
selection are o�ered�
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�� The quick version� If you�re like us
 there�s no chance you�ll read this full

document before you start using Chaco�� So here are the basics� If you know a fair
amount about graph partitioning and are experienced with computers
 this should be
enough to get you going� If you don�t know what we�re talking about
 you probably
need to grit your teeth and read the introduction �x�� and the section on methods

�x�� before you go much further� You�ll also have to read the section on input and
output �x�� before you can progress beyond using the sample graphs we�ve provided
and address your own problems� Once you�re oriented you may want to return to this
section
 as it has some useful tips for the savvy user�

WhileChaco has been used in many di�erent settings
 it was developed in a parallel
computing context
 and readers will notice a clear bias towards this application in the
following documentation�

���� Overview� Many problems which arise in scienti
c computing have a com�
binatorial nature which can be conveniently described in the language of graphs� In
these settings a recurring theme is the need to partition a graph into subgraphs that are

in some measure as disjoint as possible� This is the case in
 for example
 divide�and�
conquer algorithms for devising e�cient circuit layouts or constructing nested dissection
orderings for sparse matrix factorizations� It is also a fundamental problem in parallel
computing
 where large data structures must be decomposed and mapped to processors�

Broadly speaking
 Chaco addresses three classes of problems� First and foremost

it partitions graphs using a variety of approaches with di�erent properties� Discussion
of these methods and the tools to control them comprise the bulk of this document�

Second
 Chaco knows how to intelligently embed the partitions it generates into several
di�erent topologies� The topologies the code knows about are those matching the
common architectures of parallel machines
 namely hypercubes and meshes �see x�����
Third
 Chaco can use spectral methods to sequence graphs in a manner that preserves

locality
 as described in x��	� This capability has been used
 for example
 in data base
organization
 sparse matrix envelope reduction and DNA sequencing�

���� Obtaining the code� Chaco is available under license from Sandia National

Laboratories� The source code is distributed along with technical documentation and
sample input 
les via the internet� If you are interested in obtaining a copy
 you should
contact us at the addresses given on the cover page of this report�

���� Installing the code� Chaco is designed to be run on UNIX systems� To
unpackage it
 save the mailing in a 
le Chaco�shar�Z�UU and remove any mail header
information�

�
Chaco is named in honor of Chaco Canyon	 the site of extensive Anasazi ruins in what is presently

northwestern New Mexico� Between �


 and ��

 AD a great society	 considered the most complex
and sophisticated on the continent north of Mexico	 �ourished there�
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Then execute the following commands�

uudecode Chaco�shar�Z�UU

uncompress Chaco�shar�Z

chmod �x Chaco�shar

sh Chaco�shar

Assuming things have gone well
 you may now delete the 
les �Chaco�shar�Z�UU�

and �Chaco�shar�
 and follow the README 
le instructions to compile and run the code�
We have tried to make Chaco completely portable and we have compiled and run

the code successfully on machines built by Sun
 SGI
 HP
 IBM
 DEC and Cray� If you
are using an ANSI standard compiler
 then Chaco should compile correctly
 and it

should do 
ne on many non�standard compilers as well� If you are having di�culties
getting the code working on a new machine
 we can suggest several possible sources of
di�culty�

� Chaco uses several machine and compiler dependent parameters that are de�


ned within the ANSI standard� If these values aren�t de
ned
 thenChaco tries
to compute them
 but this is di�cult to do in a machine independent way� One
thing the user can do to improve robustness with a non�standard compiler is to

de
ne appropriate values for three parameters in the 
le �code�util�machine params�c��
These parameters are DBL EPSILON the machine precision
 DBL MAX a large dou�
ble precision value
 and RAND MAX the largest value returned by the system
random number generator �rand�� You can examine the values the code com�

putes for these parameters by turning on the DEBUG MACH PARAMS �ag described
in x����

� The timing subroutine invokes a system routine called �getrusage� which isn�t
supported by all compilers� We provide a second timing routine which is cur�

rently commented out in the code� You can replace the 
rst timer routine with
the second if necessary� The second routine uses a system routine that wraps
around after about �� minutes
 which is why we prefer the 
rst if it is available�
Both routines are in the 
le �code�util�seconds�c��

� Compiler �ags vary greatly from machine to machine� You may need to modify
the compilation command in �code�Make
le� to makeChaco compile and link
properly�

� Chaco makes extensive use of the random number generator �rand� which is
de
ned in ANSI C� If your compiler doesn�t have this routine
 you�ll need to
provide a random number generator that produces integers between � and max�
You should then modify �code�util�randomize�c� to make the appropriate new

call
 and �code�util�machine params�c� to return max in its third argument�

���� Some more things to watch out for�

� The routine �func�d�c� takes a long time to compile with optimization� It

doesn�t account for a signi
cant fraction of the execution time
 so if
 for some
reason
 you are recompiling the code often
 you may wish to compile this routine
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without optimization�

� Use of the Lanczos�based eigensolvers on very large problems may cause the
code to run out of memory on your system� The code will recover by computing
the best approximation it can given the available memory
 but if this happens
it may be advisable to switch to the RQI�Symmlq eigensolver or the inertial

or multilevel�KL partitioning methods� See x���
 x��� and x����
� It can be di�cult to choose the eigentolerance for spectral methods appro�
priately� We�ve chosen a reasonable default
 and Chaco tries hard to deliver
the accuracy requested
 but can�t help much if that request is unwise� If you

choose a very tight �small� tolerance
 things will slow down considerably and
you may run into memory trouble� If you choose a very loose �big� tolerance

your results will generally degrade and become erratic due to poor accuracy or

misconvergence� See x��� and x����
� The eigensolvers and the Kernighan�Lin heuristic make use of randomization
techniques
 so results generated using these methods are strictly reproducible
only if the program is used in a way that generates the same sequence of random

numbers�
� If you apply terminal propagation with spectral partitioning
 several tricky
precedence relations between the eigensolvers and partitioning dimensionality
necessarily come into play� Refer to x����

��
� Implementation details�

� Version ��� of Chaco is written entirely in ANSI standard C and is about

��
��� lines long�
� In order to maximize the size of graphs which can be partitioned
 memory is
allocated dynamically when needed and released as soon as possible without
seriously degrading e�ciency�

� C performs �oating point computations in double precision �� byte� format

and Chaco stores the results in double precision format �except in a few cases
where precision is clearly not an issue��

� Chaco can be run in a stand�alone mode or called as a subroutine from either

C or Fortran programs as described in x��

���� Partitioning� The 
ve classes of partitioning algorithms currently imple�
mented in Chaco are simple �x��	�
 inertial �x����
 spectral �x����
 Kernighan�Lin �KL�

x���
 and multilevel�KL �x����� Each of these algorithms can work on graphs with edge
and�or vertex weights and each can be used to partition into two
 four or eight sets
at each stage of a recursive decomposition� We consider KL to be a local re
nement

technique
 while the other methods are global partitioning methods� Chaco allows the
output of any of the global methods to be fed into a local method� It also allows a
partition to be read from a 
le �x���� and re
ned with a local method or one of the
various post�processing methods described in x����

You can combine local and global partitioning methods by choosing from the menu
in an obvious way� We encourage you to experiment with the sample graphs provided






with the code�

In addition to the basic partitioning algorithms
 Chaco includes a host of more so�
phisticated capabilities� Several of the methods can be invoked with a technique known
as terminal propagation x��� which improves data locality by allowing consideration of
how the sets are mapped to processors� These include KL
 multilevel�KL and spectral

�in bisection mode only�� Another way to improve the mapping to processors is to in�
voke a post�processing algorithm devised speci
cally for this purpose which is discussed
in x������ The partition itself can also be improved with a post�processing phase that
applies KL to all pairs of sets with edges between them �x����	�� And
 in some parallel

computing settings it may be possible to overlap communication with the computation
associated with vertices that need no external information� Chaco has the ability to
increase the number of these internal vertices �x������� In addition
 Chaco can be used

to compute and sort the Fiedler vector of a graph
 which is useful in many settings in
which data locality is desirable�

��	� Input and output� Input to Chaco consists of one or more 
les and the

answers to several interactive queries� The format of the input 
le describing the graph
can be found in x��	
 and examples are provided with the code� If you select inertial
partitioning you will also need to provide a 
le with geometric coordinates as described
in x����

Output from the code includes a variety of metrics of partition quality� The detail
with which these metrics are reported is controlled by the OUTPUT METRICS parameter
�x��	�� This information can be copied to a 
le by setting the parameter ECHO �x��	�

appropriately� The partition will be copied to a 
le if the OUTPUT ASSIGN parameter is
set to TRUE �nonzero� �x��	��

It may be clear by now that much of the functionality in Chaco is controlled by a
fairly large set of parameters� We ship the code with default values that seem reasonable

to us
 but may not be optimal for your problems� You can either change the default
values in the 
le �code�main�user params�c� and recompile
 or you can change any
value at runtime
 as described in x��	��
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�� Introduction� Many problems which arise in the course of scienti
c comput�

ing have a combinatorial nature which can be conveniently described in the language
of graphs� In these settings a recurring theme is the need to partition a graph into sub�
graphs that are in some measure as disjoint as possible� This is the case in
 for exam�
ple
 divide�and�conquer algorithms for devising e�cient circuit layouts or constructing

nested dissection orderings for sparse matrix factorizations� It is also a fundamental
problem in parallel computing
 where large data structures must be decomposed and
mapped to processors�

Chaco addresses three classes of problems� First and foremost
 it partitions graphs

using a variety of approaches with di�erent properties� Discussion of these methods
and tools to control them comprise the bulk of this document� Second
 Chaco knows
how to intelligently embed the partitions it generates into several di�erent topologies�

The topologies the code knows about are those matching the common architectures of
parallel machines
 namely hypercubes and meshes �refer to x����� Third
 Chaco can
use spectral methods to sequence graphs in a manner that preserves locality
 see x��	�
This capability has been used in
 for example
 data base organization
 sparse matrix

envelope reduction and DNA sequencing�
To make things more speci
c
 let�s assume we want to solve a partial di�erential

equation on a distributed memory parallel computer�� We�re given a computational
grid which we need to partition across processors� If we�re using a 
nite di�erence

technique and an explicit solver
 then at each stage in the calculation a grid value
must be updated by a function of its neighbor�s values� On a serial computer this data
transfer is accomplished by writing to and reading from memory� However
 when we
map this computational grid to a parallel computer
 two vertices joined by an edge

and not owned by the same processor must communicate to exchange values� If
 as is
typically the case
 communication is expensive relative to computation
 a mapping that
minimizes it is desirable� Of course
 we could assign the entire grid to a single processor

and have no communication at all
 but that wouldn�t be an e�ective use of the parallel
machine since one processor would do all the work while the others remained idle� We
must therefore also observe the important constraint that each processor should be
assigned about the same amount of work and therefore �in the simplest case� the same

number of vertices� Hence we say informally that the objective of Chaco in this context
is to produce balanced sets with low communication overhead�

Not all problems have such a convenient correspondence between the computational
grid and the mapping requirements of the application program� For instance in a 
nite

element calculation
 a more appropriate approach may be to consider each element
as a vertex with some associated update work� We would then construct connecting
edges corresponding to each face or corner in the discretization mesh since these edges
correspond to the non�zero pattern in the global sti�ness matrix� The most appropriate

graph will depend upon the application and its determination is necessarily left to the
user�

� While Chaco has been used in many di�erent settings	 it was developed in a parallel computing
context	 and readers will notice a clear bias towards this application in the following documentation�
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Furthermore
 all vertices are not necessarily of equal signi
cance� For example
 a

vertex encoding a computation on the boundary may have less work associated with
it than a vertex in the interior of a domain� Chaco therefore allows weights to be
associated with each vertex� The weight is supposed to correspond to the amount of
work associated with the vertex� Similarly
 edges may correspond to varying amounts

of communication� For example
 two 
nite elements touching at a corner may need to
exchange less information than two sharing a face� Chaco also allows the use of edge
weights�

The problem of interest can now be described more precisely� Given a graph G

with n weighted vertices and m weighted edges
 divide the vertices into p sets in such a
way that the sum of the vertex weights in each set is as close as possible
 and the sum
of the weights of edges crossing between sets is minimized� Unfortunately
 even in the

simple case where p � � and the edge and vertex weights are uniform
 this graph parti�
tioning problem is NP�complete���� Hence there is no known e�cient algorithm to solve
the problem generally
 and it seems unlikely that such an algorithm exists� We must
therefore resort to heuristic solutions in which balance may be partially compromised

or �more typically� the minimization is approximate�
A variety of heuristic partitioning methods with di�erent cost�quality tradeo�s have

been previously studied� Chaco includes methods based on several of these as well as
several substantially new methods� The algorithms in Chaco are based on inertial


spectral
 Kernighan�Lin �KL�
 and multilevel principles in addition to several simpler
strategies� The methods are categorized as either local �currently just KL� or global
�everything else�� Chaco allows for the combination of global and local methods
 and
we have found that this leads to signi
cant improvements in both performance and

robustness� Another advantage of Chaco�s design philosophy is that it o�ers �exibility�
This is important because we believe that
 given the complexity of the partitioning
problem
 no single method will always work well� Chaco provides a fall�back option

when your favorite method works poorly or has an inappropriate cost�quality ratio for a
given problem� It also facilitates investigation into the relative strengths and weakness
of a wide variety of methods�

Having set the basic context
 we should raise some 
ner but nevertheless important

issues� One such issue is the dimensionality of the partitioning scheme� Most graph
partitioning codes rely on recursive bisection� That is
 the graph is partitioned into two
pieces
 each of these pieces is partitioned into two more
 etc� until a desired number
of sets is reached� This strategy is simple and convenient
 but may be somewhat lim�

iting� Graphs can be constructed for which any bisection algorithm must necessarily
perform poorly
 and in practice we observe that bisection algorithms often choose sepa�
rators which look very good at one stage of recursion but not so good with the bene
t
of hindsight� All the partitioning algorithms implemented in Chaco are capable of

partitioning graphs into two
 four or eight sets at each stage of recursion�� We have
accumulated some empirical evidence that the quadrisection and octasection algorithms
do perform better in some respects than their bisection counterparts� But we have also

� Currently the spectral terminal propagation technique can be applied in bisection mode only�

�



found bisection algorithms preferable in some situations�

A basic di�culty in choosing the appropriate partitioning dimensionality is that
the correct representation of costs in the graph model is often ambiguous� Assuming
for simplicity that the graph is unweighted
 most graph partitioning schemes work to
suppress the total number of edges crossing between sets without regard to the identity

of the sets� We say these methods try to minimize the total number of cuts� But in
contexts like parallel computing and circuit placement
 the identity of the sets matters�
The partitions may need to be mapped to processors or regions of an integrated circuit
in a manner that minimizes the number of connections between architecturally distant

sets� Several of the multidimensional schemes we have developed can take into account
the identity of the sets an edge crosses between and work to minimize the architectural
distance between these sets� We say they try to minimize the total number of hops�

Sadly
 the question of the correct graph metric is more complicated still� For
example
 in the parallel computing context
 when the communicated messages are short
enough
 the total communication time will correlate best with message startups� In
the graph metric this measure corresponds to the number of neighboring sets each

set has� We have also included methods designed to deal with this contingency by
suppressing the maximum number of neighbors any set has� Another graph metric
which is important in some common situations is boundary vertices� This is the number
of vertices which have an incident edge �they may have several� connecting them to a

vertex in another set� When these are weighted by the architectural distance between
sets we arrive at yet another metric
 boundary vertex hops� These last two metrics are
often relevant in accurate modeling of the execution time of parallel sparse matrix�
vector multiplication�

Because applications of graph partitioning are so diverse and because even for the
much studied case of parallel computing the appropriate model is uncertain
 Chaco
tracks a variety of potentially relevant metrics and provides methods designed to min�

imize them� This document describes the capabilities of the code and how to exploit
them� Because the questions it addresses are fundamental and pervasive
 we hope that
Chaco will prove to be a valuable tool in a wide variety of applications�

�� Partitioning algorithms� The 
ve classes of partitioning algorithms currently
implemented inChaco are simple
 spectral
 inertial
 Kernighan�Lin �KL�� and multilevel�
KL� Each of these algorithms can be used to partition into two
 four or eight sets at each
stage of a recursive decomposition� We consider KL to be a local re
nement technique


while the other methods are global partitioning methods� Chaco allows the output
of any of the global methods to be fed into a local method� It also allows a partition
to be read from a 
le �x���� and re
ned with a local method or one of the various

post�processing methods described in x����

���� Simple partitioning methods� For completeness and in order to facilitate
comparisons
 Chaco includes three very simple partitioning schemes� In the linear

� This algorithm is often referred to as Fiduccia�Mattheyses �FM� or KL�FM in recognition of the
important contributions of those authors�
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scheme
 vertices are assigned in order to processors in accord with their numbering in

the original graph� For an unweighted graph with n vertices being divided into p sets

the 
rst n�p vertices would be assigned to set �
 the next n�p to set 	
 etc� This often
produces surprisingly good results because data locality is often implicit in the vertex
numbering� In the random scheme
 vertices are assigned randomly to sets in a way that

preserves balance� In the scattered method
 vertices are handed out in order
 with the
next vertex going to whichever set is smallest� In the unweighted case this reduces to
dealing out the vertices in card fashion� In our experience the random ordering produces
partitions with quality between that of the linear and scattered partitioners� The run

time of these simple schemes is negligible�

���� The inertial method� The inertial method is a relatively simple and fast

partitioner that uses geometric information� In addition to a graph
 it requires geometric
coordinates for each vertex in one
 two or three dimensions� The code then considers the
vertices as point masses with mass values set equal to the vertex weights� The principle
axis of this structure
 which is likely to be a direction in which the graph is elongated
 is

computed� The vertices are then divided into sets of equal mass by plane�s� orthogonal
to the principle axis� Descriptions of this method can be found in ���
 ����

Chaco allows inertial partitioning into two
 four or eight sets at once by using
one
 three or seven planes
 orthogonal to the principle axis� Partitions generated by

inertial quadrisection or octasection will appear to be banded
 with parallel planes
dividing the sets� This �striping� will typically lead to a fairly large surface�to�volume
ratio
 implying a large volume of communication� However
 each set only has a small

number of neighboring sets which helps reduce the number of message startups each
processor must perform� If the cost of initiating messages is important
 then partitions
using inertial quadrisection or octasection may lead to shorter application execution
times than those generated with inertial bisection� Furthermore
 the multidimensional

inertial methods are somewhat faster than inertial bisection since fewer inertial axes
must be computed
 and some overhead due to recursion is avoided� The four or eight
sets are assigned in such a way that communication is predominantly between adjacent
processors�

In our experience inertial methods are quite fast but give partitions of fairly low
quality in comparison with spectral methods� In particular
 the partitions are often
of poor quality in local detail� However
 when coupled with the Kernighan�Lin local
optimization method described below
 the results signi
cantly improve� Our experi�

ments indicate that inertial�KL usually produces better partitions than pure spectral
partitioning
 whereas spectral coupled with KL does better than inertial paired with
KL� For very large problems in which coordinates are available and the emphasis is

more on low partitioning time rather than high partitioning quality
 we are inclined to
recommend the inertial�KL method �	���

���� Spectral partitioning� Spectral methods use eigenvectors of a matrix con�

structed from the graph to decide how to partition the graph� A full accounting of this
surprising connection between eigenvectors and partitions is too involved to present

��



here
 but the articles mentioned below explain the method in detail�

The simplest spectral method in Chaco is a weighted version of spectral bisection�
A description of the unweighted algorithm is given in ���
 ���
 and the extension to use
both edge and vertex weights is described in �	��� This method uses the second lowest
eigenvector of the Laplacian matrix of the graph to divide the graph into two pieces�

This eigenvector is known as the Fiedler vector in recognition of the pioneering work of
Miroslav Fiedler ��
 ���

The spectral quadrisection algorithm divides a graph into four pieces at once using
the second and third lowest eigenvectors of the Laplacian matrix� Similarly
 spectral

octasection uses the second
 third and fourth eigenvectors to divide into eight pieces�
These multidimensional spectral methods were introduced in �		
 	��
 where they were
shown to have certain advantages over spectral bisection�

In particular
 spectral quadrisection and octasection try to minimize communica�
tion cost in a more complex metric� Suppose the partitioned sets are numbered from �
to � for quadrisection or � to � for octasection� Spectral bisection would try to minimize
the total weight of edges crossing between di�erent sets
 whereas the multidimensional

methods would use a metric in which the cost of an edge crossing between two sets is the
edge weight multiplied by the number of bits that are di�erent in a binary representation
of the two sets�

Although this hops metric may seem odd at 
rst
 it has a nice interpretation in

the context of parallel computing� In a parallel computer consisting of four processors
connected in a square and numbered in typographic order
 a message traveling between
processors � and � must travel over two wires
 whereas one between processors � and
	 need only traverse a single wire� This number of wires is exactly the weighting

implicit in spectral quadrisection� Similarly
 spectral octasection counts wires used on
a three�dimensional mesh architectures
 and both quadrisection and octasection apply
to hypercubes�

One might suppose that this correspondence between cost metric and wires used
was irrelevant given the advent of cut�through routing in which the delay associated
with a message is nearly independent of the number of links it traverses� In fact this
independence only holds for isolated messages in which there is no competition for the

links in the communication network� In a great many computations
 and most scienti
c
applications
 communication occurs in the form of bursts of messages during which
there is very signi
cant competition for the network� Hence
 when network congestion
is important
 weighting messages by the number of wires they consume should lead to

better problem mappings� Empirical evidence supporting this and further discussion of
the issue can be found in ����

The computational kernel of spectral methods is the calculation of a small num�
ber of eigenvectors� We have implemented a variety of eigen solvers with di�erent

speed�robustness tradeo�s� Roughly in order of increasing speed
 these are Lanczos
with full orthogonalization
 Lanczos with selective orthogonalization
 and a multilevel
method combining Rayleigh Quotient Iteration ��� and the linear solver Symmlq �	���

We have also implemented a specialized version of Lanczos capable of solving extended

��



eigen problems of the form Au � �u g which arise when terminal propagation is used

�x����� Several of the issues governing the choice between these methods are dealt with
in the next section� Section ��� can be skipped by the typical user
 who will simply
encounter a choice between the default Lanczos procedure �selective orthogonalization�
which is designed for small and medium sized graphs and the RQI�Symmlq method

which is designed for larger graphs �of say more than several thousand vertices��
Spectral methods are usually quite good at 
nding the right general area of the

graph in which to cut� However
 they often do poorly in the 
ne details� Consequently

we have found that it is advantageous to apply a local re
nement to the spectral output�

The procedure we use is a generalized version of an algorithm due to Kernighan and
Lin
 and is described in x��� and in more detail in �	��� The actual improvement due
to this clean�up phase is problem dependent
 but is typically 	����!� The cost of this

clean�up is generally a small fraction of the total partitioning cost
 typically less than
	�! on large graphs�

���� Choosing an eigen solver� This section
 which may be skipped without

loss of continuity
 describes the characteristics of the eigen solvers in Chaco� The
input menu will indicate a choice between two methods only
 a Lanczos based solver
and the multilevel RQI�Symmlq solver� We recommend the Lanczos method for small
and medium size problems and the RQI�Symmlq solver for larger problems� �We say


rather arbitrarily
 that larger graphs are those of order 	�
��� vertices or more� you
should investigate this for yourself if run time is very critical�� There may be occasions

however
 when the sophisticated user will want to change the type of Lanczos algorithm

by modifying the LANCZOS TYPE �ag or may wish to alter one of the eigen solver control
parameters� See x� for details on how to make these changes�

Finally
 while we do express some clear opinions in what follows
 it should be
carefully noted that our conclusions about the relative merits of the di�erent eigen

solvers are based on limited testing with the particular class of matrices arising in our
applications
 and may not be applicable to any other domain� These are all iterative

methods�

In our experience
 full orthogonalization Lanczos is the most robust method for

problems of order up to a few hundred� The requirement of saving all the Lanczos
vectors for orthogonalization is not that burdensome since the problems are small and
we use them anyway in assembling the eigenvectors� The weak point of this method is
that for larger problems the orthogonalization work becomes prohibitively expensive�

The inverse operator full orthogonalization Lanczos method replaces the matrix
vector multiply in the basic Lanczos iteration with a linear solve using Symmlq� It
is generally less accurate and robust than direct Lanczos with full orthogonalization

and is often slower as well because the total number of matrix vector multiplies �which
are hidden within Symmlq� may be signi
cantly higher� In addition it introduces the
tricky problem of how to tune the inner�outer loop combination� Thus the only reason
to recommend this method is that it requires much less memory since it converges in

many fewer Lanczos iterations�
Our implementation of selective orthogonalization is based on the original paper by
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Parlett and Scott ����
 with the main di�erences being that the Ritz spectrum is moni�

tored directly to assess the need for orthogonalization and that this orthogonalization is
performed against the left end of the spectrum only� Various heuristics governing which
Ritz pairs to monitor are used to keep this overhead small� The Ritz pairs are computed
using the classic bisection algorithm on the Sturm sequence ���� or the standard QL

algorithm for tridiagonal matrices ��
 ���
 whichever is expected to be cheaper based
on a simple complexity model� There are rare circumstances under which each of these
algorithms can fail
 so the code monitors for these and switches to the other algorithm
if a problem is detected� Orthogonalizing at the left end only generally produces more

accurate eigen pairs in substantially less time than the standard technique of orthogo�
nalizing against both ends of the spectrum� With proper tuning this algorithm seems

for our purposes
 essentially as accurate as full orthogonalization and is our method of

choice for small and medium sized systems�
This version of Lanczos does however have one drawback� Since all the Lanczos

vectors must be saved for the contingency that the iterate must be orthogonalized
against a convergent Ritz vector
 this method can cause the program to run out of

memory on very large problems� This di�culty can be avoided by employing a restarting
scheme or by giving up on maintaining orthogonality in the Lanczos basis� These
alternatives
 however
 have their own undesirable attributes� Restarting schemes exhibit
slower convergence
 and schemes such as ��	� which do not orthogonalize and hence do

not need to save the Lanczos vectors must run through the entire Lanczos recurrence
a second time �or use inverse iteration� in order to compute the desired eigenvector�
Furthermore
 if the desired eigenvector is not the 
rst to converge signi
cantly
 non�
orthogonalizing schemes may fail badly� Convergence usually is led by the Fiedler vector

in the spectral bisection application
 but there is no guarantee of this� So for robustness

and because we often need to compute higher eigenvectors to perform quadrisection or
octasection
 we chose selective orthogonalization� If memory is exhausted
 each Lanczos

routine computes the best available approximation to the required eigenvectors using
the existing Lanczos basis� This approach represents a decision to optimize over the
likely range of application and an assumption that for problems in which memory would
be a problem a partitioning method designed for larger problems �e�g� the RQI�Symmlq

method� will be employed�
For partitioning very large graphs using the spectral method
 we recommend the

multilevelRQI�Symmlq eigen solver� This is based on the method developed by Barnard
and Simon �	�
 with the main di�erence being that we have used an edge contraction

coarsening scheme described in �	��� This contraction scheme preserves the low modes
of the operator su�ciently well that we need only perform RQI re
nement periodically
as we work back through the grid hierarchy� We have also modi
ed the Symmlq it�
eration to terminate when the norm of the iterate reaches a preset limit� We do this

because RQI relies essentially on inverse iteration in which a large iterate indicates con�
vergence� The resulting method may be several times faster than Lanczos with selective
orthogonalization for solving large problems to the same accuracy
 and also requires far

less memory� A drawback is that the method seems more prone to misconvergence
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than Lanczos� Experience indicates
 however
 that for large graphs
 eigenvectors other

than the Fiedler vector usually give partitions of similar quality to those generated with
the Fiedler vector �occasionally better"�� So slight misconvergence is not that serious a
problem
 especially if you are applying a local re
nement method� Another drawback
of the RQI�Symmlq algorithm is that its run time is essentially proportional to the

number of eigenvectors solved for� This erodes its speed advantage when used as the
eigen solver for one of the multidimensional spectral partitioning schemes�

When the terminal propagation method is applied �x����
 the solution vector u of
the extended eigen problem Au � �u  g must be computed� We have developed a

variant of Lanczos for this which follows that of Van Driessche and Roose ����� The
main di�erence is that we have incorporated selective orthogonalization and some �but
not all� of the safety features previously described�

A critical issue in the proper use of iterative eigen solvers is the choice of the
tolerance on the eigen residual� This is treated in some detail later during the discussion
of the various code parameters in x���
 but it is appropriate to mention here that all of
the eigen solvers have direct residual checks to determine whether the requested eigen

tolerance has been achieved� In addition
 the selective orthogonalization schemes have
safety checks to monitor the e�ectiveness of the orthogonalization
 and the multilevel
RQI�Symmlq code incorporates a heuristic to detect misconvergence� From time to time
and depending upon how the error and warning condition �ags are set
 one or more of

these conditions will be noted by Chaco� In most cases these are not show�stoppers�
the desired safety standards have not been met
 but the computation will proceed and
generate reasonable partitions� If certain error or warning conditions occur chronically

you may need to choose di�erent tuning parameters� �Or
 of course
 there may be a

problem with the code��

��
� Kernighan�Lin� One of the most popular methods for partitioning graphs

dates back to work done in the early ���s by Kernighan and Lin �	��� Various extensions
and improvements of the original idea have been proposed through the years
 including
the important linear time implementation due to Fiduccia and Mattheyses ���
 who are
often jointly credited with the algorithm� At its heart
 Kernighan�Lin �KL� is simply

a greedy
 local optimization strategy� Vertices are moved between sets in an e�ort to
reduce the number of edges cut by the partition� Although the original algorithm was
designed for graph bisection
 Suaris and Kedem ���� showed how to extend it to the
quadrisection case� We have generalized this idea so that our code works on an arbitrary

number of sets at once
 and also works with edge and vertex weights �	��� Unfortunately

the runtime of the algorithm and its memory requirements increase with the partitioning
dimension
 so in practice we use only bisection
 quadrisection and octasection to match

the other methods in Chaco�
In our experience KL does not 
nd very good partitions of large graphs unless it

is given a good initial partition� Hence we 
nd its value to be greatest when used in
conjunction with one of the global partitioners� If you are interested in verifying this

by testing KL essentially on its own
 we recommend that you invoke the simple random
method to provide an initial partition�
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Typically
 Chaco tries to generate partitions which are as balanced as possible�

In some applications
 it is preferable to allow a bit of imbalance if the edges crossing
between sets can be reduced� Chaco allows KL �and Multilevel�KL described below�
to look for unbalanced partitions� If this functionality is of interest to you
 you should
set the KL IMBALANCE parameter described in x��� to something larger than its default

of zero�

���� Multilevel�KL� Our method of choice for large problems in which high qual�
ity partitions are sought is the multilevel�KL� algorithm described in �	��� This method
is very similar in approach to the method of Bui and Jones described in ��
 	��� It works

by creating a sequence of increasingly smaller graphs approximating the original graph

partitioning the smallest graph
 and projecting this partition back through the inter�
mediate levels� Kernighan�Lin is invoked every few levels of projection to re
ne the

partition� We use a spectral method to partition the smallest graph
 but this does not
seem to be critical�

The algorithm for constructing smaller approximations to the graph relies upon

nding a maximal matching in the graph
 and then contracting edges in the matching�

This generates a new graph with typically about half as many vertices as the original
graph� Edge contraction is intuitively attractive because it largely preserves the graph
topology� When edges are contracted
 a single vertex is created out of the two endpoints
with weight given by the sum of the weights of the endpoints� In addition
 any edges

which become coincident have their weights summed and become a single edge� These
operations have the e�ect of preserving the essential properties of a partition as it is
moved between graphs in the hierarchy� The number of vertices in the smallest graph
is an input option �we typically use a value between �� and ����
 and the frequency

with which to invoke KL is controlled by the COARSE NLEVEL KL and COARSE KL BOTTOM

parameters described in x����
The method of Bui and Jones does not use edge and vertex weights
 but is otherwise

equivalent to ours� Chaco allows the user to turn o� edge and�or vertex weights in the
coarsening process by setting the COARSEN EWGTS and�or COARSEN VWGTS parameters to
FALSE as discussed in x���� This allows for application of Bui and Jones� method as well
as algorithms intermediate between ours and theirs� In our experience
 the di�erence

between the methods is small with neither method being consistently superior�
Our experience indicates that the multilevel�KL method gives very high quality

answers in moderate time� It is not as quick as the inertial method plus KL
 but it
generally produces better partitions� In most cases it produces partitions which are

� Some confusion has arisen in the past regarding the naming of this algorithm� We have referred to it
in writing as the multilevel�FM algorithm because our implementation of the Kernighan�Lin algorithm
is based on that advocated by Fiduccia and Mattheyses ���� We have also referred to it simply as the
multilevel algorithm because we believe the power of the algorithm derives essentially from its strategy
of applying local re�nement on multiple scales and that re�nement schemes other than the one we have
chosen would also work well� Finally	 there has been confusion regarding the algorithm�s relationship
to the multilevel RQI�Symmlq algorithm used for computing the eigenvector�s� needed in spectral
partitioning methods� These are entirely di�erent partitioning algorithms	 although they do happen
to share the same graph coarsening scheme in our implementation�

�




better than those generated by spectral coupled with KL and runs signi
cantly faster

than any of the spectral methods� More on the workings and performance of this
multilevel�KL method can be found in �	���

�� Additional functionality�

���� Spectral sequencing� Spectral graph algorithms are becoming increasingly
popular for a variety of applications� Often the key computation in these algorithms

is the generation of the Fiedler vector� Unfortunately
 calculation of eigenvectors of
large matrices can be di�cult
 and the scarcity of robust
 e�cient tools well tuned
for these graph applications has impeded development of spectral graph algorithms�
To address this problem we provide easy access to the Fiedler vector computed by

Chaco� Although a full exposition on this topic is beyond the scope of this user�s guide

the ordering of vertices produced by their values in the Fiedler vector has some nice
properties� In particular
 vertices connected by an edge will tend to be assigned numbers
that are close to each other� This property has already been successfully exploited

in a number of applications including chromosomal mapping
 matrix reordering and
database organization applications� We expect many more uses will be found�

If the SEQUENCE parameter described in x��� is TRUE �or nonzero�
 the Fiedler
vector will be sorted and written to the 
le whose name is speci
ed by the param�

eter SEQ FILENAME� These parameters set up an alternate execution path that doesn�t
perform any partitioning� The code uses whichever eigensolver would be used by a
spectral partitioning algorithm� That is
 if you select a spectral method and the

RQI�Symmlq eigensolver
 that will be used� otherwise
 the Lanczos solver speci
ed
by the LANCZOS TYPE parameter �x���� will be used�

Since spectral methods break down if the graph is disconnected
 the spectral se�
quencing code works on the connected components of the graph in turn� The pertur�

bation of the matrix associated with the PERTURB parameter in x��� is unnecessary and
hence is disabled� The code sorts the vertices in each connected component by their
value in the Fiedler vector and prints them in sorted order� Each line in the output 
le
contains the vertex number followed by its value in the Fiedler vector� A change to a

new connected component is signaled by a switch from a positive value for the Fiedler
component to a negative one
 since values for each component must be nondecreasing�
If a connected component consists of a single isolated vertex
 this vertex is assigned a
value � in the returned vector�

���� Terminal propagation to improve the mapping� Terminal propagation

is an algorithmic insight proposed by Dunlop and Kernighan ��� to improve the place�

ment of circuit elements on a chip by adding additional constraints to a Kernighan�Lin
algorithm� Van Driessche and Roose ���� have recently shown that these same con�
straints can be encoded into a spectral method
 signi
cantly extending the applicability
of the original idea�

Terminal propagation isn�t a new partitioning method but rather a modi
cation of
some of the methods discussed above� It is essentially a method for coupling the map�
ping to sets with the partitioning in an e�ort to improve locality� In the circuit context

��



it is undesirable to have long wires criss�crossing the chip since they use up valuable

space� In parallel computing
 messages traveling between architecturally distant pro�
cessors should be minimized since they tie up many communication links� Terminal
propagation allows these considerations to be factored into the partitioning�

To understand how terminal propagation works
 
rst consider partitioning with�

out terminal propagation� After each step in a recursive decomposition the pieces are
decoupled and interact no further� An edge crossing between two sets does not a�ect
the later partitioning of either set� Consequently
 there is nothing preventing the two
adjacent vertices from being assigned to sets that are quite far from each other�

Terminal propagation ameliorates this by including information about the outgoing
edges �or terminals� in the recursive partitioning� Details about how this is accomplished
are given in references ��
 ��
 	��� Chaco includes code for terminal propagation in the

bisection mode of the spectral partitioner
 and for an arbitrary number of sets for
KL and multilevel�KL� �If you are using multilevel�KL in quadrisection or octasection
mode
 the spectral method at the bottom cannot perform terminal propagation
 but
all the invocations of KL can�� Terminal propagation is switched on by setting the

TERM PROP parameter to TRUE �or nonzero� as described in x���� We also note that
terminal propagation comes into play only when there are edges to other sets
 so it has
no e�ect on the 
rst step of bisection� If the quality of the mapping to sets is important
for your application
 you should also consider the post�processing method described

in x������
When terminal propagation is applied
 the necessary modi
cations to KL �and

hence multilevel�KL� are fairly minor
 but the spectral formulation is signi
cantly com�
plicated� We must solve an extended eigenproblem of form Au � �u g for u such that

uTu � �� where � is a constant� We could do this conceptually by choosing a � near
the corresponding eigenvalue of A
 solving the resulting linear system and checking the
norm constraint� By adjusting � correctly and iterating we can converge to the solution

��� u� reliably in the bisection case� This
 however
 is unacceptably expensive for large
systems� The trick is to transform the � iteration into Lanczos space where it is per�
formed on small tridiagonal systems� A detailed formulation of this for edge and vertex
weighted graphs is presented in �	�
 ���� We have extended this to include selective

orthogonalization in our implementation�
In our experience
 the terminal propagation variant of the multilevel�KL algorithm

consistently improves mappings
 while the spectral algorithm seems less consistent�

���� Post�processing to improve the partition and mapping� Chaco in�
cludes several techniques that accept an existing decomposition and modify the partition
or the mapping of sets to processors� These can be used to improve the quality of output

generated either by Chaco or
 if you read a partition from a 
le as described in x���

by other partitioning software�

������ Re
ning the partition� In the recursive generation of a decomposition


some information is lost with each recursion level� For example
 a local re
nement is
performed between only a fraction of the total number of adjacent sets� If requested


��



Chaco can perform a local re
nement between all pairs of sets� First the weight of

edges crossing between each pair of sets is determined� Kernighan�Lin re
nement is
then performed between each pair with a nonzero boundary
 in order from the pair with
the largest boundary to that with the smallest� Terminal propagation may be used
to incorporate considerations of the quality of the mapping to sets� The parameter

REFINE PARTITION �x���� indicates how many cycles of re
nement will be performed�
Its default value is zero since a full re
nement is fairly expensive� In our experience this
option can signi
cantly reduce the number of edges cut in the partition
 but it generally
increases the number of pairs of sets with some boundary between them�

������ Increasing the number of internal vertices� In some applications it
is desirable to increase the number of vertices that have no edges connecting them to

other sets� For instance
 in parallel computing applications such vertices require only
local data� This may allow for overlap of communication and computation since the
computation associated with an internal vertex can be performed while waiting for data
from other processors to arrive� If the INTERNAL VERTICES parameter �x���� is TRUE


Chaco will try to increase the number of internal vertices in sets with a small number
of them� To accomplish this the code 
rst determines the number of internal vertices
in each set� Then the set with the fewest internal vertices steals vertices from other
sets to make some of its own vertices become internal
 and trades back other vertices to

preserve balance� The default value for INTERNAL VERTICES is FALSE since this fairly
specialized functionality is probably not required for most applications� If the partition
is of low quality this option can be quite time consuming�

������ Improving the mapping to processors� AlthoughChaco tries to assign
sets to processors in a way that preserves locality
 this mapping can often be improved�
Chaco contains code to greedily renumber sets to improve the mappings to hypercube

and mesh architectures� Note that this doesn�t change the composition of the sets

just which processor each set is assigned to� To perform this re
nement
 the code
determines how the mapping would change if it �ipped the two sets connected by
a wire in the parallel machine� The �ip which maximally improves the mapping is

performed and the process repeated until no further improvement is possible� This
functionality is activated by setting the REFINE MAP parameter �x���� to TRUE� Since
Chaco is used for many applications other than parallel computing
 the default for this
parameter is FALSE� But if you are really interested in the quality of your assignment

to processors
 you should try this option� You should also familiarize yourself with
terminal propagation as described in x����

���� Working with existing partitions� As mentioned in x�
 Chaco has the
ability to read an existing partition from a 
le with one of the formats described in x���
and modify or evaluate it in several ways� This option is speci
ed in the menu as an
additional global partitioning option� Any of the post�processing operations described

in x��� can then be activated to improve the partition and�or the mapping to processors�
Evaluation of the partition can also be performed as described in x����

Since an existing partition is considered a global partition
 you can invoke KL as
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a local re
nement� There are a few necessary restrictions on the use of this capability�

You can use KL only if the existing partition has �
 � or � sets
 and you request bisection

quadrisection or octasection respectively� The restriction to a small number of sets is
necessary to avoid ambiguities about how to recurse� Also
 the architecture you specify
must have the same number of sets as the partition�


� Input and output formats� Input to Chaco consists of one or more 
les

and the response to several interactive queries� Files are used to describe the graph


and if necessary to give geometric coordinates or an existing partition� The interactive
input speci
es the partitioning method and the number of sets you require� An addi�
tional optional 
le can be used to modify the values of various parameters that control
algorithmic choices and output options� This functionality is discussed in x��	��


��� Format of graph input 
les� The standard Chaco input is a graph
 which
is read from a 
le� Leading lines in this 
le that begin with the character �!� or �#� are
considered comments and ignored� At its simplest a correct input 
le contains n  	

uncommented lines
 where n is the number of vertices in the graph� The 
rst of these
lines contains two required integers and may have a third� The 
rst integer is the number
of vertices in the graph
 and the second is the number of edges� �Note that the number
of edges is half of the sum of the number of neighbors of each vertex�� The remaining

n lines contain neighbor lists for each vertex from 	 to n in order� These lists are just
sets of integers which are separated by spaces and contain all the neighbors of a given
vertex� The neighbors may be listed in any order� Note that vertices are numbered

from 	 to n
 not from � to n � 	� Sample graph 
les can be found in subdirectory
�exec� under 
le names ending with ��graph��

Chaco also accepts graphs with weights on vertices and�or edges� A third param�
eter on the 
rst line of the input 
le controls input of weighted graphs� This number

may have up to three digits� If the 	�s digit is nonzero
 edge weights will be read� If
the 	��s digit is nonzero
 vertex weights will be read� And if the 	���s digit is nonzero
then vertex numbers will be read
 as described below�

Vertex weights should have small integer values� �To be conservative
 the sum of

all vertex weights should be representable as a standard integer�� If any vertex has a
weight
 then weights must be given for all of them� Vertex weights appear immediately
before the corresponding neighbor list�

Edge weights can be any positive �oating point value
 but you are encouraged to

make them small integers� Kernighan�Lin and multilevel�KL will not work properly if

edge weights are not integers� If any edge is weighted
 they all must be� Edge weights
are included in the graph 
le immediately after the corresponding entry in the neighbor

list�
If you have some vertices with many neighbors
 it may be inconvenient to write the

entire vertex data on a single line of the graph input 
le� You can split the data across
multiple lines by using vertex numbers� The vertex number is the 
rst value on a line

containing data for that vertex� If you specify a vertex number for any vertex you must
specify one for all of them
 and vertices must still be entered in increasing order�
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The most general form of the graph input 
le is illustrated below� The di�erent

types of optional entries are indicated by di�erent styles of parenthesis� The digit on
the 
rst line which controls each type of optional entry is indicated by the same style
of parenthesis�

� This is the format of the graph input file

Number�of�vertices Number�of�edges f�g���	�


fVertex�numberg �Vertex�weight� neighbor� 	edge�weight�
 � � �
���

There is one exception to this general graph format� If you are using the inertial

method or one of the simple methods without Kernighan�Lin
 then it is not necessary to
provide a graph since the partitioner does not make any use of connectivity information�
A graph 
le is still needed to read the number of vertices
 but the remaining lines
describing the edge lists can be skipped� Note however that the code will be unable to

evaluate the quality of a partition or perform any of the post�processing options without
edge information� Normally several measures of the partition quality are computed and
printed
 but this is skipped if the graph is not present�


��� Format of coordinate input 
les� If you are using the inertial method

you will need to provide geometric coordinates for all vertices� These are placed in
a di�erent 
le
 examples of which can be found in subdirectory �exec� with names

ending with ��coords�� These geometry 
les must have n uncommented lines
 with line
i containing the coordinates of vertex i� Each line must have 	
 � or � real values

corresponding to a one�
 two� or three�dimensional geometry� Chaco determines the
dimensionality by looking at the number of values on the 
rst line� Any number of

comment lines can appear at the front of this 
le beginning with �!� or �#��


��� Format of assignment input 
les� As discussed in x���
 Chaco can take
an existing partition and modify or evaluate it in several di�erent ways� The existing

partition is read from a 
le using one of two possible formats� In the standard format

the top of the 
le has an arbitrary number of comment lines indicated by a leading �!�
or �#�� There follow as many lines in the 
le as vertices in the graph� Uncommented

line i contains a single integer which is the set to which vertex i is assigned� Note that
set assignment numbers start at zero�

The standard format can be inconvenient for parallel computing applications since
the vertices owned by a particular processor can be scattered throughout the 
le� It can

be useful to invert the standard format
 having all the vertices assigned to processor �

rst
 followed by all the vertices assigned to processor 	
 etc� This input format can be
selected by setting the parameter IN ASSIGN INV to be TRUE �nonzero�
 as described in
x��	� With this format
 the 
le again begins with an arbitrary number of comment lines

beginning with �!� or �#�� The next line contains a single value n� which is the number
of vertices in set �� The following n� lines list the vertices in set �� This is followed by
a line containing n�
 the number of vertices in set 	
 and so on�
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��� Operating the code� To operate the code you must answer a sequence of

questions� With a basic understanding of the code structure and the methods described
in x�
 these questions should be mostly self�explanatory� A brief outline and a few notes
are
 however
 in order�

First you will be asked to provide the name of the graph input 
le� If the OUTPUT ASSIGN

or ECHO parameters from x��	 are set appropriately
 you will also be asked for the names
of output 
les� �If the text output 
le controlled by OUTPUT ASSIGN already exists
 the
new output is appended to the existing 
le�� You will then select global and local
partitioning methods from those described in x�� �Since multilevel�KL automatically

performs KL
 you aren�t asked to specify a local method with this global option�� The
global method options are �	� Multilevel�KL
 ��� Spectral
 ��� Inertial
 ��� Linear
 ���
Random
 ��� Scattered and ��� Read�from�
le� Option ��� is discussed in detail in x����

The local method options are currently �	� Kernighan�Lin and ��� None�
Depending upon your method selections
 you may need to answer a few additional

questions� If you choose a spectral method you will need to choose between the multi�
level RQI�Symmlq eigensolver and Lanczos� If you select the inertial method you will

need to specify the name of a coordinate input 
le� And if you ask for multilevel�KL
or the multilevel eigensolver you will need to say how many vertices you want in the
coarsest graph� �We generally use values in the range �� to ��� for this parameter��
Note that because quadrisection and octasection make use of higher frequency informa�

tion
 they may need a slightly larger coarsest graph to resolve things as well as bisection
does�

Chaco will then ask you for the size of the parallel machine for which you are
partitioning and compute the appropriate number of sets� Chaco knows about the

topology of hypercube and mesh parallel machines� you select between them by using
the ARCHITECTURE parameter discussed in x���� The code makes an e�ort to assign sets
to processors in a way that improves data locality on the selected architecture� Although

the mapping to processors will be best for the architectures the code understands
 it
is important to note that Chaco generates partitions that are appropriate for any
application� If mapping isn�t important in your application
 you can use ARCHITECTURE
to specify a one�dimensional mesh and simply enter the number of sets you require�

Finally you will choose whether to apply the partitioning method in bisection

quadrisection or octasection form� Note that if you choose quadrisection or octasection
and an integral number of steps will not produce the speci
ed total number of sets

Chaco will automatically change to either quadrisection or bisection at the end of the

recursion so as to generate the required number of sets�
Chaco will now go o� and do the requested calculation
 printing results to the

screen and�or 
les� Afterwards
 it will ask you whether you wish to run another problem�


�
� Output formats� Chaco has various output options which are controlled by
parameters described in x��	 and x���� As the values of these parameters are increased

more detailed information is printed� If they are all set to zero
 no output is produced

under normal circumstances� There are
 however
 a few unrecoverable error messages
which have authority to override this� The parameter OUTPUT METRICS controls the
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calculation and printing of several partition metrics� These metrics can be displayed in

a summary form with maximum
 minimum and total number indicated
 or they may
be displayed in a detailed
 set by set manner� The metrics of partition quality recorded
are�
Set Size� The total weight of the vertices in a set� In a balanced decomposition these

values should be as close as possible�
Edge Cuts� The weight of edges which connect a vertex in a set to vertices in a

di�erent set�
Hypercube Hops� Ameasure in which each cut edge is multiplied by the architectural

distance between the two processors owning the end vertices� This metric often
models communication time better than cuts does because it takes into account
network congestion�

Boundary Vertices� The weight of vertices which have edges connecting them to a
di�erent set� For example
 if an unweighted vertex in set 	 has three edges
connecting it to set �
 its contribution to the boundary vertices total is one� If
it also had an edge to set �
 its contribution would be two� This is useful in

modeling applications like parallel matrix�vector multiplication in which the
value associated with a vertex may be communicated to another set just once
and used multiple times�

Boundary Vertex Hops� Boundary vertices weighted by the number of wires a mes�

sage must traverse between corresponding processors� This adjusts the bound�
ary vertices metric to account for congestion�

Adjacent Sets� The vertices in a particular set will have edges connecting them to
some number of other sets� This metric counts the number of those other sets�

This value corresponds to the number of messages the corresponding processor
will have to send�

Internal Vertices� The total weight of all the vertices in a set which have no edges

connecting them to vertices in other sets� As discussed in x���
 the presense of
such vertices may allow for overlapping communication with computation�

Assorted timing information is displayed under control of OUTPUT TIME� This infor�
mation
 along with the input values and the settings for all the relevant parameters can

be written to either the screen or both the screen and a designated 
le under control of
the ECHO parameter�

Normally Chaco asks questions interactively
 but if you are piping a 
le as input

you may want to switch the prompts o�� You can do so by setting the PROMPT parameter

to FALSE�
Chaco can also write an output 
le containing the partition assignments� Whether

or not a 
le is generated is controlled by the parameter OUTPUT ASSIGN
 as discussed in
x��	� There are two assignment 
le formats which are the same as the input formats

described above in x���� In the standard output format
 line i contains a single number
indicating the set to which vertex i is assigned� �The set numbers begin at zero�� In
the inverted format
 the 
rst line of the 
le contains n�
 the number of vertices in set

�� The following n� lines contain the vertices assigned to set �� The next line has n�
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the number of vertices assigned to set 	
 and so on� This inverted format can be useful

in parallel computing applications because the vertices owned by a particular processor
can be read without having to scan the entire assignment 
le� If you prefer this inverted
format
 set the parameter OUT ASSIGN INV to TRUE �nonzero� as discussed in x��	�

�� User�modi
able parameters� We have collected most of the internal param�
eters which control the operation of Chaco into the 
le �user params�c� in the directory
�code�main�� If you wish to modify some of these parameters you have two options�

You can edit the 
le �user params�c� and recompile the code
 e�ectively changing the
default values�� Alternately
 you can modify the values at run time as described in
x��	��

There are three basic types of parameters
 those that control output type and quan�

tity
 those that select among di�erent algorithmic variants and those which turn on and
o� additional functionality� The default values for the debugging parameters generate a
minimal amount of output� This can be increased or in some cases decreased as desired�
The defaults for the execution parameters were selected to provide a reasonable balance

between run time and quality of the solution
 but we make no claim to having selected
them optimally for your problem� The default setting for the extended functionality
parameters is o�� The parameters and their functions are described in the sections
below�

���� Input and output control parameters�

CHECK INPUT If TRUE �nonzero�
 the graph and input parameters are checked for errors�

Although checking the graph can take a few seconds for large problems
 this
feature should probably be left active �the default� for robustness� �The time
spent checking will be printed out if you set the parameter OUTPUT TIME to be
greater than zero��

ECHO This parameter controls the printing of the input values and parameters
 as
well as whether to copy these values to a 
le� A value of � induces no echoing�
If ECHO is 	 �or �	�
 the input selections will be echoed to the screen� If it
is � �or ���
 then the relevant user parameters will also be echoed� If the

value is less than zero
 you will be asked for the name of a 
le in which to
record the results of a run� This 
le will contain the same input selections
and parameters that are copied to the screen
 along with partition metrics
�controlled by OUTPUT METRICS�
 a run time breakdown a run time breakdown

�controlled by OUTPUT TIME� and any warning or error messages generated by
the code� Saving these results in a 
le can be useful if you are doing a sequence
of runs for later analysis� The default value is ��

OUTPUT METRICS This parameter controls how much information about the quality of
the partition will be computed and printed out� A zero value means that
no evaluation will be performed or printed� A negative value generates output
about each set instead of just a summary of minimumand maximumvalues over

� It might be prudent to save a copy of the original �le so that you can return to the �factory
settings� easily� The default values quoted in the text assume no changes have been made to this �le�
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all sets� A value of 	 �or �	� produces information about the 
nal partition�

If you are partitioning for a hypercube
 a value of � �or ��� generates data
about all the intermediate partitions for smaller hypercubes that were implicitly
generated in the process� The meanings of the various output metrics are
described in x���� The default value is ��

OUTPUT TIME This value determines how much information gets printed about the run�
time of Chaco� A value of � means that nothing is printed
 and values of 	 or
� allow for increasingly detailed timing output� The default value is ��

OUTPUT ASSIGN If this value is TRUE
 you will be prompted for the name of a 
le in

which the vertex assignment will be printed� A description of the format of
this output 
le can be found in x���� The default for this parameter is FALSE
�zero��

OUT ASSIGN INV If OUTPUT ASSIGN is TRUE so you are writing an assignment 
le
 then
this parameter controls the format of that 
le� In the standard output format

line i of the 
le contains the set to which vertex i is assigned� In some settings
it is preferable to use an inverted format in which all the vertices in set � come


rst
 followed by all those in set 	
 etc� If you prefer this inverted format
 you
should set OUT ASSIGN INV to be TRUE
 in which case the assignment will be
printed in the format described at the end of x���� The default value is FALSE

corresponding to the standard format�

IN ASSIGN INV If you are reading an assignment from a 
le
 then the 
le should be
in one of the two formats described in x���� In the standard format
 the ith
uncommented line contains the set to which vertex i is assigned� In the inverted
format
 all the vertices in set � are speci
ed 
rst
 followed by those in set 	


and so on� If IN ASSIGN INV is FALSE �the default� then the standard format
is assumed� If set to TRUE the the inverted format is expected�

PROMPT Chaco assumes you are answering the input questions interactively� However


if you are piping a 
le into Chaco
 it may be more aesthetic to skip the input
questions� Setting PROMPT to FALSE keeps the code from explicitly asking for
inputs� The default is TRUE�

PRINT HEADERS This parameter controls whether or not titles are printed for the dif�

ferent sections of output� The default value is TRUE�

���� Eigenvector calculation parameters�

LANCZOS TYPE If you are using a spectral partitioning method or the multilevel�KL

method
 Lanczos is used at some point as an eigen solver� �The multilevel�
KL method uses Lanczos to generate a spectral partitioning of the coarsest
grid
 and the RQI�Symmlq eigen solver also uses Lanczos on the the coarsest

graph�� A discussion of the relative merits of the di�erent methods can be
found in x���� A value of 	 selects full orthogonalization
 a value of � chooses
full orthogonalization with the inverse operator
 and a value of � selects selective
orthogonalization The default value is ��

EIGEN TOLERANCE This one probably deserves its own short paper� All we can do here
is make a few general remarks and urge caution� If you are using a pure spectral
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method or the multilevel�KL partitioning method then you need to calculate

eigenvectors� This parameter controls how accurately you compute them� If
you are using one of the Lanczos methods and LANCZOS CONVERGENCE MODE is
set to �
 then EIGEN TOLERANCE is a tolerance on the eigen residual jjAu��ujj

where ��� u� is the eigen pair of A in question� Similarly
 if you are using the

multilevelRQI�Symmlqmethod to compute eigenvectors and RQI CONVERGENCE MODE

is set to �
 the eigen residual is used in the convergence test� If a convergence
mode �ag is set to 	 then the convergence of the corresponding iterative method
is instead monitored with respect to the partition residual� That is
 the iter�

ation pauses periodically and a partition is computed based on the current
approximation to the eigenvector� When the change in partition cut size since
the last pause is less than EIGEN TOLERANCE times the number of graph ver�

tices
 the eigenvector computation terminates� These latter modes provide the
ability to automatically choose the accuracy of the eigenvector computation to
achieve any level of stability in partition quality�
An extremely accurate eigenvector computation is expensive
 and probably

unnecessary
 particularly if you are using Kernighan�Lin to re
ne the spectral
partition� However
 in general the quality of the partition gradually degrades as
the accuracy is reduced below some critical point� This can be a result of inac�
curacy in the eigenvector
 or it may be because the eigen solver has converged to

an entirely wrong eigen pair� This latter phenomenon of misconvergence occurs
quite frequently if you use too large an eigen tolerance because there are many
eigenvalues in any interval of that width� So to be really correct one should
probably relate the eigen tolerance to the expected gap between eigenvalues in

the relevant portion of the spectrum using
 for example
 the graph size� But

as discussed earlier in x�
 slight misconvergence is not a grave problem since
misconverged eigenvectors often give good partitions� The multidimensional

spectral methods do in general require somewhat higher accuracy than spec�
tral bisection to perform at their best� Apart from this
 however
 the question
of the appropriate eigen tolerance and risk of misconvergence is more a question
of being able to reproduce partitions reliably and of having a fair basis on which

to compare eigen solvers� Chaco�s design philosophy here is that you should
get the accuracy you request
 and
 failing that
 you should be warned and
told the accuracy you did get� We feel the largest value of EIGEN TOLERANCE

that is advisable for general use is about 	���
 and that is what we ship the

code with� If you are really pressed for speed and are using a local clean�up
phase
 a value of 	��� might be reasonable� At the other extreme
 a value of
	��� should prove acceptably tight in most situations $ if you�re working on
a graph large enough to require higher accuracy
 you should probably switch

to the multilevel�KL partitioning method
 which for large problems generally
gives better answers in less time�

SRESTOL If this parameter is non�negative and the residual encountered at the end of

the recurrence used to compute the eigenvector of the tridiagonal matrix in
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Lanczos is greater than it
 a corresponding set of warning conditions is �agged�

�See discussion of WARNING EVECS�� If this parameter is negative
 the residual
tolerance for the eigenvector of the tridiagonal matrix is automatically set to
the square of EIGEN TOLERANCE� The default value is �	
 so the tolerance is set
automatically� If you are frequently warned that the tolerance on this compu�

tation is not achieved and you are not getting the overall Lanczos accuracy you
have requested
 try increasing BISECTION SAFETY� If you get frequent warnings
about SRESTOL and you are achieving the Lanczos accuracy you want
 either
specify a value of SRESTOL which is looser �bigger� than the square of the eigen

tolerance
 or �if the warnings bother you� reduce the value of WARNING EVECS

appropriately�
LANCZOS SO INTERVAL If you are using the selective orthogonalization variant of Lanc�

zos
 then the convergence of the process is checked indirectly through the Ritz
pairs every few steps� The number of Lanczos iterations between checks is set
by the value of this parameter� Choosing a large value will generally make the
computation run marginally faster
 but increases the risk of degraded accuracy

or misconvergence and may therefore actually increase run time� A smaller
value is more robust since numerical breakdown due to the convergence of Ritz
pairs will be detected sooner� If you encounter convergence problems while us�
ing selective orthogonalization
 try reducing this parameter� Due to the details

of the orthogonalization procedure
 a value of 	 will cause redundant work
 so
the minimum sensible value is �� the default is 	��

LANCZOS MAXITNS If this parameter is set to a non�negative integer
 Lanczos will ter�
minate at that number of iterations� If it has a negative value
 the maximum

number of Lanczos iterations will be set automatically to twice the number of
vertices in the graph
 i�e� it will be �n
 where n is the order of the matrix in
the eigen system� Except in rare circumstances Lanczos will converge before n

iterations
 so this autoset feature in practice means that Lanczos will iterate
until it converges to tolerance� The default is �	 for autoset�

BISECTION SAFETY In Lanczos some of the extremal eigenvalues of the tridiagonal ma�
trix must be found periodically� If the number of eigenvalues to be found is

small
 a bisection algorithm is used to 
nd roots of the Sturm sequence which
correspond to the eigenvalues� This parameter ampli
es or shrinks the conver�
gence tolerance on the bisection algorithm� A higher value speci
es a tighter
�smaller� tolerance and results in more accurate computation of these eigenval�

ues
 but a slightly longer run time� If the code encounters numerical accuracy
problems it thinks are related to accuracy of the eigenvalues of the tridiago�
nal
 it will dynamically increase the ampli
cation of the convergence tolerance
for the bisection computation by some multiplicative factor� The next time

Lanczos is invoked the ampli
cation is reset to BISECTION SAFETY
 which has
a default value of 	��

LANCZOS CONVERGENCE MODE If the code is performing spectral bisection and this pa�

rameter is set to 	
 the convergence of the Lanczos iteration is determined by
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monitoring convergence of the partition rather than the eigen residual� At each

Lanczos pause an approximate eigenvector is computed and used to generate
the current partition� If the partition has changed less than EIGEN TOLERANCE

times the number of vertices
 the iteration is considered converged� This is
useful if you want to determine the accuracy of the eigenvector in an adaptive

way� For example
 you may want to iterate until the point at which further
iteration will not change the partition� Computing eigenvector approximations
frequently within Lanczos is
 however
 very expensive because it requires a sum
across all the current Lanczos basis vectors� We therefore recommend that you

generally leave this parameter in its default state of � so that convergence
will be evaluated in the normal way by comparing the eigen residual against
the eigen tolerance� Note that when using spectral quadrisection or octasection

there is no choice � convergence mode � will be used�

RQI CONVERGENCE MODE This parameter plays the same role as LANCZOS CONVERGENCE MODE

but in the RQI�Symmlq context� If it is set to �
 RQI convergence happens
when the eigen residual is less than EIGEN TOLERANCE� If the parameter is set

to 	 an additional check is invoked based on whether the partition has changed
since the last step by less than EIGEN TOLERANCE times the number of vertices�
Since RQI is computing a new approximation to the eigenvector on each step

this additional convergence check is relatively economical� And
 since the par�

tition often converges to reasonable accuracy before the eigenvector does
 we
have made convergence mode 	 the default� If you are comparing run times

of Lanczos and RQI�Symmlq you should� to be fair� use the same convergence

modes for both�

LANCZOS SO PRECISION The selective orthogonalization version of Lanczos performs
its dominant computations �sparse matrix�vector multiplication and blas�type
operations� on data of type float when this parameter is set to 	� when it

is set to �
 type double is used� Computations of the type in question are
less accurate if performed on data of type float than if performed on type
double because the result is stored in lower precision� On some machines
and using some C compilers
 �oating point operations performed on float

data are faster than those performed on double data� But they may be �and
often are� actually slower� You can test this for your computing environment
by setting the TIME KERNELS to TRUE� Using type float can however lead to
signi
cant memory savings in this context because the Lanczos basis
 which

generally dominates the storage requirements
 occupies half as much memory�
The default value of this parameter is �
 and we recommend that you generally
use this value unless you are running out of memory since the compute�time
saving �if any� is rarely signi
cant�

WARNING EVECS If this parameter has a value greater than �
 the occurrence of a va�
riety of possible numerical or storage�related problems in the eigen solvers is
reported� When using RQI�Symmlq
 a value above � means you will be no�

ti
ed if the eigen residual is not converging monotonically
 an indication of
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possible misconvergence� When using Lanczos
 a value above � means you will

be warned if the requested eigen tolerance was not achieved
 if there has been
a minor or severe loss of orthogonality in the computation
 if the maximum
number of Lanczos iterations was reached and if the code needed to switch
tridiagonal solvers to accurately compute the Ritz values� You will also be

noti
ed if the code has run out of memory and is recovering by computing the
best available approximation to the eigenvector� A value above 	 means that
if any of the preceding warning conditions occur
 you will be noti
ed of the
eigenvalues and predicted and actual eigen residual tolerances� A value above

� means you will be noti
ed when the computation of the eigenvector of the
tridiagonal matrix has been problematic and if the back�up iteration was used
�and how many times� for this computation� If the extended eigen solver is

used
 not all this warning information is provided� Various warnings are re�
ported when the extended eigen problem is not well posed and this parameter
is set greater than �� The default value is ��

WARNING ORTHTOL This parameter determines the level of loss of orthogonality in Lanc�

zos which is considered minor but worth reporting� If the ratio between the
estimate of the eigen residual and the computed eigen residual is above this
value
 the minor loss of orthogonality condition is triggered� To avoid generat�
ing insigni
cant messages
 warnings are not printed if the actual eigen residual

is signi
cantly lower than the eigen tolerance� The default value is �� Refer to
the discussion on WARNING EVECS�

WARNING MISTOL Same as WARNING ORTHTOL
 but this value indicates a more serious
loss of orthogonality� In some cases this may indicate misconvergence
 hence

the name� The default is 	���
LANCZOS TIME A detailed breakdown of the time spent in di�erent stages of the Lanczos

eigen solver is provided when this parameter is set to TRUE� Lanczos will run

ever so slightly faster if you leave this value at FALSE �the default�
 since many
fewer calls to the timing function will be made�

TIME KERNELS If this parameter is set to TRUE a table is printed out comparing various
kernel operations in single precision �data type float� and double precision

�data type double�� The kernel operations are basic linear algebra primitives
and multiplication of a dense vector by the weighted Laplacian matrix of the
graph� The comparison is with respect to numerical result and execution time�
The number of loops of the kernel operations performed is chosen so that the

time of the standard ��norm operation is approximately 	 second
 hence on
very large and dense graphs the sparse matrix multiplication kernel timing test
may require signi
cant time� The default value is FALSE�

���� Other parameters for spectral methods�

MAKE CONNECTED Spectral methods can break down if the graph is disconnected� Even
if the original graph is connected
 disconnected graphs can be generated in

the recursion� To avoid any associated problems
 we use a breadth�
rst�search
algorithm to 
nd connected components and add a minimal number of edges
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to make the graph connected� If MAKE CONNECTED is TRUE �the default�
 then

this connectivity check will be invoked whenever a spectral option is selected�
You should only change this parameter if you plan to use a spectral method
and you are certain that you will only operate on connected graphs �i�e� if you
aren�t recursing��

PERTURB Spectral methods can encounter problems if the graph has symmetry since its
eigenvalues can then have multiplicity greater than 	� For spectral bisection
 all
you can hope for is selecting some vector �which depends on the starting Lanc�
zos vector� in the subspace of second lowest eigenvectors� However
 since they

work within a subspace of � and � vectors respectively
 spectral quadrisection
and octasection can handle two or three degrees of multiplicity respectively�
Unfortunately
 Lanczos can�t easily identify this multiplicity� We can
 how�

ever
 avoid the issue by randomly perturbing the matrix� If you are invoking
bisection
 then the matrix is not perturbed
 but in quadrisection or octasec�
tion mode the parameter PERTURB controls whether or not this perturbation is
invoked� Using this option helps avoid problems in some degenerate cases like

the square grid graph
 at the cost of a very slight increase in run time� We
recommend that you leave this feature actived �the default� unless you are sure
you don�t need it�

NPERTURB If the PERTURB option is being used
 this parameter indicates how many

random edges are added to the graph to break the symmetry� The default is ��
PERTURB MAX If the PERTURB option is being used
 this parameter is the maximumvalue

of an edge weight for one of the randomly added edges� A small value will
perturb the eigenvectors a small amount
 but if the perturbation is too small


then Lanczos may not be able to separate the multiple eigenvectors� This value
should probably be a small multiple of EIGEN TOLERANCE� The default is �����

MAPPING TYPE We have implemented several methods for generating a partition from

eigenvectors
 and decided to retain two of them� If this value is �
 then the
the partitions are determined by the signs of the values in the eigenvector�s��
Note that this will generally produce a somewhat imbalanced partition �which
can be balanced by KL�� In the bisection case
 this option reduces to dividing

at a value of zero� If MAPPING TYPE is 	
 then the code uses the minimum cost
assignment algorithm described in �	��
 which generates balanced sets� In the
bisection case
 this latter option reduces to dividing at the median� Since we
consider this second approach superior
 the default value is 	�

COARSE NLEVEL RQI This parameter applies if you are using the spectral method with
the RQI�Symmlq eigen solver option� As you work back through the inter�
mediate graphs
 the approximation to the eigenvector is re
ned with Rayleigh
Quotient Iteration every few levels� This parameter indicates how many levels

occur between these re
nements� A small value for this parameter is more
robust
 but a large value will reduce execution time� The default value is ��

OPT�D NTRIES If you are using spectral octasection
 then when mapping back to a dis�

crete solution you need to solve a constrained
 global optimization problem as
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described in �	��� In our experience
 this problem usually has a small number

of local minimizers
 so we solve it using local minimization techniques from
random starting points� This parameter controls the number of local mini�
mizations
 and should only be modi
ed by sophisticated users� The default
value is ��

���� Kernighan�Lin parameters�

KL METRIC When dividing into more than � sets at once
 our implementation of Kernighan�

Lin can try to minimize any inter�set metric� Two are currently built into the
code and are controlled by this parameter� If the value of KL METRIC is one

then all edges crossing between two sets are treated the same� If the value
is two
 then edges are weighted by a metric that corresponds to their archi�

tectural distance in the target parallel architecture� �Note that the spectral
quadrisection and octasection algorithms automatically use a hypercube hop
metric�� Also note that in bisection the choice of metrics doesn�t matter� If
you wish to use a di�erent metric than cuts or hops
 you can tinker with the

appropriate code in �code�submain�submain�c�� The default value is ��
KL RANDOM This �ag turns on and o� the randomness in the Kernighan�Lin routines�

We recommend that you leave this parameter in the default setting of TRUE since
it increases the quality and robustness of Kernighan�Lin for a tiny increase in

run time�
KL BAD MOVES Our version of Kernighan�Lin can exit a pass early if it doesn�t seem to

be making any progress� This parameter controls how quickly KL will hit this

cuto�� A large value may make KL more e�ective
 but will also increase the
run time� The default is ���

KL NTRIES BAD This parameter controls the speed at which the Kernighan�Lin code
is exited� The KL routine will exit after KL NTRIES BAD passes in which no

improvement is detected� We have designed some randomness into this algo�
rithm
 so a pass with no improvement can be followed by one that 
nds a
better partitioning� However
 if you set KL RANDOM to FALSE
 then you should
set KL NTRIES BAD to 	� If KL NTRIES BAD is set to zero
 then the code will run

a single pass of KL and exit whether or not the partition is improved� Since
the 
rst pass is usually responsible for the bulk of the improvement
 this is a
reasonable choice if run time is critical� A large value for this parameter should
produce better results
 but will cause the code to run longer� The default is 	�

KL UNDO LIST This parameter turns on an optimization that dramatically reduces the
run time of Kernighan�Lin for large graphs� Instead of bucket sorting the
entire set of possible vertex moves before each pass
 this option preserves the

moves that haven�t been changed� typically the vast majority� This leads to a
dramatic increase in speed
 with no perceptible change in quality� We strongly
encourage you to leave this parameter in its default setting of TRUE�

KL IMBALANCE Chaco generally tries to keep the vertex weight sums in the sets it

generates as nearly equal as possible� Speci
cally
 when a single division step
is performed
 the di�erence in vertex weight sum between any two of the subsets
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is at most the weight of the heaviest vertex� For weighted graphs
 after several

levels of recursive partitioning
 the set sizes may deviate by more than the
weight of a single vertex� But for unweighted graphs set sizes should vary
by at most one� This is the default operation of the code
 associated with a
value for KL IMBALANCE of �� However
 there are settings in which sets needn�t

be perfectly matched in size
 and an imbalanced partition with fewer crossing
edges is preferable� Such partitions can be found by Chaco�s implementation
of KL and multilevel�KL� If KL IMBALANCE is set to some value q between �
and 	
 then KL and multilevel KL will look for partitions in which the the

fractional imbalance is no more than q� Speci
cally
 the di�erence between any
two sets is bounded by q times the average set size�

��
� Parameters for multilevel algorithms�

COARSEN RATIO MIN This value is employed if you are using either the RQI�Symmlq
eigen solver or the multilevel�KL partitioning algorithm� It should have a
value between �� and 	��
 representing the minimal acceptable reduction in

number of vertices associated with a coarsening step� If a step fails to achieve
this reduction
 the coarsening algorithm exits prematurely
 and the resulting
calculations will be performed on a larger graph than expected� The coarsening
algorithm cannot reduce the number of vertices by more than half
 so this value

should always be greater than ��� the default is ���
COARSE NLEVEL KL If you are using the multilevel�KL partitioning algorithm
 then

Kernighan�Lin gets invoked periodically on successively 
ner graphs� This

parameter indicates how many levels occur between these invocations� A small
value for COARSE NLEVEL KL will generally lead to better partitions
 while a
large value will reduce execution time� The default is ��

COARSE NLEVEL RQI See discussion in x����

MATCH TYPE The 
rst step in coarsening is the generation of a maximal matching in the
graph� We have three matching codes to choose from� The default value for
MATCH TYPE is 	
 which selects a fast algorithm based on a breadth 
rst search�
Increasingly time consuming but more truly random algorithms are invoked by

larger values up to a maximum of ��
HEAVY MATCH Karypis and Kumar �	�� have reported that the multilevel�KL algorithm

is improved by selecting matching edges that have high weights� If this pa�
rameter is set to TRUE then the matching algorithms for either the multilevel

eigen solver or multilevel�KL will try to generate heavy weight matchings� The
default for this parameter is FALSE�

COARSE KL BOTTOM Kernighan�Lin re
nement is invoked every COARSE NLEVEL KL lev�

els starting with the 
nest graph� To ensure that partition of the coarsest
graph is as good as possible
 it makes sense to invoke KL on this graph� If
COARSE KL BOTTOM is TRUE �the default�
 KL will always be invoked on the
coarsest graph� This generally improves the quality of partitions
 and since the

coarsest graph is small
 the time for this process is negligible�
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COARSEN VWGTS For both the multilevel�KL algorithm and the RQI�Symmlq eigen

solver
 we construct coarse graphs via a sequence of edge contractions� These
contractions combine two vertices into one� Balance constraints are preserved
if the weight of the combined vertex is the sum of the weights of its two
constituents� If COARSEN VWGTS is TRUE �the default� then the new vertex is

weighted in this manner� However
 as discussed in x���
 Bui and Jones proposed
an algorithm where the new vertex has unit weight� This can be implemented
by setting COARSEN VWGTS to FALSE�

COARSEN EWGTS Edge contraction can also cause edges in the graph to fall on top of

each other� If so
 the cost of a partition can be preserved by making the weight
of the resulting edge equal to the sum of the weights of those that comprise
it� This weighting is performed if COARSEN EWGTS is TRUE �the default�� In the

algorithm by Bui and Jones the resulting edge is instead given a unit weight

which will happen if COARSEN EWGTS is FALSE�

KL ONLY BNDY If the vertices on the boundary are known
 then it is more e�cient to
initialize only these values when starting Kerninghan�Lin� Other values can be

evaluated on an as�needed basis
 but typically only a small fraction will need
to be computed� Note that vertices not initially on a boundary can be handled
properly� they�re just not placed into the KL data structures until one of their
neighbors has moved
 placing them on the new boundary� In the multilevel�

KL algorithm
 the boundary can be easily propagated between levels
 so this
e�ciency can be realized� This signi
cantly improves the speed of the algorithm
without a�ecting its quality� When runing multilevel�KL
 if KL ONLY BNDY is
set to TRUE �the default� then only those vertices on the boundary between sets

are initialized�
KL IMBALANCE See discussion in x����

���� Parameters for post�processing options�

REFINE PARTITION This parameter controls how many sweeps are made through the
pairs of sets with a nonzero boundary in an e�ort to improve the partition via
an invocation of Kernighan�Lin� A discussion of this approach can be found

in x����	� The default value is zero since the process is fairly expensive�
INTERNAL VERTICES In many parallel computing applications
 vertices with no edges to

other sets require only local data� This may allow for overlap of communication
and computation� If TRUE
 the INTERNAL VERTICES parameter activates code to

try to increase the minimal number of internal vertices in a set� The algorithm
for this task is sketched in x������ The default value for this parameter is
FALSE since this fairly specialized functionality is probably not required for

most applications� We also caution that this can be a time consuming process
if the partition submitted is of low quality�

REFINE MAP If this parameter is TRUE the mapping of sets to processors is modi
ed
in a greedy manner to improve locality� Note that this doesn�t change the

composition of the sets
 just which processor each set is assigned to� The
algorithm for this process is described in x������ Since Chaco is used for
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many applications other than parallel computing
 the default for this parameter

is FALSE� But if you are really interested in the quality of your mapping to
processors you should set it to TRUE�

��	� Architecture parameters�

ARCHITECTURE In addition to partitioning the graph
 Chaco tries to assign subgraphs
generated to processors of a parallel computer in an intelligent manner� This
parameter speci
es the topology of the parallel computer� A value of � �the

default� speci
es a hypercube
 while values of 	
 � or � indicate meshes of
dimensionality one
 two or three respectively� If your application doesn�t care
about how pieces get assigned to sets
 then you should simply set this value
to 	 and input the number of sets you require when prompted� This might be

the case
 for example
 if you were partitioning for a heterogeneous network of
computers coupled by a slow or unpredictable network�

���� Miscellaneous parameters�

TERM PROP This parameter determines whether or not terminal propagation is invoked
in spectral bisection
 Kernighan�Lin and multilevel�KL� Details concerning ter�
minal propagation
 a method for generating better mappings to processors
 are
given in x���� Currently
 spectral terminal propagation only works in bisection

mode
 but with KL and multilevel�KL the method can handle an arbitrary
number of sets� The default value is FALSE�

CUT TO HOP COST When performing terminal propagation
 this value controls the rel�

ative importance of generating a new cut edge versus increasing the inter�
processor distance associated with an existing cut edge� This parameter thus
allows the user to tradeo� the importance of communication volume to com�
munication locality� The default value is 	���

SEQUENCE If this parameter is set to TRUE
Chaco computes and sorts the Fiedler vector
of the graph and places the result in a 
le named by SEQ FILENAME� The other
operations associated with partitioning are not performed� This functionality
is provided to assist development of spectral graph algorithms
 and is discussed

in x��	� The default value is FALSE�
SEQ FILENAME This parameter is a character string which speci
es the name of the 
le

to which the sorted Fiedler is printed if SEQUENCE is nonzero� The default is
�Sequence�out�

RANDOM SEED This is the seed for the random number generator �rand����
NSQRTS If you are using either multilevel�KL or the RQI�Symmlq eigen solver
 then

coarse versions of the graph are created with vertex weights� The square roots

of these vertex weights are also needed� Since these are typically integers

Chaco avoids redundant computation by computing the root of each distinct
integer once and storing it in the array SQRTS� The value of NSQRTS is the length
of this array
 and for best performance it should be somewhat larger than the

number of vertices in the original graph divided by the number of vertices in
the coarsest graph� A large value may use a small amount of unnecessary space
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while a small value may lead to a slight excess of computation� The default is

	����
MAKE VWGTS In matrix�vector multiplication
 the cost associated with a row is propor�

tional to the number of nonzeros in that row� If vertices of your graph represent
rows of a matrix
 MAKE VWGTS allows you to automatically weight them in this

way� Note that if MAKE VWGTS is TRUE then any weights in your graph 
le are
ignored� The default for this parameter is FALSE
 meaning that the option isn�t
invoked�

FREE GRAPH Chaco 
rst reads a graph into a simple format before converting it into a

more complex data structure� This simple format is used to allow the code to
be called from Fortran as described in x�� Once the graph has been reformatted
the space used by the simple format is deleted if FREE GRAPH is TRUE
 which is

the default� However
 if you are calling the code from other software
 you may
wish to save the simple graph structure for other purposes
 or you may not have
generated it via C malloc	
 calls� In these cases
 you should set FREE GRAPH

to FALSE
 to disable this feature�

PARAMS FILENAME This parameter de
nes the name of the 
le from which the code reads
parameter modi
cations as described in x��	�� The default is �User Params� in
the executable directory� This is the only parameter that cannot be changed at
run time� To change this 
le name you must edit the 
le �code�main�user params�c�

and recompile�

���� Parameters that control debugging output� These parameters allow you

to invoke Chaco�s built�in debugging capabilities� The default value of these parame�
ters
 with one exception
 is �
 specifying that no debugging output should be printed�
�The exception is DEBUG PARAMS
 which has a default value of ��� If no range of values
is indicated
 the parameter is treated as a TRUE�FALSE value and any nonzero value will

activate it�
DEBUG EVECS This parameter controls the quantity of debug output concerning calcu�

lation of eigenvectors� When set to zero
 no output is generated except when
an unrecoverable error condition is encountered
 in which case a short message

is printed before the program aborts� A value of 	 will produce a moderate
amount amount of information
 � a bit more
 and so on up to a maximumvalue
of ��

DEBUG KL This �ag controls the output in the Kernighan�Lin routines� No debugging

output is generated if the value is �
 while the improvement due to KL at each
step is shown if the value is 	� Values of � and � generate large quantities of
output
 and should only be invoked by an expert�

DEBUG INERTIAL If you are using the inertial method
 this �ag will turn on output
concerning the computation of the principle axis of the graph�

DEBUG CONNECTED If you are enforcing connectivity and using a spectral method
 a
value of 	 for this �ag turns on a small amount of output in the routines that

identify connected components� This will tell you if subgraphs have become
disconnected in the course of a decomposition�
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DEBUG PERTURB A value of 	 for this �ag turns on a small amount of output in the

routines for randomly perturbing the matrix�
DEBUG ASSIGN When using a spectral method
 the mapping from the eigenvectors to

a partition can be complicated
 particularly for spectral quadrisection and oc�
tasection� This parameter turns on output in the routines that compute this

mapping�
DEBUG OPTIMIZE With spectral quadrisection or spectral octasection
 part of the map�

ping to a partition involves a nonlinear optimization� This �ag controls debug�
ging output in the optimization subroutines�

DEBUG BPMATCH When using spectral quadrisection or octasection
 the trickiest part of
the mapping from eigenvectors to a partition involves solving a minimal cost
assignment problem in a bipartite graph� This �ag turns on the output in the

corresponding sections of the code� A value of 	 gives a moderate amount of
cryptic output
 while a value of � does more error checking and can generate a
lot of output�

DEBUG COARSEN If you invoke multilevel�KL or the RQI�Symmlq eigen solver
 the code

will construct a sequence of increasingly coarser approximations to the original
graph� This parameter controls the output for the routines performing this
process�

DEBUG MEMORY This variable turns on some consistency checks in the allocation and

freeing of memory� Unless you encounter problems you think might be memory
related
 this value should be left at ��

DEBUG INPUT If this is set to 	
 a message is printed con
rming that the input 
les have
been read�

DEBUG PARAMS This value controls how much output is generated while reading param�
eters from the �User Params� 
le� A value of 	 means that the code will notify
you of any parameter settings it does not recognize �and therefore ignores�� A

value of � prints a con
rming message for each parameter value that is reset�
The default value is ��

DEBUG INTERNAL If INTERNAL VERTICES is nonzero
 then the code will try to increase
the number of entirely internal vertices in the sets with the fewest of them as

described in x������ If DEBUG INTERNAL is nonzero
 debugging output will be
generated in this section of the code�

DEBUG REFINE PART If REFINE PARTITION is nonzero then Chaco tries to improve a
partition by locally re
ning the boundaries between sets as discussed in x����	�

If DEBUG REFINE PART is nonzero
 the code will generate debugging output in
this operation�

DEBUG REFINE MAP If REFINE MAP is TRUE
 code is activated to swap sets among proces�
sors to improve locality� DEBUG REFINE MAP controls output in this process�

DEBUG TRACE If this value is nonzero
 messages are printed which reveal the main ex�
ecution path� If the code is running into problems
 this parameter may help
narrow down where they are occurring�
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DEBUG MACH PARAMS Chaco needs to compute a few numerical values that are machine

dependent� If this �ag is nonzero then the values it computes are printed out�
If you are having di�culty getting the code to run on a new machine
 the
parameter calculation may be failing� this �ag will help you detect that�

����� Modifying parameters at run time� You can modify the user parameters
at run time by specifying the desired changes in a 
le called �User Params� in the
executable directory� �You can change the name of this 
le by modifying the value of

PARAMS FILENAME in �user params�c��� The 
rst thing Chaco does is read this 
le �if
it exists�
 and make the speci
ed changes to parameter values�

Lines of the �User Params� 
le should contain a parameter name �using any com�
bination of upper and lower case� followed by the new value� An ��� may be used to

separate the parameter name and value
 but is not required� Integer and real values are
speci
ed in the normal input manner
 and logical parameters can be speci
ed by strings
starting with �T� or �t� for true �one� and �F� or �f� for false �zero�� Lines beginning with
a �!� or a �#� are ignored�

If you are using a single invocation of Chaco to perform several decompositions

you can vary parameters between problems by adding a line to the �User Params�

le consisting of the string STOP� When Chaco encounters a STOP it quits reading
parameters and partitions or sequences the graph� When the second problem is begun

Chaco continues reading new parameter values from where it left o� until it encounters
another STOP or the end of the �User Params� 
le� Any number of stop commands may
be used� Note that the parameter changes made for the 	rst problem are still in e
ect

unless later lines provide newer values� Consider the following sample 
le�

�This is a sample run�time parameter modification file�

Architecture �

term prop True


debug memory � �

Stop

TERM PROP � f

In the 
rst problem
 the architecture is set to be a three�dimensional mesh
 and termi�

nal propagation is enabled� In the second problem
 the architecture remains a three�
dimensional mesh
 but terminal propagation is now disabled�

% v

	� Calling Chaco from other programs� Throughout this document we have
assumed that Chaco is being used as a stand�alone program� However
 this needn�t be
the case� We designed version ��� to allow for easy interface with other codes written

in either C or Fortran� The mechanism for this interface is described below� Some
familiarity with the remainder of this document is assumed�

The interface	
 routine and can be found in the 
le �code�main�interface�c��
This is the routine that Chaco itself invokes after prompting the user for all the nec�
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essary input� Consequently
 no functionality is lost by calling interface	
 yourself�

The input can still be checked for consistency
 all the output options are still active and
the ability to modify parameters at run time by reading a 
le as described in x��	� is
maintained� �The parameters ARCHITECTURE
 EIGEN TOLERANCE and RANDOM SEED are
made obsolete by the arguments to interface	
 as detailed below
 and DEBUG INPUT

and PROMPT become irrelevant
 but all other parameters remain active�� The ability
to control the goals argument described below actually gives you greater functionality
than you would have in stand�alone mode�

The interface routine returns � if the partitioning is successful
 and 	 otherwise�

Typically
 a return code of 	 indicates the detection of some inconsistencies in the
input arguments� The arguments to interface	
 describe the graph
 input and output

les and arrays
 properties of the desired decomposition and the requested partitioning

algorithm� The arguments are described below in the order in which they occur�
A� Arguments describing the graph�

�� nvtxs� Type int� This is the number of vertices in the graph� Vertices are
numbered from 	 to nvtxs�

�� start� Type int &� Although Chaco internally uses a C structure to represent
the graph
 a simpler representation at the start allows for interface with Fortran
programs� The start array is of size �nvtxs 	�� It�s values are indices into the
adjacency array� The values in adjacency from start�i� 	� to start�i��	 are the

vertices adjacent to vertex i in the graph� �Note that C arrays begin at zero

so in Fortran
 the relevant range would be start�i� to start�i 	�� 	��

�� adjacency� Type int &� As indicated in the description of start
 this array con�
tains a list of edges for all vertices in the graph� Note that if the FREE GRAPH

parameter from x��� is set to TRUE
 then after converting to a new data struc�
ture
 both start and adjacency are freed� If this is inappropriate for your ap�
plication �e�g� you want to keep the graph
 or you didn�t dynamically allocate

these arrays�
 then you should set FREE GRAPH to FALSE�
�� vwgts� Type int &� This array of length nvtxs speci
es weights for all the
vertices� If you pass in a NULL pointer
 then all vertices are given unit weight�
Vertex weights should be positive�


� ewgts� Type �oat & �Fortran type real&��� This array speci
es weights for all
the edges� It is of the same length as adjacency and is indexed in the same
way� If you use Kernighan�Lin or the multilevel partitioner
 these values will
be rounded to the nearest integer� We suggest scaling them so they are neither

very small nor very big� Edge weights should be positive�
�� x� Type �oat &� If you are using the inertial partitioner
 you need to specify
geometric coordinates for each vertex� This array of length nvtxs speci
es the
x coordinate for each vertex�

	� y� Type �oat &� This array speci
es the y coordinate for each vertex� If it is
NULL
 the geometry is assumed to one�dimensional�

�� z� Type �oat &� This array speci
es the z coordinate for he each vertex� If z

is NULL and y is not NULL
 the geometry is assumed to be two�dimensional�
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B� Output 
le names�

�� outassignname� Type char &� If you desire the 
nal assignment to be written
to a 
le
 this argument gives the name of that 
le� If this argument is NULL
or if the parameter OUTPUT ASSIGN is �
 then the assignment is not written to
a 
le�

��� out
lename� Type char &� This is the name of a 
le in which the results of
the run are printed� If it is NULL or if the parameter ECHO is not negative

then no 
le output is performed�

C� Assignment�

��� assignment� Type short &� This is the only output argument to interface	
�
It is an array of length nvtxs and returns the set number to which each vertex
is assigned� The set number for vertex i is returned in assignment�i� 	� �or for

Fortran
 in assignment�i��� This can also be an input argument if global method

argument 	� below
 is set to �� A description of what functionality can be used
with an input assignment can be found in x���

D� Description of the target machine�

��� architecture� Type int� This parameter designates the topology of the par�
allel machine for which you are partitioning� Current capabilities include a
hypercube �indicated by a value of ��
 and a one�
 two� or three�dimensional
mesh �indicated by a value of 	
 � or � respectively�� Note that this argument

overrides the ARCHITECTURE parameter�
��� ndims tot� Type int� If architecture is zero
 indicating a hypercube
 this
value is the number of dimensions in the hypercube�

��� mesh dims� Type int array of size �� If architecture is 	
 � or �
 indicating a

mesh
 the values in this array denote the size of the mesh in each dimension�
�
� goal� Type double &� This optional array speci
es the desired sizes of the
di�erent sets� The total number of sets is implicit in the architectural speci
�

cations provided by the preceding three parameters� If a null value is passed
for goal
 the code will try to make each set have the same vertex weight sum�
If it is not null
 the goal array should be as long as the total number of sets�
The value in goal�i� �or
 for Fortran
 goal�i  	�� should be the desired sum

of vertex weights of vertices assigned to set i� Note that set numbers begin
at zero� Chaco will try to get as close to this goal as possible
 but may not
succeed exactly� The sum of all the goals should equal the sum of all the vertex
weights
 and values should be nonnegative�

Although the default is to make all set sizes equal
 there are applications where
this may be undesirable� One example would be if you are decomposing a
computation among processors of di�erent speeds� All the code in Chaco

handles this more general case
 and should work for any consistent values in

goal�
E� Partitioning options�

��� global method� Type int� This argument speci
es the global partitioning

method and should have a value from 	 and �� These values are the same
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as those on the �Global method� menu when running Chaco in stand�alone

method
 as reviewed in x����
�	� local method� Type int� This argument speci
es the local partitioning
method and should have a value of 	 or �� These values are the same as those
on the �Local method� menu when running Chaco in stand�alone method
 as

reviewed in x����
��� rqi �ag� Type int� If you requested spectral partitioning and wish to use the
multilevel RQI�Symmlq eigensolver
 this argument should be set to 	� If you
wish instead to use Lanczos
 it should be set to ��

��� vmax� Type int� If you are using either the multilevel�KL partitioner
 or
the multilevel RQI�Symmlq eigensolver
 you need to specify when the coarsest
graph is small enough� When a coarse graph has no more than vmax vertices


the recursive coarsening is 
nished�
��� ndims� Type int� This argument should have a value of 	
 � or � indicating
partitioning by bisection
 quadrisection or octasection�

��� eigtol� Type double� If you are using a spectral method or multilevel�

KL
 this argument speci
es the tolerance you request for the eigensolver� A
discussion of an appropriate choice can be found in the description of the
EIGEN TOLERANCE parameter in x���� Note that this argument overrides the
value of the EIGEN TOLERANCE parameter�

��� seed� Type long� This is a seed for the random number generator �rand����
Note that it overrides the RANDOM SEED parameter�

�� Changes since Version �� Version ��� of Chaco di�ers from earlier versions
in a number of ways� We gratefully acknowledge the helpful suggestions of users who
requested greater functionality
 critiqued the interface or reported problems� In this
section we brie�y list the most important di�erences between this version and its pre�

decessor �	��
 and direct the interested reader to the relevant sections of this user�s guide
for more details�

���� Enhanced functionality� Version ��� of Chaco can partition for one�
 two�

and three�dimensionalmesh topologies� Earlier versions worked only for hypercubes�
There are two aspects to this generalization� First
 the code can now partition into
an arbitrary number of sets� And second
 the sets are assigned to processors to
maximize locality on either a hypercube or a mesh� The parameter which speci
es the

topology is ARCHITECTURE and is described in x���� If you don�t care about the mapping
to processors
 you can simply select a one�dimensional mesh topology and then input
the number of sets you require when prompted�

We have added options to the implementation of our multilevel�KL method to
include a closely related multilevel algorithm due to Bui and Jones ��
 	��� We
have also added the ability to prefer high weight matching edges as advocated by
Karypis and Kumar �	��
 and di�erent matching algorithms to allow the user to

tradeo� between randomness and speed� The speed of the multilevel�KL algorithm has
been improved by using a lazy evaluation technique for initializing values� All these
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options are discussed in x��� and�or x����

The ability to relax the strict balanced requirement has been added by the
KL IMBALANCE parameter as discussed in x����

We have added a method from the circuit placement community known as ter�
minal propagation� This is a technique for improving the mapping to processors by

incorporating additional information in the recursion� It also allows the user to tradeo�
between message congestion and communication volume� Details can be found in x����

Several post�processing algorithms for improving the partitioning and�or

mapping have been added� These techniques work to reduce the number of edges cut

�x����	
 increase the number of vertices with no edges to other sets �x������ or improve
the mapping of sets to processors �x�������

Spectral graph algorithms are becoming important tools for a surprisingly wide

variety of problems� To facilitate these applications
 Chaco can now be used to gener�
ate and sort the Fiedler vector of a graph �without partitioning�� This is discussed
in x��	�

We have re�implemented and improved both speed and robustness of most of

the algorithms in Chaco� The speed di�erences should be most notable in the mul�
tilevel RQI�Symmlq eigensolver and in the multilevel�KL partitioning algorithm� An
important improvement on the robustness side is the inclusion of a graceful recovery
procedure for all of the Lanczos eigensolvers in the event they run out of memory�

Previously they terminated� they now compute the best readily available approxima�
tion to the eigenvector and allow the code to continue� They also contain several added
layers of defense against certain numerical problems �see x�����

���� New and modi
ed parameters� Chaco contains a variety of parameters
which control the functionality
 algorithmic details and input and output options� With
version 	 it was necessary to recompile the code to change parameter values� This

limited the ease with which parameter studies could be conducted� In version ��� all
parameters can be modi
ed at runtime
 which signi
cantly increases the usability
of the parameters� Details can be found in x��	��

A number of parameters have been added to the code to control the new function�

ality sketched above in x��	� The following additional parameters have been added
or had their meaning modi
ed� We include a brief discussion and a pointer to the
appropriate section of text�
OUTPUT METRICS The meaning of this parameter has changed to allow for more detailed

control of the output �x��	��
TIME KERNELS You can now time common numerical kernel operations like matrix�

vector multiplication on your machine �x�����

PROMPT This parameter allows you to turn o� the interactive queries� This makes for
cleaner output when you are piping the input from a script� See x��	�

LANCZOS CONVERGENCE MODE Rather than determining convergence based directly on
the eigen residual
 you may now choose to base convergence decisions on how

the partition evolves during the Lanczos iteration �x�����
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LANCZOS SO PRECISION To save space
 you can run the selective orthogonalization vari�

ants of Lanczos in single precision �x�����
RQI CONVERGENCE MODE Rather than determining convergence based directly on the

eigen residual
 you can now base convergence decisions on how the partition is
evolving during RQI�

COARSE KL BOTTOM In multilevel�KL this parameter forces the invocation of KL on the
coarsest graph �x�����

MATCH TYPE When performing coarsening this parameter allows you to choose several
di�erent maximal matching algorithms with di�erent cost�quality tradeo�s

�x�����
ARCHITECTURE This important new parameter allows you to select to partition for either

a hypercube or a mesh parallel machine �x�����

MAKE VWGTS This �ag will automatically generate weights for vertices that are appropri�
ate for applications involving parallel matrix�vector multiplication �x�����

FREE GRAPH If you are calling Chaco from another code
 this �ag allows you to free
the original graph storage to save space �x�����

���� Changes to input and output formats� To better handle the input of
vertices of high degree
 vertex data can be spread over multiple lines of the
graph input 
le� The mechanism enabling this is discussed in x��	�

Version ��� of Chaco is able to handle unexpected graph input gracefully in
more instances� For example
 self edges and edges with zero weights are now discarded
instead of causing the program to halt�

The output format of the code has been clari
ed and enhanced with several
additional metrics of partition quality� These are described in x����

Version ��� ofChaco can read an existing partition from a 
le� It can then re
ne
or evaluate the partition in several ways� Assignment 
les can now be structured in

two di�erent ways to simplify interfacing with other codes� These changes are discussed
in x����

Chaco can now be more easily coupled with other programs� The calling
sequence to do this is described in x��

Chaco can now performmultiple runs with a single invocation� This enables

for example
 piping many calculations into a single run of the program�

The look and feel of Chaco has changed in a variety of additional ways� The
intent of these changes was to simplify the user interface and provide additional

information� Examples include the removal of some options from the user menu so as
to streamline its use
 changing the structure of the input prompts
 and clarifying of all
phases of output�

���� Interfaces to other codes� AMatlab front end for Chaco has been written
by John Gilbert as part of themeshpart software �which also contains implementations
of other partitioning algorithms�� This public domain software can be obtained via

anonymous ftp to parcftp�xerox�com in the 
le �pub�gilbert�meshpart�uu� Chaco has
also been interfaced with a number of important scienti
c and engineering application

��



codes� If you suspect this may be true of the code you are working with
 check with

us�
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