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Abstract

A model for the simulation of the electron energy distribution in nanoscale metal-oxide-semiconductor field-effect tran-
sistor (MOSFET) devices, using a kinetic simulation technique, is implemented. The convective scheme (CS), a method of
characteristics, is an accurate method of solving the Boltzmann transport equation, a nonlinear integrodifferential equa-
tion, for the distribution of electrons in a MOSFET device. The method is used to find probabilities for use in an iterative
scheme which iterates to find collision rates in cells. The CS is also a novel approach to 2D semiconductor device simu-
lation. The CS has been extended to handle boundary conditions in 2D as well as to calculation of polygon overlap for
polygons of more than three sides. Electron energy distributions in the channel of a MOSFET are presented.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Boltzmann transport equation; Convective scheme; MOSFET; Semiconductor device simulation

1. Introduction

In a short-channel metal-oxide-semiconductor field-effect transistor (MOSFET), one has to contend with
high electric fields at the drain end of the device, which can lead to hot carrier effects and device degradation.
These arise due to several reasons, including the fact that power-supply voltages have not scaled proportion-
ately because of compatibility issues with previous technologies, physical limits on the threshold voltage and
noise margins, as well as manufacturability constraints. In order to explore hot carrier effects, models are
needed to determine the energy distribution of carriers in the device.

In this paper, a kinetic transport model is implemented that is applicable to environments in which the
mean free path is comparable to the device dimensions. In semiconductor devices, such as the MOSFET,
as device dimensions are scaled down to the nanometer regime, the electron mean free path becomes compa-
rable to the device dimensions. Characteristically, in conventional device modeling, simulations of carrier
behavior are based on the drift-diffusion current equation, the continuity equation, and Poisson’s equation.

* Corresponding author. Tel.: +1 505 284 3029; fax: +1 505 284 5451.
E-mail addresses: dafixel@sandia.gov (D.A. Fixel), hitchon@engr.wisc.edu (W.N.G. Hitchon).

0021-9991/$ - see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/.jcp.2007.09.006


mailto:dafixel@sandia.gov
mailto:hitchon@engr.wisc.edu

1388 D.A. Fixel, W.N.G. Hitchon | Journal of Computational Physics 227 (2007) 1387-1410

In cases where the distribution function of particles is desired, the direct solution of the Boltzmann equation
has been done by Monte Carlo techniques and a number of iterative schemes. In exploring the tail of the elec-
tron distribution, the particles that need to be observed represent a smaller portion of the total electron dis-
tribution, i.e., the rare occurrence. When we attempt to track the particular particles in question, and because
the carrier mean free path becomes comparable to the device dimensions, the approach of employing the con-
tinuity equation is no longer appropriate. The fluid equation approach needs to be replaced by a kinetic
description of the particles’ behavior. Also, in researching hot carrier effects, one desires to obtain the distri-
bution in energy of electrons, which requires a kinetic simulation technique. In this work we investigate the
distribution of electrons using three velocity dimensions and two space dimensions. Of particular importance
is the tail of the distribution and resolution of the same.

In order to find the electron distribution, it is necessary to solve the Boltzmann transport equation, which is
given by [1]

of dk of of
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where the second term on the left-hand side of the equation represents the rate of change of the distribution
due to the particles’ velocity, and the third term on the left-hand side represents the rate of change of the dis-
tribution due to the particles experiencing external forces. The term on the right-hand side of the equation is
the collision term, i.e., the effect of collisions in altering the distribution function.

In later sections, we find the scattering rate in a phase space cell from a set of probabilities which are in turn
found from the CS solution of the Boltzmann equation. This is essentially equivalent to finding a Green’s
function for a differential equation by considering the equation with a delta-function source. These probabil-
ities are concerned with the manner in which particles move from one cell to another on the mesh and with
subsequent scattering events of the particles. The scattering frequency in each cell depends on the kinetic
energy of the particles; the scattering mechanisms used are explained in Appendix C. As the particles are scat-
tered, they get mapped to the original mesh in accordance with the rules of polygon overlap. Calculation of
polygon overlap is an integral part of the CS and it is important to accurately calculate it for accurate mapping
of particles to the mesh. In this work, we have implemented the capability to calculate overlap between trian-
gles and quadrilaterals and polygons of three or more sides. In most cases, overlap with polygons of more than
five sides is not required, although the code was written to handle polygons of six sides. Details of these cal-
culations can be found in Appendix A.

Many have undertaken the task of solving the Boltzmann Transport Equation. Abramo et al. performed an
extensive study of various methods for solving the BTE, the focus of their study being the consequences that
the various methods have on the high energy tail of the distribution. They noted that the tail controls such
effects as impact ionization and electron injection from silicon into the oxide [2]. The Legendre polynomial
technique has been around for some time, in which the distribution is expanded by a series of polynomials.
The main limitation to this approach is the truncation of the series to a finite number of terms. Paige [3] pub-
lished a numerical review on the subject in 1964, and Jorgensen and Meyer did an early transport study on
silicon using the Legendre polynomial approach [4]. Higher orders of the polynomials as well as numerical
discretization for the solution have been used by the Bologna group for more than twenty years (see, for exam-
ple [5]).

Kurosawa reduced the Boltzmann equation to a Fokker—Planck equation in four-dimensional space (three
spatial coordinates and one energy) [6], and Levinson equivalently demonstrated the same approach [7]. The
approach regards the motion of an electron in energy space as a Brownian motion, and the ensemble of elec-
trons is represented by a diffusion equation in energy space. Budd [8] used the path variable formulation or
Chambers path integral approach to treat the Boltzmann transport equation. In this method, the Boltzmann
transport equation is transformed to a coordinate system determined by the collision-free particle trajectories
and an integral equation is formulated to obtain the energy distribution function. In order to find the hot car-
rier distribution function, one must obtain a solution to the spatially dependent nonlinear Boltzmann trans-
port equation. The benefit of employing an iterative solution of the BTE is that it takes a nonlinear problem
and breaks it down into manageable pieces. Beginning with the foundation laid by Budd, Rees [9] developed
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an iterative scheme in which the nth iterate of the distribution is substituted into the right-hand side of the
transport equation and, subsequently, the n + Ith iterate is generated as the causal solution of the resulting
inhomogeneous equation.

Monte Carlo simulations are one of the most widely used types of kinetic simulation. The particles are
tracked by integrating the equations of motion over time. Kurosawa pioneered the Monte Carlo method of
semiconductor device simulation [10]. The Modena group under Jacoboni [11] as well as Fawcett, Boardman,
and Swain quickly implemented the new approach in their work [12]. The idea in many cases is to simulate the
motion of one electron in momentum space as it undergoes a large number of scattering processes and to
remember the time that the electron spends in each element of momentum space during its trajectory. The
motion of the electron consists of a series of ballistic motions, each of which is followed by a scattering event.
Although the approach began as a single particle approach, it was rapidly extended to the full many-body
approach by the Modena group [13]. The approach was heavily used and expanded to include exchange by
the Tempe group in the mid-1980s [14]. The single-particle full-band Monte Carlo approach was introduced
by Shichijo and Hess [15]. Implementing a band structure using the empirical pseudopotential method, they
further elucidated high-field transport and impact ionization in GaAs. Fischetti and Laux [16] undertook an
extensive investigation into electron transport within small semiconductor devices using Monte Carlo analysis.
Their technique improved upon the “state-of-the-art”’ treatment of high-energy carrier dynamics. The semi-
conductor is modeled beyond the effective-mass approximation by using the band structure obtained from
empirical pseudopotential calculations. The electron—phonon, electron—impurity, and electron—electron scat-
tering rates were computed in a way consistent with the full band structure of the solid, accounting for density
of states and matrix-element effects more accurately than transport formulations had done prior to their study.
The inclusion of the full band structure had the effect of reducing the amount of velocity overshoot via elec-
tron transfer to upper conduction valleys, particularly at large biases and low temperatures. In addition, Fis-
chetti and Laux popularized the single-particle full-band Monte Carlo approach through the DAMOCLES
code, which is currently being used around the world by several groups. Jakumeit and Ravaioli presented a
local iterative Monte Carlo procedure, or LIMC, to reduce the computation time required for simulation
of rare events in the device [17]. The method combines information from the local particle trajectories,
obtained by use of an MC procedure, with an iterative method.

An approach that bears a striking resemblance to the approach used in this work is one that is termed the
cellular-automaton (CA) method [18]. Transition probability matrices are used for both ballistic motion and
cell-to-cell scattering. The cellular automaton is a discrete dynamical system which evolves in discrete time
steps. It is defined at the nodes of a lattice, whereas the CS is defined inside each cell (triangle or quadrilateral)
of the spatial mesh. For the CA approach, each site is characterized by a finite number of Boolean states which
are either empty or filled. Transport is apparently more local (cell to neighboring cell) than in the CS, which is
designed to use the largest spatial displacement possible, given the mean free path. There is a set of transition
rules that are local in the sense that they only act on a given site and its nearest neighbors. In the CS, particles
may transition more than one cell away from where they had their scatter in the previous timestep. Also, the
CA method calculates the geometrical overlap in k-space, in which the normalized overlap factors play the
role of effective scattering probabilities. In the CS, we use the calculation of polygon overlap in physical space
in order to determine the spatial cell in which the particles being mapped have their next scatter. Saraniti and
Goodnick [19] embellished the CA approach by extending it to a fullband Cellular Automaton/Monte Carlo
approach. This hybrid algorithm helps to alleviate some memory problems of the CA while sustaining the
speed and accuracy of the method. The Cellular Monte Carlo (CMC) approach was introduced as a faster
alternative to the traditional Ensemble Monte Carlo (EMC) approach for the fullband simulation of charge
transport in semiconductors. All possible transitions between cells of the discretized momentum space are pre-
computed and stored in lookup tables. In the case of cellular Monte Carlo (CMC), the coarseness of the dis-
cretization grid in the high energy region of the Brillouin zone results in numerical heating, or spurious
diffusion of carriers toward the zone edge. Similarly, in the CS, numerical diffusion of carriers in the spatial
cell can be an issue when solving the BTE on the mesh. This is an issue in the simulation since continuous
quantities are represented discretely on a mesh, giving rise to an uncertainty in the exact location of the par-
ticles [20]. In either case the results could be improved by implementing a finer discretization, although one
needs to trade off accuracy with computational expense.
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In a case where one desires to accurately resolve the tail of the distribution (the electron distribution, for
example), a more accurate method for solution of the Boltzmann transport equation is needed. One of the
drawbacks of using a finite-difference scheme is summed up by the Courant—Friedrichs—Levy (CFL) criterion.
It states that the fastest moving particles only travel a small fraction of the mesh spacing in a timestep [21]. In
this work the electric field is unchanged throughout the simulation. By using the field from SGFramework, we
are avoiding the issue with self-consistency (which slows down all simulations of charged particles in a self-
consistent E-field) by setting the time step at a fraction of the dielectric relaxation time or the plasma period.
This is discussed at length elsewhere including our own work where we have worked on strategies to deal with
this [22,23]. Others have implemented the frozen-field approach, with the plausible assumption that the details
of the distribution arising from nonlocal and hot-electron effects do not significantly influence the electric field
[24]. It has previously been demonstrated that differences in electrostatic potential profiles as obtained from
self-consistent and nonself-consistent Monte Carlo simulations are negligible. Jungemann et al. [25] obtained
good agreement with experiment for substrate currents simulated using the nonself-consistent Monte Carlo
method.

In Section 2 the convective scheme is described as well as an overview of the kinetic simulation based on the
scattering rates, which is a specific implementation of the CS. Section 3 reports some results from the simu-
lation, and Section 4 gives the conclusions.

2. Transport model at long mean free paths

This section commences with an introduction to the CS and then discusses the specific implementation in
more detail. As a consequence of moving particles around the mesh, remapping rules are required, and these
are presented next. Then the mesh structure and mesh locator are covered; lastly, the boundary conditions
used in the simulation are explored. A point to be noted is that as the dimensions of interest approach the
thermal deBroglie wavelength, we also approach the limits of validity of the semiclassical method of device
simulation. At room temperature, the thermal deBroglie wavelength, Apg is equal to

i 2mh? 12
o (kaT> = S4nm, ?

where 7 is the reduced Planck’s constant, m is the conductivity effective mass, and kg is Boltzmann’s constant.
The 35-nm channel-length device is thus approaching this limit and the results should be viewed with the
appropriate caution.

In this work the CS is used to find a set of probabilities for use in an iterative scheme which iterates in
order to find collision rates in cells. The CS tracks a group of particles which have just had a collision in a
given initial cell, in order to determine where they have their next collision. Depending on their velocity
after the collision, they are divided into different groups. Each group is followed as they move “ballistically”
and when they have their next collision, their location and energy are recorded. The fractions of the par-
ticles going to each final phase space cell then yield the probabilities needed by the iterative calculation
of the rates.

There are two segments involved in moving the distribution of electrons. There is the ballistic move which is
then followed by evaluation of the collision operator. During the ballistic move, the Boltzmann Transport
Equation is reduced to the Vlasov equation, or

df of dk of

T R T
The Vlasov equation is integrated along the characteristic curves, which are given by dx/dz =v and #dk/
dr = F. Phase space cells, containing a density of electrons, follow the trajectory of the characteristic curves.
This implements Liouville’s theorem, which states that along the trajectory of any phase point the probability
density in the neighborhood of the point remains constant in time [26]. Note that this approach is physically
equivalent to the ensemble Monte Carlo method. Collisions are included at the end of a timestep. This method
of characteristics, the CS, operates as follows [20]. The electron (or hole) distribution function f{x, v) is ad-
vanced in time according to a propagator p(x, v, x”, v’, At) such that

0. (3)
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The propagator, or Green’s function, p(x, v, x”, v/, At), determines what fraction of particles move from cell
(x",v") to cell (x, v) in the time step Az. The propagators allow Boltzmann’s equation to be solved by succes-
sive convolutions of the “old” distribution function with the propagator.

In this work, the primary variable which is calculated, in each cell of the phase space mesh, is the scattering
rate in the cell, denoted R. R is found from a set of probabilities, in an iterative calculation of the steady state
values of R. The iterative scheme is outlined below. The CS is used to find the probability of moving from one
cell where the particles had their last scatter to another cell where they have their next scatter. One reason that
this is an accurate approach is that in this method each step taken by the particles corresponds to the distance
between successive collisions. This step is large enough that the numerical diffusion in the simulation is
reduced and the overall calculation proceeds faster. The advantage of this approach is most pronounced when
the angular distribution after scattering is isotropic, which is the case here. Beginning with the scattering rates
in the cells, and by moving the cells along their trajectories according to the CS, the simulation finds the steady
state rate of scattering from each initial cell into each other cell of the mesh.

As mentioned previously, the version of the CS used in this work commences with the scattering rates in
cells, moving the cells along the characteristic curves. The CS is actually used to find the scattering rate in cells,
because the CS allows you to find the probability of scattering in any given cell, provided that the particle has
just had a scatter in any other specified cell. That probability is used in an iterative scheme, which is described
below in more detail. The way in which the method calculates the scattering rates is by finding several sets of
probabilities. The probabilities indicate how many of the particles which scatter in a given cell of the mesh
have their next scatter in each cell of the mesh [22]. Suppose the probability of scattering next in cell i having
just scattered in cell i/ is denoted P}. R; is the rate of scattering in cell i’. A fraction of these scatters equal to P,
leads to scatters in i. Thus, in steady state the scattering rate R, in cell i’ contributes a rate of scattering equal
to PRy in cell i. With other cells on the mesh contributing to this, and an additional source Sy, due to gen-
eration of particles in cell i/, the total scattering rate in cell i is

Ri=> Pi(Ri+Sy). (5)

An example would be if 10'? particles per second scatter in cell 1 and if P? = 0.01, indicating that a fraction
0.01 of these scatter next in cell 2, then in steady state there are 10'" scatters per second in cell 2 contributed
from cell 1. Fig. 1 demonstrates an example of calculating the scattering rates in a cell. In order to solve the
Boltzmann transport equation, it is sufficient to find the collision rates R. Any other information needed de-
rives from this quantity. The density in a cell n(c), is

B R(c,E)A(c,E)
}’l(C) - ; U(E)'))(C) ) (6)

cell 1

/ cell 2 P,

cell 3 cell 4

Fig. 1. Calculation of the total scattering rate in a cell. The scattering at rate R, in cell 1 contributes a scattering rate P{R, in cell 4, as P} is
the probability that a particle which just scattered in cell 1 will scatter next in cell 4. Similarly, P3R, is the scattering rate contributed by cell
2 and P4R; is the scattering rate contributed by cell 3.
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where n(c) is the density of the cell ¢ on the spatial mesh, R(c, E) is the collision rate of particles in cell ¢ at
energy E, A(c, E) is the mean free path, v(E) is the magnitude of the velocity (or speed), and y(¢) is the volume
of cell ¢. The distribution f'is found from R as follows:

R(c,E)
1B = By
where f{c, E) is the distribution in cell ¢ at energy E and v(c, E) is the scattering frequency in cell ¢ at energy
E. Since R is the scattering rate in each cell of the mesh, f'is the distribution of particles which scattered in
each cell. This distribution (and equivalently R) contain a complete specification of the full distribution. In
order to find the full distribution in any cell, it is necessary to calculate the distribution of all the particles
passing through that cell, which can be done using R. This method of obtaining the collision rate of par-
ticles has been implemented in previous work [27,28]. It is referred to as the transition probability matrix
(TPM) method, wherein the CS finds the probabilities using the knowledge of where particles go as they
move from the cell where they had their last collision. A more detailed overview of the TPM is given in
the next section.

(7)

2.1. QOverview of kinetic model

The CS updates the distribution each iteration by calculating successive scattering rates. Here we describe
more specifically how the CS computes the probabilities of particles moving from one cell to a subsequent cell
and the probabilities of moving from one energy to another due to collisions in that spatial cell. Using the
TPM, or propagator, the subsequent iteration takes the distribution of scattered particles and advances it
to the next cells where scattering takes place [27]. The quantity of interest is R(c, E), the collision rate of par-
ticles in cell ¢ at energy E. There are two portions to the TPM method. There is a ballistic, or collisionless
portion, followed by the collision operator phase.

The first transition probability matrix computes the number of particles per second that collide in cell ¢ at
energy E’,

R(c,E") =Y R(c',E")Tou(c,E" : ¢, E'), (8)

where R(c, E") is the number rate of particles that collide in cell ¢ at energy £, R(c’, E’) is the number rate of
particles that collided in cell ¢’ and were redistributed with energy E’ in the previous iteration. The way that
the rate R(c’, E') is iterated on the mesh occurs as follows: consider a spatial cell ¢’ and a group of electrons at
energy E’. This group of electrons scatters at a rate R(c¢’, E’) and has an angular distribution f{0, ¢, ¢/, E').
fl0, ¢, ¢’, E') is the probability that an electron with energy E’ that last scattered in cell ¢’ is moving in a direc-
tion within the range ¢ to ¢ + A¢ and 6 to 0 + Af. Also, Tya(c, E” : ¢’, E') is the probability that a particle
having started in cell ¢’ at energy E’ will have its next collision in cell ¢ at energy E” = E' — gA®, where E’ is
the kinetic energy, A® is the change in potential, and ¢ is the magnitude of the charge on an electron. The sum
is over all mesh cells ¢’ at energy E’. In the current work the scattering is isotropic, so that the factor f{0, ¢
, ¢', E') is just proportional to solid angle. For this reason we do not stress that factor and write R as a func-
tion of E and c only. If it does depend on the angle, i.e., if the scattering becomes anisotropic, the method is the
same but more storage is needed.
The second transition probability matrix redistributes the particles after a collision,

R(c,E) = R(c,E")Teol(E : E"), (9)
=

where T, (E: E”) is the probability that a particle, having previously collided in cell ¢ at energy E” will be
redistributed with energy E within the same spatial cell ¢. Eq. (9) refers to particles which had energy E” before
collision and end up with energy E after the collision. They stay in the same spatial cell during the collision, so
the spatial label ¢ is unchanged. The rate of particles colliding in cell ¢ with initial energy E” is R(c, E”). The
fraction of these which have final energy E'is T, (E : E”). Thus particles coming in with energy E” contribute a
rate of particles arriving at energy E in cell ¢ of R(¢, E) = R(c, E")T.oi(E : E”). The total R(c, E) must be found
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by summing over all initial energies E”. More details of the CS and the transition probability method are given
in the references.

The motion in space from cell to cell described by Tbal following what might be referred to as “sacks” or
blobs of phase space fluid that commence from and have the same shape as the physical space cell. A good way
of explaining how the phase space fluid moves is the “water bag model’’ [29,30]. The water bag model brings
out the fact that the distribution function is incompressible, or constant along a trajectory. Phase space is
divided up into a number of these “water bags’ within each of which the distribution function is also constant
in time. The shape of the “water bag”, identified by its boundary, changes in time as the bag moves. Even
though the shape of the bag changes, the volume is fixed because of the constancy of the distribution and con-
servation of particles. These move and evolve over time, which leads to a need to know how these moving
shapes overlap other cells at some time after they were created. This is the topic of the next section and is dis-
cussed in more detail.

2.2. Remapping particles

In this section we demonstrate how the particles are allocated to cells (in this work the scattering rate R of
particles in each cell is allocated to the “final” cell) after each iteration of the TPM. In a given spatial location
and energy, we launch Mc moving cells going in directions defined by the angular mesh in velocity space which
has Mc points on that mesh. We follow these cells to see into which other cells of the mesh the particles will be
scattered next. The propagator advances the particles in time, and at the end of a timestep a fraction of the
particles are mapped back to the fixed mesh in accordance with the appropriate amount of overlap. The CS
method uses phase space cells which move during the time step Az. The faces of the cells move in accordance
with the initial velocity and the local electric field. A certain fraction f of the particles in the moving cell collide,
after the time step d¢, where f = vd¢ provided f < 1. This fraction of the particles which were in the moving
cell at the start of the time step are put back in the overlapped cells, and with an appropriate energy so as to
conserve energy.

Fig. 2 depicts the remapping of particles to the spatial mesh. The appropriate portion of particles is mapped
to the fixed mesh based on the area of overlap between the moved cell and the mesh cell. For the sake of illus-
tration, a uniform mesh is used to demonstrate how particles get mapped back. However, the mesh used in the
simulation is an irregular mesh. Particles are mapped to the mesh cells A, B, C, and D in the figure according
to the following rules, where N is the number of particles scattered out of the moving cell in the given timestep:

moving cell

A
B 4P
yitl T — | !
|
y [ e = X S
| |
yi 1 | | |
| \ |
LA ‘ C
————— - — — —
| | P

xi X xitl

Fig. 2. Spatial remapping of particles after moving a cell. The fraction of the particles that get mapped to a spatial cell is determined by the
area of overlap between the moving cell and the mesh cell. The moving cell passes through the fixed cells as shown, during multiple
timesteps. Particles which are scattered out of the moving cell, for a single time step when the moving cell is in the position shown, are
distributed as shown.
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NA:N(I—%) (1—y;yyf), (10)
Ny =N (1-22X) <yAyyf), (1)
ve=n(ZE) (1-752) (12)
)

where Ax and Ay are the cell sizes in the x and y directions, respectively.

The mesh in velocity space is designed to reduce numerical diffusion. As mentioned previously, three dimen-
sions in velocity are used to accurately resolve the collisions. The coordinate system consists of (v, u, ¢); v is
the speed, u is the cosine of the angle (0) between the speed v and the positive z-axis, and ¢ is the angle in the
xy-plane made by a counterclockwise sweep from the positive x-axis. Given a fixed cell k£ with electrons at
energy E’, the particles removed at the end of a timestep are mapped to the appropriate phase-space cell as
follows: the moving cell is traveling in a direction within the range ¢ to ¢ + A¢ and 0 to 0+ A0, where
0 =0 is directed along the z-axis, and ¢ is measured in the xy-plane counterclockwise from the x-axis. The
actual velocity of the particles in the cell will most likely lie at intermediate values of ¢, 0, and v. In other
words, the particles will be partitioned to the appropriate velocity cell based on fractions ¢y, ¢, 0y, 02, v
and v,, which amounts to mapping to up to eight different velocity cells in one spatial cell for a given mapping.

In the next section, the mesh used in the simulation is discussed. This is a spatial mesh of a nanoscale MOS-
FET that is extracted from the 2D device simulation tool SGFramework [22]. The results of the 2D device
simulation are used as input for the kinetic simulation.

2.3. Mesh structure and mesh locator

The system for the simulation is a nanoscale MOSFET. A two-dimensional (xy) mesh is used for the spatial
cells, and three dimensions in velocity space are used to properly treat collisions. This section describes first the
structure of the mesh used and the mesh locator used in the simulation of the CS. There is the spatial mesh
from which moving cells are launched, and there is a base mesh which overlays the spatial mesh. The base
mesh aids in determining which part of the spatial mesh a given cell has reached.

2.3.1. Spatial mesh

The spatial mesh used for the simulation is an irregular mesh extracted from the 2-D device simulation tool
SGFramework [22]. The mesh consists of triangles and quadrilaterals of various sizes, and both the potential
and electron concentration at each of the nodes is used in the initial guess for the CS. As mentioned previ-
ously, three dimensions in velocity are used to accurately resolve the collisions. In Fig. 3, only the device por-
tion of the mesh is shown (the actual MOS transistor). This figure does not include the right and left boundary
regions. The mesh locator is an “artificial” mesh, superimposed on the actual mesh. It is used to locate a spe-
cific region of the mesh with which to check for overlap with a moving cell. In order to implement the mesh
locator, the simulation region is broken up into a grid by use of a base mesh.

2.3.2. Base mesh

The base mesh is a uniform rectangular mesh that is superimposed on the SGF mesh, allowing the mesh to
be broken up into numerous regions. The simulation region was broken up into a 10 x 10 base grid. Each cell
of the SGF mesh is associated with one or more of these regions of the base mesh. The point is that it is not
efficient to check for overlap with every single cell of the fixed mesh. Then when a cell gets mapped back to the
original mesh, it is only necessary to check for overlap with the cells associated with that region of the mesh
locator. A linked list is associated with each region of the base mesh. The code traverses the list to ascertain
which cells have an area of overlap with the moving cell. When a moving cell is determined to have overlap
with one of the cells in the list of fixed cells, the particles get mapped back to that fixed cell at the appropriate
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Fig. 3. Portion of mesh representing the simulation region.

values of velocity. In Fig. 4, an example of what one region of the base mesh entails is shown. The base mesh
consists of 100 of these regions.

One of the more challenging aspects of this work is the handling of boundary conditions, i.e., reflecting
boundaries, truncating boundaries, and corners. Special treatment is given to phase space cells that encounter
one of these boundaries, and this is explored in the next section.

2.4. Boundary conditions

One of the challenges facing the implementation of the CS for the MOSFET device is the handling of
boundary conditions. In previous work conducted for plasma simulation, complex boundaries were handled
for an unstructured, triangular mesh [31] and for a mesh composed of small rectangular cells [32]. In this work,

Fig. 4. Sample base mesh region.
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an unstructured mesh composed of triangles and quadrilaterals was implemented with an external electric field
applied to the semiconductor device. Additionally, the CS implemented in this work has been extended to han-
dle boundary conditions in 2D. The mapping of cells of arbitrary triangular and quadrilateral shapes, onto
other such shapes, is one of the major technical issues addressed here.

Specular reflection is used at the two horizontal boundaries. The horizontal boundaries represent the top of
the device, or the silicon—silicon dioxide interface, and the bottom is inside the bulk of the device, below the
channel. A cell approaching the boundary at an angle ¢ will rebound at an angle 2n — ¢. Fig. B.1 is a simple
depiction of a cell reflecting off the upper boundary. The two vertical boundaries allow cells to enter or leave
the simulation region. The simulation region is the region in which particles are launched from and remapped
to the original fixed cells of the mesh. The simulation region is bordered on the two vertical boundaries by a
boundary layer, from which cells can enter or leave. For more specific details on the implementation of the
boundary conditions, please see Appendix B.

2.5. Collisions

Types of scattering in the simulation include ionized impurity scattering, acoustic phonon scattering, opti-
cal phonon scattering (deformation potential scattering), and impact ionization. The collision frequencies used
are energy-dependent. The collision frequency is used to calculate the timestep for a given energy shell. For
each energy shell (or speed on the phase space mesh) there is a sheet of moving cells which is launched at
the beginning of an iteration. Sheets are launched from the original mesh for different values of velocity
and hence, energy. A sheet represents a cohesive unit, in which the corners (or nodes) of the sheet are moved
with the same timestep for a given value of energy. The concept of the sheet was introduced in a previous
implementation of the CS [31]. The timestep for a given energy shell is calculated based on the total scattering
frequency for that particular case, according to

VAt = 0.2. (14)

In the case of ionized impurity scattering, there is a density dependence for the ionized impurity scattering
frequency. In order to determine a single timestep for a given sheet, a constant density is assumed across
the spatial mesh for purposes of calculating the timestep. The true density is used in the collision frequency
implemented in the code, however. Details on the calculation of collision frequencies are given in Appendix
C. In the upcoming section, results from the MOSFET simulations are presented.

3. Simulation results

In the MOSFET (metal-oxide-semiconductor-field-effect-transistor) a high electric field develops at the
drain end of the device, especially in the case of short-channel MOSFETs. In this case some of the carriers
gain sufficient energy to overcome the silicon-silicon dioxide barrier and make it into the gate dielectric,
creating gate leakage current as well as interface states at the silicon—silicon dioxide interface. The gate leak-
age current is generally greatest when the drain bias approximately equals the gate bias [33] and leads to an
undesirable increase in power consumption, since the gate current is characteristically undesirable. There is
an application to EPROM (erasable programmable read only memories) and flash EEPROM (electrically
erasable programmable read only memories) devices in which the carriers injected into the gate are used
as the writing mechanism, but even then one wants to control the amount of carriers entering the gate
[34]. This is the reason for the high-stress condition for the potentials applied to the gate and drain of
the MOSFET.

In the case of an NMOS transistor, there is a positive potential applied on the gate and drain, with the
source grounded. Two theories address the value of energy that an electron can attain. One is called the
lucky-electron model, and this theory assumes that the maximum energy an electron can acquire as it drifts
along the channel is limited to the maximum potential difference along the surface (this includes the
source—drain bias plus the barrier height between the source and inversion layer) [35]. The second theory,
called the quasi-thermal-equilibrium approach, says that the electron energy distribution function is deter-
mined from the electric field and does not depend directly on the external voltage applied [36]. In this theory,
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if the electric field is sufficiently high in the channel, a certain fraction of electrons will be able to initiate
impact ionization or to surmount the oxide barrier regardless of the applied potential.

In the transport of cells, the quantity of discretization on the mesh is the velocity. The velocity as a function
of energy is calculated from the expression for kinetic energy, or

1
E = Emvz. (15)
The mean-free path is calculated according to
: v(E)
E)y=—"—2. 1
ME) = (16)

Table 1 shows values of the electron mean free path at the values of applied voltage used in this work. The first
column indicates the applied potential, the second column gives the electron velocity for the corresponding
energy, and the third column gives the mean free path. The mean free path is an important parameter in that
it represents the mean distance between successive scattering events. The higher the energy, the shorter the
mean free path. Electrons at higher energy are more likely to undergo a collision, and thus are not quite as
“lucky” as electrons at lower energy.

Each plot exhibits two peaks. One is a peak at zero energy which is due to electrons at room temperature.
The peak at low energy corresponds to carriers that are in equilibrium with the lattice. The second peak is due
to the hot electrons and has a peak slightly below the value of energy that corresponds to the potential expe-
rienced by the electrons. For example, if there is a potential of 0.9 V applied between source and drain, then an
electron that traverses the entire channel can acquire up to 0.9 eV of energy. An electron that travels halfway
from source to drain would be able to acquire roughly 0.45 eV. Beyond this is the thermal tail; the slope of the
tail is proportional to 1/7T7, where Ty corresponds to the lattice temperature [37]. The tail can be attributed to
electron—phonon interactions. In the event that electron—electron interactions would be included in the simu-
lation, these too would contribute to the tail of the distribution.

We discuss first results from simulation of a 35-nm channel length transistor and second results from a 70-
nm channel length transistor. Note that the length of the transistor device refers to the length in the x-direction
of the simulation region (the portion of the mesh over which the CS is performed). The 35-nm channel length
transistor has a device length of 50 nm, and the 70-nm channel length transistor has a device length of 100 nm
in the simulation region. The electron energy distribution is presented. This is found for a given spatial cell on
the mesh by integrating over all values of 6 and ¢ for a given value of energy on the velocity mesh. The upcom-
ing section presents results from a 35-nm channel length transistor device, and the following section presents
results from a channel 70-nm length transistor device. A MOSFET is depicted in Fig. 5. The source and drain
regions are formed with n-type material, and the substrate, or bulk is formed with p-type material.

3.1. 35-nm channel length transistor

The MOSFET transistor used is an NMOS transistor (p-type substrate with n-type source and drain
regions). The channel length is 35 nm and the device length, including source and drain regions, is 50 nm.
The substrate doping concentration is 8.0 x 10'”/cm?® and the source and drain doping concentration is
8.0 x 10"/cm?®. The minority carriers in the device are electrons, and during device operation the strong inver-
sion in the channel of the device gives rise to a high density of electrons. A potential of 0.9 V was applied on
the gate and drain of the MOSFET, and the potential, electron and hole densities were obtained from
SGFramework and used as input for the kinetic simulation. The reason for applying 0.9 V on the gate and

Table 1

Electron mean free paths

Potential (V) v(E) (m/s) Mean free path (nm)
0.9 1.103 x 10° 10.2

1.5 1.425 x 10° 8.2
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Fig. 5. NMOS field-effect transistor used in the device simulations.

drain is that device reliability experiments are often performed under these conditions in order to ““stress’ the
transistor device and to observe hot carrier effects [33].

The total scattering frequency as a function of energy for an energy of 0.9 eV is 1.08 x 10'%/s. This value is
the sum of the acoustic phonon scattering (2.024 x 10'%/s), intervalley phonon scattering (emission,
7.88 x 10'%/s), intervalley phonon scattering (absorption, 7.46 x 10'%/s), and ionized impurity scattering
(1.35 x 10'%/s) frequencies. Fig. 6 is a plot of the electron energy distribution in the same cell. Again, this is
the case with 0.9 V applied to the gate and the drain. The distribution is found from the scattering rate
and is calculated by dividing the rate by the scattering frequency in the phase space cell and by the volume
in the phase space cell. The scattering frequency is also an energy-dependent parameter. The spike on the tail
in this case appears to be caused by a local voltage difference of about 0.7-0.8 V which occurs close to the
channel. Such a difference would allow electrons to accelerate to the cell where the distribution is shown
and acquire about 0.7 V. That flux would be balanced, in equilibrium, by a diffusive flux in the opposite direc-
tion. Fig. 7 is a plot of the electron energy distribution in the cell located approximately halfway between
source and drain, but in this case, 0.6 V is applied to the gate and 0.9 V is applied to the drain for comparison
to the previous case. As shown in the plots, the numbers in the tail of the distribution are greater in the case of
0.9 V applied on the gate contact than they are for the case of 0.6 V applied on the gate. Ang et al. [42] showed
experimentally that the worst-case stress conditions occur at V, = V4. We see in the results that as the gate
voltage becomes equal to the drain voltage, the amounts of electrons in the tail increase, which in turn implies
an increase in the hot-carrier damage that can occur. Ang et al. [42] found conclusive experimental evidence
that the worst-case stress condition is caused by the increased injection of the “high-energy tail” electrons into
the gate oxide under such conditions. To see the effect of varying the gate voltage while holding the drain volt-
age constant at 0.9 V, consider Fig. 8. The mesh for this case has 922 nodes and 1111 elements. Runs take

distribution (a.u.)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
energy (eV)

Fig. 6. Distribution of electrons in cell in MOSFET channel for 35-nm device with 0.9 V on gate and drain. The cell is approximately at
the midpoint between source and drain but slightly closer to the drain.
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Fig. 7. Distribution of electrons in cell in channel for 35-nm channel length device with 0.6 V on the gate and 0.9 V on the drain contact.
The cell is approximately at the midpoint between source and drain but slightly closer to the drain.
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Fig. 8. Electron energy distribution in cell in channel for 35-nm channel length device with 0.9 V applied on the drain. The gate voltage is
varied from 0.6 V to 0.9 V. Hot carrier damage increases as the gate voltage approaches the drain voltage.

roughly 15 iterations to reach convergence, and an iteration takes approximately 4.5 h of actual computer time
on a Solaris workstation. Having seen some examples of the 35-nm channel length device, we now proceed to
discuss results from simulation of the 70-nm length device.

3.2. 70-nm channel length device

In this section, results from the device with a length of 100 nm are presented. The channel length in this case
is roughly 70 nm. The scattering frequency for an energy of 1.5¢eV is 1.73 x 10'#/s. The total scattering fre-
quency is the sum of the acoustic phonon scattering (2.613 x 10'%/s), intervalley phonon scattering (emission,
1.11 x 10'¥/s), intervalley phonon scattering (absorption, 1.029 x 10'%/s), and ionized impurity scattering
(2.55 x 10'3/s) frequencies for this value of energy. Fig. 9 shows the electron energy distribution in a cell near
the center of the channel region with 1.5 V applied between the source and drain. Fig. 10 shows the electron
energy distribution within the same cell but with 1.5 V applied to the gate and 1.0 V applied to the drain. Note
that in this case, the numbers in the tail of the distribution are greater than those of the case with 1.5 V applied
on both the gate and the drain. To see the effect of varying the drain voltage while holding the gate voltage
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Fig. 9. Electron energy distribution in cell in channel for 70-nm length device with 1.5 V applied on the gate and drain. The cell is located
in the channel approximately halfway between source and drain, slightly closer to the source. The potential in the cell is 1.39 V.
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Fig. 10. Electron energy distribution in cell in channel for 70-nm channel length device with 1.5 V applied on the gate and 1.0 V applied on

the drain. The cell is located in the channel approximately halfway between source and drain, slightly closer to the source. The potential in
the cell is 1.26 V.

constant at 1.5V, consider Fig. 11. The density of electrons in the tail, and hence the likelihood of hot-carrier
damage, increases with the drain bias. While the potential on the gate confines the electrons near the interface,
the potential on the drain provides a greater electric field to the electrons as they traverse the channel. The
mesh used for the 70-nm device has 884 nodes and 1094 elements. A run converges by 15 iterations, and
one iteration takes 5.5 h of actual computer running time on a Solaris workstation. Overall, the TPM has pro-
ven to be an accurate and efficient implementation of the CS in order to be able to extend the method to 2D
semiconductor device simulation and the handling of 2D boundary conditions.

3.3. Summary

In the results we have seen in this section, the trend is to exhibit a bimodal distribution if the mean free path
is comparable to the device dimension L. There is a peak near zero energy which corresponds to the electrons
that are in thermal equilibrium with the lattice. There is a second peak at higher energy for those electrons
which have gained a significant amount of energy from the field and have lost relatively little to collisions.
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Fig. 11. Electron energy distribution in cell in channel for 70-nm channel length device with 1.5 V applied on the gate. The drain voltage is
varied from 1.5V to 1.0 V.

The peak value of energy, however, happens at a value of energy which is near to or slightly less than the value
given by the electric field. This occurs because the electrons lose a portion of energy as they undergo collisions
with the lattice. The electrons at higher energy have a shorter mean free path and are less “lucky” than those at
lower energy. This explains how the distribution comes to have the two peaks in the 35-nm device, but the
higher peak is not present in the 70-nm device because 4/L is smaller. The electrons start off, at low energy,
with a long mean free path, in which case they go quite a distance without colliding. As the energy grows, the
chance of collisions increases substantially, which in turn causes the number of electrons left in the peak to
drop.

In the next section we present some concluding remarks about what we have seen in this work, i.e., the
method that has been implemented and its effectiveness in solving for the electron energy distribution in a
MOSFET. Proposed future work for this implementation of the CS is also discussed.

4. Conclusions

The transition probability matrix method has been extended to handling 2D boundary conditions for the
simulation region. Additionally, the CS has been extended to calculation of polygon overlap for polygons of
more than three sides. The approach was applied to 2D simulation of a MOSFET device, and results were
obtained in a reasonable amount of simulation time. High stress conditions were applied to the transistor
device, and the method obtained converged distribution functions in a scheme with low numerical diffusion
and no statistical noise. A number of scattering mechanisms were implemented in the collision operator,
including acoustic phonon scattering, optical (non-polar) phonon scattering, and impact ionization. In a
case where scattering is approximately isotropic, the method only needs to find a variable R which is a func-
tion of space and energy, i.e., there is no angular dependence in phase space. Even though the distribution
of particles f depends on angle, R does not. In the event that the scattering does depend on angle, R is still
likely to be a simple function of angle. The method provides full information about the angular distribution
in f, but it is much more efficient to be able to calculate R because R is a much smaller array. The CS min-
imizes numerical diffusion because of the long distances particles go between being launched and being
mapped back to the mesh. The method presented here cuts down significantly on numerical diffusion com-
pared to solving the Boltzmann transport equation by finite differences. The CS is more accurate than
expansion by spherical harmonics, as usually implemented. In addition, it can resolve the tail better than
a Monte Carlo simulation is able to do. Future work will involve adding coulomb collisions in order to
assess their impact on the distribution of electrons and the conditions for when they are important. In con-
clusion, the method proved to be an efficient and accurate choice for obtaining the electron energy distri-
bution in a MOSFET.
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Appendix A. Polygon overlap

In using the Convective Scheme, the calculation of overlap of two polygons is an integral part of the
method. The overlap is used to determine the fraction of particles that gets mapped to a specific fixed cell.
In Fig. A.1 below, the shaded area represents the area of overlap between two quadrilaterals. In order to cal-
culate the area of overlap of two polygons, the coordinates of each of the polygons are accessed by a function
in the code. If the polygon has more than three sides, it is absolutely necessary to put the corners “in order”
along the perimeter. Otherwise, the area could be calculated incorrectly. For example, in the case of a quad-
rilateral, if diagonally opposite points are numbered next to each other, the result will be erroneous. So, steps
are taken to ensure that the corners of a quadrilateral, for example, are ordered as one would follow the perim-
eter of the cell. This is accomplished by first finding the corner with the lowest value of x-coordinate and estab-
lishing it as the minimum. Given a vertical line drawn through that point, a line segment can be formed from
that corner to each of the other corners of the cell. The angle between the vertical line segment and each of the
other line segments is calculated. Once the angles are calculated, this information can be used to order the
corners according to increasing angle.

After finding the centroid of the polygon, the code finds the inward-facing normal to each side of the poly-
gon. The points needed in order to determine the area of overlap are corners of the overlying moving cell
which lie inside the underlying fixed cell, corners of the underlying fixed cell that lie within the overlying mov-
ing cell, and points of intersection between the sides of the two polygons. The centroid of a triangle can be
found by taking a vertex of a side and drawing a line segment from the midpoint of that side to the opposing
vertex. This is done for each side, and where these line segments intersect is the centroid of the triangle. The
centroid of a quadrilateral is located at the intersection of the two bimedians. This is formed by finding the
midpoints of the sides, connecting the midpoints of opposite sides with line segments, and finding the inter-
section of these two line segments.

Generally, in the simulation the polygons are triangles and quadrilaterals. However, in the event that a
polygon moves into a corner of the simulation region, it subsequently gets broken up into smaller pieces
due to truncation and reflection. The code can actually process pentagons as well as triangles and quad-
rilaterals, because in some cases the pieces result in a pentagon in the corners of the simulation region.
However, the code would only need to find the area of overlap between a pentagon and either a triangle
or a quadrilateral. The reason for this is that at least one of the polygons will be a triangle or quadrilat-
eral when mapping particles to the underlying mesh. For example, if a cell migrates to the lower right
corner and gets distorted slightly by the electric field, the pieces into which the cell gets broken up may

Fig. A.1. Overlap of two polygons.
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be pentagons. The pieces are the temporary cells that result when doing reflection. One piece is the portion
in the simulation region, and the other piece is the portion of the cell that is outside the simulation region
and gets reflected.

A.1. Calculating the centroid of an irregular polygon

The centroid of a triangle can be found by taking the average of its three vertices. One way to obtain the
centroid of the pentagon (or other polygon) is to first triangulate the polygon, then form a sum of the cent-
roids of each triangle, weighted by the area of each triangle, and then normalize the whole sum by the total
polygon area.

Yet, there is an alternate method: instead of a partition one can use positively and negatively oriented tri-
angles as is done when calculating the area of a polygon. The simple algorithm is based on a sum of triangle
centroids weighted with their signed area. The triangles are formed by taking one fixed vertex v, of the polygon
and the two endpoints of consecutive edges of the polygon: (vy, v5), (v, v3), etc. The area of a triangle with
vertices v, vy, U5 1S given by

area = 1/2((61(x) - w(x)) * (0205) — 10(») — (€2(x) — o(x)) * (010) — 0 (3))) (A1)

So, the algorithm can be described as follows:

1. Start with any vertex of the polygon and use it as a vertex for the n — 2 triangles (where # is the number of
vertices in the polygon) that are produced by connecting it with each of the other vertices.
2. Calculate the coordinates of the centroid (XC, YC) for each triangle using:

vo(x) + v1(x) + va(x)

XC = 3 (A2)
and

yo - W) + vlgy) +u0) (A.3)
3. Next calculate the area of each triangle according to:

req — (1) = vo(x)) * (0207) = o)) — [(v2(x) = vo(x) * (01 (v) — Lo )] (A4)

2

4. Calculate the area of the entire polygon.
5. Calculate the fraction of the total area contributed by each triangle.
6. Next calculate the product of each coordinate from step 2 and the result from step 5.

7. Find the sum of the results from step 6, which yields the coordinates of the centroid for the whole polygon.
(XC, x Area; + XC, x Area,)
(Area, + Areay)

(YC, * Area; + YC, * Area,)
(Area, + Area,)

x- coord = , (A.5)

y- coord = (A.6)

A.2. Finding a normal to a side
In order to find a normal to a side of the polygon, one can take a “half-side” segment and rotate it by 90°
counterclockwise. The equations for rotation of axes, i.e., a counterclockwise rotation through angle o are:
x=xcosa— 3 sina (A7)
and

y=y'sina+y cosa (A.8)
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When o = 90°, these reduce to
x=—y (A9)

y=x (A.10)

which means that in the 90° counterclockwise rotation, the x-coordinate becomes the y-coordinate, negated,
and the y-coordinate becomes what the x-coordinate was.

A.3. Determining whether a point is inside

After finding the centroid of the polygon and finding the normal to each side, vectors are used to determine
whether or not a point is inside the polygon. For a given side, we have a normal vector and also a vector point-
ing from the center of the face to the centroid. We take the dot product of (xcentroid — xc) - ii. Then we take
another point, called xother, and find a vector from the midpoint of the side, xc, to xother. We find the dot
product of (xother — xc) - ii. If the two dot products have the same sign, the point is on the inward-facing side
of the line, i.e., inside the polygon.

A.4. Calculating the polygon area

In the actual calculation of the area of overlap, there are capabilities for calculating the overlap of both
triangles and quadrilaterals with irregular polygons of three, four, five, or six sides. Using the functions that
calculate the centroid, the normal to a side of a polygon, the intersection of two line segments, and the func-
tion for determining whether or not a point is inside a polygon, the corners of the region of overlap are
determined.

Once these points have been found, the code checks for duplicate points and takes them out of the array.
The points remaining are put in order of increasing angle, and then the polygon area is determined by break-
ing it up into triangles, calculating the area of each triangle and summing these together for the total area.

Appendix B. Boundary conditions

In this appendix on boundary conditions, the first section explains the boundaries that truncate cells enter-
ing or leaving the simulation region. Next, the reflecting boundaries at the top and bottom of the simulation
region are explained. Following this comes a discourse on the corners of the simulation region.

B.1. Truncating boundaries

The boundaries on the right and left sides of the simulation region are truncating boundaries for moving
cells entering and leaving the simulation region. A boundary cell may enter from the region outside the main
simulation region or a moving cell may leave the simulation region (this could be a cell that originated from
inside the simulation region or a boundary cell that came from one end and traversed the simulation region).
For a transistor device built on a silicon wafer, there will be electrons flowing in and out of the device. When a
cell that is straddling a truncating boundary maps particles, only the portion that overlaps the simulation
region will map particles. The particles in the remainder of the cell are considered to have left and thus make
no contribution to the fixed cells on the mesh. First the code checks whether the cell is completely outside of
the simulation region. If this is the case, it next checks to see whether or not the cell is a boundary cell (a cell
that originated outside the simulation region and made its way inside). If the cell is not a boundary cell and it
is completely outside the simulation region, then it is just considered empty. If the cell is in fact a boundary
cell, then the code checks whether or not the cell is moving away from the simulation region. If it is moving
away, then that cell is also considered to be empty. If the boundary cell is moving toward the simulation
region, it still has a chance to contribute to mapping particles before the end of the iteration. In this case it
is not considered to be empty at the end of that timestep.
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If the cell has some overlap with the simulation region, the next step is to take each side of the moving cell
and check for intersection with the particular boundary (left or right). Points of intersection with that bound-
ary as well as corners of the moving cell that are inside of the simulation region become corners of the “tem-
porary” cell used to map particles in this case. The code next checks for duplicates (in the event that the same
point gets found twice). This could happen, for example, if a corner of the moving cell lies directly on the
boundary of the simulation region. Also, the appropriate fraction of particles is put into the temp cell (this
is determined by the amount of overlap of the moving cell with the simulation region). In this section, we have
discussed the boundaries that represent the ends of the MOSFET device that are open to the rest of the silicon
wafer. The boundaries at the top and bottom of the device, and hence of the simulation region, which are trea-
ted as boundaries that reflect cells, are explained in the next section.

B.2. Reflecting boundaries

A cell that reflects off of the top or bottom boundary continues to move after being reflected. A temporary
cell is used for mapping back particles, since the original cell would be beyond either the top or bottom bound-
ary. The moving cell still exists beyond the boundary, and to find the temporary cell, the moving cell is
reflected into the simulation domain. The original moving cell continues until either the end of an iteration
or it reflects off a reflecting boundary a sixth time, at which time it gets emptied. More than one reflection
off of a top or bottom boundary is allowed so that particles will not accumulate near a boundary in a non-
physical manner. The code keeps track of the coordinates of the cell as if the cell continues to move beyond
the top or bottom boundary. At the end of each timestep, the temporary cell or cells is used for mapping back
particles. If the cell has been reflected an odd number of times, the y-component of electric field is negated,
since the cell is (seemingly) moving in the opposite direction to its actual vertical direction of motion. For
a cell that is reflecting off the top or bottom boundary, the code first checks for how many times the moving
cell has reflected. It next reflects the cell the appropriate number of times and places the appropriate coordi-
nates into the temporary cell. If the cell has progressed so far as to require a sixth reflection, that cell is imme-
diately emptied by mapping all of the particles back into the cells that it overlaps.

If it is determined that the cell landed at a position straddling a boundary, there is a function that splits the
cell into two cells. Each one of these cells is assigned the correct amount of particles by calculating the area of
the temporary cell and the area of the moving cell and taking the ratio of the two. If the cell is straddling a
boundary (top or bottom), then the points of intersection with that boundary get calculated and included as
corners of the temporary cell as well. In some instances, the cell may end up at a reflecting boundary and at the
same time be entering or leaving the simulation region. At this point, the cell is in a corner of the simulation
region, and this case is covered next.

B.3. Corners

The corners represent one of the more challenging aspects of the code. Specific code was written for each
corner (upper right corner, lower right corner, lower left corner, and upper left corner), with the triangles and
quadrilaterals treated separately. A cell that is either above the top boundary or below the bottom boundary
AND to the right or left of the simulation region is a “corner” cell. Once it has been determined that a cell is in
a corner, the code first checks whether or not the cell is completely outside of the simulation region (either it
has not entered yet from the right or left boundary OR it has exited through one of these boundaries). Unless a
cell is still outside and is a boundary cell that has not yet entered, it gets emptied when it is completely outside
the simulation region. This is determined by checking which direction the cell is heading; if it is outside the
right boundary and is heading further to the right, then it gets emptied. Similarly, if the cell is outside of
the left boundary and is heading further to the left, it then gets emptied at the end of the timestep.

Fig. B.2 depicts a cell mapping in the upper right corner of the simulation region, with the truncated por-
tion highlighted. If the cell has overlap with the simulation region, the next step is to check for points of inter-
section with the right or left boundary. Points of intersection with the side boundary as well as corners of the
original moving cell are read into an intermediate temporary cell. The code next checks for duplicates (in case
the same point gets found more than once). The intermediate cell has 3, 4, or 5 corners. The appropriate
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top boundary of simulation region

Fig. B.1. For a cell reflecting at the boundary, the angle of incidence equals the angle of reflection. The cell begins at position 4 and ends
at position B at the end of a timestep. ¢ is the angle that the line of approach toward the top boundary makes with the positive x-axis, and
2n — ¢ is the angle at which the cell rebounds after reflecting off the boundary.

reflected /\I truncated

Fig. B.2. Cell mapping in upper right corner.

fraction of particles gets put into the intermediate temporary cell based on the area of overlap of the interme-
diate cell with the original moving cell. At this point the intermediate temporary cell gets treated much like a
cell reflected off the top or bottom boundary. This is appropriate because that portion of the original moving
cell is a cell that has reflected in this manner.

Appendix C. Collision frequencies

Any one of the scattering processes can induce the carrier to make a transition from an initial state k to a
final state k’ with a probability P(k, k’). The number of electrons scattered depends upon this probability as
well as the probability (i) of the state k being full and (ii) of the state k’ being empty. Then, the rate of scatter-
ing out of state k is determined by

Pk, K)f(k)[1 — f(k)]. (C.1)
In the same fashion, electrons may scatter into state k from the state k’ with a rate of
Pk, K)f(K)[1 = f(k)], (C2)

where P(k, k) is the scattering rate, arrived at through time-dependent, first-order perturbation theory, via the
Fermi golden rule:
2n ,
P(k,K') === [M(k k )PO(& — & £ vy (C.3)

Here, the upper sign corresponds to the absorption of a phonon and the lower sign corresponds to the emis-
sion of a phonon. M(k, k’) is the matrix element of the perturbing electron—phonon interaction, given by

M(K,K') = (Wil 0&]Wiy) (C4)
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and o¢ is the scattering potential [1]. The general electron—phonon coupling strength is given by

20 Va,, 1"
”m“’} MKK)P, (C.5)

A,k K) = [
where p,, is the mass density of the crystal and V is the macroscopic volume of the crystal. Scattering models
commonly used in Monte Carlo methods as well as in this work may be obtained by assuming that the cou-
pling strength A, is independent of both k and k', and depends only on the energy of the initial state [2]. Types
of scattering used in the simulation include acoustic phonon scattering, intervalley phonon scattering, ionized
impurity scattering and impact ionization, which are described next.

C.1. Acoustic phonon scattering

Interaction of the electrons (or holes) with the acoustic modes of the lattice through the deformation poten-
tial is one of the most common phonon scattering processes. A long-wavelength acoustic wave moving
through the lattice can cause a local strain in the crystal, the end result being a weak scattering potential.
The rate of scattering out of the state defined by wavevector k is

=2 ©3/2
(k) = ME‘/ 2 (C.6)
20k py,v2
where p, is the mass density, Z is the deformation potential, E is the energy of the carriers, m™ is the electron
effective mass, and v is the velocity of sound.

The range of energy change involved in the case of acoustic phonon scattering is 24vgk. Considering an
average k-value of the order of 1.0e7/cm, this is about 1 meV. Since this energy is small in comparison with
thermal energies of kT = 25 meV, scattering by absorption of acoustic phonons is approximately elastic [38].

C.2. Optical and intervalley scattering

In this section the non-polar optical phonon scattering (also referred to as intervalley scattering) is consid-
ered. Two possible types of phonons can be involved in this process as previously mentioned. The first one, g-
phonon scattering, couples the two valleys along opposing ends of the (100) axis. The f-phonon scattering
couples the (100) valley to the (010) and (001) valleys, etc [39]. The contribution of the different valleys is
accounted for by the coupling constant =, which is fitted to data [40]. In other words, the expression used
for the scattering rate depends on the carrier energy, but there is no direct tracking of the valley in which
the electrons reside. In the case of intervalley phonon scattering, which can also be referred to as scattering
between different valence-band valleys, the assumption of constant frequency (for the emitted or absorbed
phonon) is again reasonable. In order to obtain the matrix element, a deformable ion model is assumed,
wherein the two sublattices move relative to each other. A deformation field results because the potential field
of each ion is displaced, resulting in a small excess positive charge where the ions have moved apart and a
slight negative charge where they are closer together.

The rate of scattering out of the state k is [39]

* * 2

r(k) = \/gn',:TDw [N V/Ei+ T + (Ny + D)v/Ey = hoonu(Ex — o) |, (C.7)
0

where D is the macroscopic deformation field, having units of eV/cm, p is the mass density of the semiconduc-

tor, and N, is the phonon occupation function. For intervalley scattering, the expression needs to be multi-

plied by the number of final ellipsoids to which the carrier can scatter, although this factor can be

accounted for within the density-of-states effective mass, m”, which appears in the equation.

The general electron—phonon interaction is an expansion in powers of ¢, so that the zero-order interaction
is the ¢° order term. The first-order term for optical deformation potential scattering is a result similar to the
acoustic deformation potential scattering, which is itself a first-order process. The rate of scattering out of the
state k is [39]
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V20 )5

r'k) =
) nph wy

[Nq(2Ek + ha)o) Ek + h(/)o + (Nq + 1)(2Ek — ha)o)\/ Ek — hwouo(Ek — ha)o)], (Cg)
where Zj is the energy shift, or first-order deformation potential, p is the mass density, and N, is the phonon
occupation function. The first term inside the brackets is the absorption term, and the second term is the emis-
sion term. In the code a constant value of Zw, = 63 meV was used for the optical phonons, since this is the
value for silicon found in the literature.

C.3. Ionized impurity scattering

When treating electron scattering from the Coulomb potential of an ionized impurity atom, it is important
to take into account the long-range nature of the potential. Some type of cutoff mechanism needs to be
invoked, because if the interaction is summed over all space, the integral will diverge. For spherical symmetry
about the scattering center, or location of the ion, the potential is screened in such a way that gives rise to [1]

@(r) exp(—qqr), (C.9)

dmer

where ¢4 is the Debye screening wave vector.

A charged center in the lattice can be thought of as a purely coulombic potential. This potential, being
inversely proportional to the radial distance r, distorts a plane wave at all distances, resulting in a scattering
cross-section that is effectively infinite. In this work, the Conwell-Weisskopf approximation is employed [38].
The approximation is applied by limiting the impact parameter to half the average separation distance of the
impurities, or

1

bus = 5 N1, (C.10)
where Np is the impurity concentration in the semiconductor. This results in a total cross-section of
o =mnbl,.. (C.11)

The mass of the impurity atom in the lattice greatly exceeds that of the electron, and thus the collisions are
very close to elastic. The scattering rate for ionized impurity scattering is given by the product of the cross-
section, a(0), the concentration of scatterers, Ny, and the velocity, v, of the carrier, or

r'(k) = Nio(0)v, (C.12)
where
7 \° 7N AN
Nio(0)0 = (é) “7131og 1+ (}%) : (C.13)
*© 2m*E; 1 4€

where ¢, is the high-frequency permittivity, Ej is the energy of the carriers, and Z =1 in the case of silicon
[38].

C.4. Impact ionization

Impact ionization, also known as the inverse Auger process, occurs when an energetic electron gives up its
energy to a valence electron, allowing it to be raised to the conduction band and creating a hole in the valence
band. Given an electron with energy above a certain threshold value, impact ionization can occur. When
impact ionization occurs, three current carriers result — two electrons and a hole. There are a multiplicity
of threshold energies for impact ionization found in the literature [39]. Many scientists employ the Keldysh
formula approach [41], which was derived based on a direct gap semiconductor with parabolic bands. This
approach is often applied even to silicon simulations. Values of threshold energy used range from the bandgap
energy of silicon to twice the bandgap. The threshold energy is taken to be 2.1 eV. The reason that the value of
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energy used is greater than the bandgap energy is due to the fact that in an indirect semiconductor, the process
involves a change in momentum or a Brillouin zone shift. The scattering rate is

I(E) _meet (1 + mh) (ﬁ)zuow — Ey), (C.14)

smeitmd mo) \Er + Ep

where m, is the appropriate electron effective mass, my, is the appropriate hole effective mass, Et is the thresh-
old energy for impact ionization and Ep = hzqg1 /2my, is an energy which corresponds to a hole with the Debye
screening wave vector [39].
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