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Abstract. The reliability mechanisms for future exascale systems will
be a key aspect of their scalability and performance. With the expected
jump in hardware component counts, faults will become increasingly
common compared to today’s systems. Under these circumstances, the
costs of current and emergent resilience methods need to be reevaluated.
This includes the cost of recovery, which is often ignored in current work,
and the impact of hardware features such as heterogeneous computing
elements and non-volatile memory devices. We describe a simulation and
modeling framework that enables the measurement of various resilience
algorithms with varying application characteristics. For this framework
we outline the simulator’s requirements, its application communication
pattern generators, and a few of the key hardware component models.

1 Introduction

Parallel scientific applications frequently use coordinated checkpoint and restart
(CCR) to recover from system failures. Failures can be anything from loss of
power, human error, hardware component faults, to software bugs. For an ap-
plication using CCR, all of these failures force it to abort and, at a later time,
to restart from a previous checkpoint. Several studies have shown that this will
not scale much beyond the machines currently in existence [4, 8, 3, 11].

For exascale systems, even if per-component reliability remains the same, the
sheer number of components will lead to frequent faults. Therefore, alternative
methods are needed to enable computational progress of large-scale applications.

Many alternative resilience algorithms have been proposed to replace CCR,
but few have been evaluated thoroughly at large scale, with differently behaving
applications, strong scrutiny of their cost – especially for recovery – and the
impact on application throughput. Recovery is often assumed to be infrequent
and neglected in performance studies. In exascale systems we expect failures
to be common and that cascading failures during recovery might change the
performance characteristics of resilience algorithms substantially.

Another aspect that is sometimes overlooked is that a given resilience algo-
rithm may not be suitable for all types of applications. For example, CCR works
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well for self-synchronizing applications, since they already bear the synchroniza-
tion cost necessary to achieve coordination. Other applications do better without
introducing additional synchronization steps.

While exascale systems will not be radically different from today’s super-
computers, there are features such as massive multicore CPUs, Solid State Disks
(SSD), and non-volatile random access memory (NVRAM) that have impact on
the performance of resilience algorithms. Application characteristics may also
become different when they adapt to the larger scale and new programming
models. Yet, self-synchronizing legacy applications need to be supported as well.

To evaluate proposed and existing resilience algorithms at scale, simulation
and modeling is needed. In this paper we analyze the requirements for an evalu-
ation framework that lets us measure the performance and overhead of various
resilience algorithms with different application characteristics.

This perspective paper is meant to explore future exascale systems in terms
of modeling and other relevant aspects that have to be considered when studying
application recovery after failures. A goal is to generate a discussion that will
help define the taxonomy of future exascale systems and the tools that will
enable us to study them even before they become available.

We list the requirements we have identified in Section 2, describe our design
in Section 3 and 4, and report on the status of our implementation in Section 5.

2 Requirements

The compromises and restrictions we will have to put into our simulation will
prevent us from being able to make absolute and precise performance predictions.
However, the goal is to make relative performance comparisons among resilience
algorithms under various conditions. For that we need a somewhat accurate
model of data movement within the system, but not the data itself nor the
computations necessary to generate that data.

Before we can design an experiment, we need to get an idea of what a future
exascale system might look like [2, 3]. Since we cannot simulate a complete system
at scale in full fidelity, we then need to identify the aspects of a system that have
a measurable impact on the performance of resilience algorithms.

2.1 Future Systems

Exascale machines are predicted to appear before the end of this decade. That
is too far out to make accurate predications on what such a system will look
like, but not so far that we cannot make some educated guesses. It will not be
a quantum computer and most aspects of the system will be familiar to today’s
users of supercomputers.

We have about five more iterations of Moore’s law ahead of us and can expect
to see about 512 to 1,024 cores per socket in such a system. If the current trend
continues, each core will have relatively weak performance to help with power
consumption and enable the placement of that many cores onto a single die.



The current number one system on the top500 list employs 548,352 cores to
achieve 8 petaflops. The number of cores per CPU, as well as their total number,
will increase to reach an exaflop. These cores will be connected with each other
through a Network on Chip (NoC). Most likely there will be a complex hierarchy
of caches where some cores in the same “neighborhood” share lower-level caches
such as an L2, and groups of cores share L3 caches, and the memories shared by
these cores may not be shared coherently.

The memory hierarchy will be further complicated by some or all of main
memory becoming non-volatile (NVRAM). SSD with faster access times than
spinning media will also be prevalent. Some of that storage will be local, in the
same rack for example, while more of it will be farther away in a dedicated storage
server. Compute accelerators, such as Graphical Processing Units (GPUs), on
the same motherboard or integrated into CPUs will most likely also play a role
in achieving exascale performance by providing additional compute cycles and
processing stream-oriented application kernels.

2.2 Simulation and Modeling

With the above assumptions, it is not possible to simulate such a system with
high fidelity. There are simply too many components and not enough technolog-
ical certainty for a fully detailed simulation in a reasonable amount of time. In
order to make evaluation of different resiliency algorithms possible, we have to
make some compromises. We can leave out some less important aspects and still
arrive at results that are valid when comparing two different resiliency algorithms
for a given type of application.

The first thing we will abandon is an application’s computation. Obviously,
this will save a lot of simulation time by allowing us to dispense with a detailed
processor model or emulation framework. Furthermore, resilience algorithms are
dependent only on two aspects of the computation itself: How much data it
touches and changes over time, and the duration of compute phases between
data exchanges with other cores and nodes; i.e., externally visible state changes.

While we can dispense with computation, we cannot be quite so cavalier with
communication. Cores on a single die will communicate with each other over the
NoC and, nodes will communicate with each other over a system-wide network.
The exact form of communication is less important. Some of that data will be
transferred using MPI, while other data will be written directly into memory.
Because these are externally visible state changing events, resilience algorithms
depend on the timing of these transfers and the amount of data being moved.
Performance, frequency, and location of saving and restoring state depends on
data traffic. However, the actual content of these messages does not matter.

Because moving data is a large overhead and influences resilience algorithm
performance, a fairly accurate simulation of data flowing through a system is nec-
essary. The simulation needs enough resolution to detect congestion and measure
its impact. The same applies to I/O. State needs to be saved into remote mem-
ory, NVRAM, and SSD devices. While access times to individual memory banks



are too fine grained to track in a simulation of this scale, access competition to
these devices and transfer times do need to be tracked.

Finally, but not least, the simulation needs to provide a method to inject
faults into the system. A form of notifying a resilience algorithm that a node,
socket, core, or link has failed, with the corresponding data loss, is necessary.
But the exact type of failure notification is not that important.

3 Design of our Simulation Infrastructure

For our exascale fault resilience simulation we have to create several components:
A router that lets us configure a system wide network as well as the NoC for
each socket, a storage device we can use to simulate data flow into and out of
NVRAMs and SSDs, and an end-point component that generates the data traffic
we need. Because of the complexity of this simulation, we also need an automatic
way to generate the large configuration files.

3.1 The Structural Simulation Toolkit (SST)

We use SST, a parallel discrete event simulator developed at Sandia National
Laboratories [12]. SST is a C++ framework to integrate various simulators and
models and connect them via an event network. An XML file is used to configure
SST at startup time. That file specifies what components are to be used and how
these components are connected. Events travel along the links specified in the
configuration file.

3.2 Router Model

Network routers in supercomputers are very simple and small, when compared
to Ethernet routers in a data center. Supercomputer routers usually have few
ports, five or seven for example to create 2-D or 3-D meshes and tori. Often they
use source-based routing where the message itself contains information about
which output port to use. Commonly, they are wormhole routed, and they are
employed by the thousands to create the main network infrastructure of systems
like Cray’s XT series and IBM’s Bluegene machines.

We created an SST component that models such a router at a behavioral
level. A model is faster to compute and easier to write than a gate-level simula-
tion. And, since we are feeding an approximate data stream into the network, a
more accurate simulation would not provide us with more reliable results.

Figure 3.2 shows the concept of our router model. The model supports an
arbitrary number of ports. When we use it as a component to create the main
network of our exascale simulation, we configure it (in the SST configuration
file) to have five ports: Four to create the torus topology of the main network,
and a fifth port to connect to a compute node. Incoming traffic is handled in
FIFO order, to preserve message ordering. Messages arrive in the form of events.



The events themselves could contain message data, but since we are not gener-
ating that data, the events only contain the number of bytes the message would
contain. That message length, a configurable router latency, and bandwidth are
used to calculate how long an output port will be occupied. For that duration,
further messages destined for that output port, are queued.

Fig. 1. The router model.

Omitting modeling of flow control
between routers reduces synchronization
overhead. However, since incoming mes-
sages are queued when an output port is
busy, a message traveling through two or
more routers cannot move faster than the
bandwidth and latency limitations – as
well as other traffic in the network – al-
low. Messages can be delayed at the input
or output port. A quick stream of short
messages on an input port can be held
up by a larger message using the same
output port. This mechanism gives the
router model a crude approximation of
flow control. If a message is delayed due
to a busy port, congestion statistics in
the delayed event are updated.

The router model accepts, via the
SST configuration file, several parameters: A hop delay specifies the minimum
amount of time a message (event) is delayed when passing through a router4. The
bandwidth parameter, together with the incoming message length, dictates how
long a message occupies a port. The number of ports is also a configurable pa-
rameter. Two more parameters are used for power and thermal modeling. One is
the hypothetical frequency this router runs at, and another dictates which power
model to use; SST supports several [5]. The router model can use the amount of
traffic and the above parameters to compute power dissipation.

Note that links configured between components, for example between two
routers in the SST configuration file, also have a delay assigned to them. SST
uses that when partitioning the graph of components between processes in a
parallel simulation and to compute event lookahead.

We use the same router model component described so far to also create the
NoC within each socket of our simulation. To keep things simple, we assume the
NoC is also a torus. However, instead of using five-port routers, we allow for
additional ports to connect more than one CPU core to each router in a NoC. A
bit in events traveling between cores attached to the same router indicates local
traffic that moves at higher bandwidth than off-CPU traffic. We assume that
these cores will be communicating through a shared cache instead of making use
of the NoC.

4 The actual delay may be much larger if there is congestion on the input or output
ports.



Additionally, when used for a NoC, the router model does not use wormhole
routing. This is a more realistic mode of operation when the NoC also connects
to random access memory, where multiple streams of data can be overlapping
and be destined for the same device.

Figure 3.2 is a diagram that shows one possible configuration of a node in
our exascale simulation. The router model is used to build the NoC as well as
the main network that connects the nodes in a system. Each node consists of
multiple SST components described in this section.

Fig. 2. Combining components for a node.

The router model is
also used as an aggrega-
tor to coordinate data traf-
fic to a single resource.
In that configuration, one
port connects to the re-
source, and all remaining
ports connect to users of
the resource. We use ag-
gregators to control ac-
cess to the main network
from each node. Each core
can access the main net-
work, but has to com-
pete with any other core
on that node for that re-
source. This is akin to multiple cores and CPUs on a node sharing a single NIC.
We also use aggregators to gate access to on-board NVRAM, which is a shared
resource for the cores on that board. Each core also has access to a storage net-
work to access a nearby SSD. We assume that access to a parallel file system
will happen through the main network, as it does on most of today’s machines.
But, we also envision that each rack has some SSD devices for scratch storage
and that nodes in the same rack have access to that storage via a separate, but
local, storage network.

3.3 Storage Component

A requirement to evaluate resilience algorithms is to simulate access to storage.
Two types of storage will be important for these algorithms. In each node we will
have some amount of NVRAM that is accessible to the cores on that node. Fig-
ure 3.2 shows that we use an aggregator to coordinate access to each NVRAM.
The NVRAM itself is a very simple SST component. It accepts data write re-
quests and queues them. Based on a write speed parameter in the configuration
file, this queue is processed and write acknowledgements are sent back to the
requester when an item has been removed from the queue. There is a similar
queue for read requests and read data events are sent back to requesters based
on the read speed of the device and the number and size of pending requests.



For resilience methods that access remote memory, data has to be transferred
using the main network first. Then, one of the cores on a node with direct access
to the local NVRAM has to handle these remote requests.

The second type of storage we provide in our simulation is a “nearby” SSD.
We assume that each rack has some amount of SSD storage that can be used for
temporary data. A rack-wide, local network provides access to that storage. We
use aggregators to build a two-level tree storage network for each rack.

We assume that rack SSD storage has more capacity and is more reliable
than the individual local NVRAMs. A rack will have multiple, redundant power
supplies, and the SSDs will be RAID devices. The NVRAM on a node is quicker
to access and has less contention. But, it also has a smaller capacity and may
become inaccessible if a node, or the network connection to a node, fails.

At this time we have no plans to simulate a remote parallel file server. We
assume that data from the rack SSD can be trickled off to such a server in the
background, if desired. Other research teams are working on full disk simulation
components for SST, including an SSD device, that we will be able to integrate
at a later time, if necessary.

3.4 Communication Pattern Generators and Applications

We have, in Section 2, mentioned that we cannot afford the cost of running or
simulating the application processes that are the endpoints of our network in-
frastructure. Yet, we do need these endpoints; i.e., the processes running on each
core, to transmit and receive data. For our evaluation of resilience algorithms, we
need the approximate timing of these transmissions and their causal ordering.
In other words, we need what we call communication pattern generators.

What we mean by a communication pattern is illustrated in Figure 3. It
shows an example from the NAS parallel benchmark suite. For each rank in the
computation, the diagram shows (approximately) how many messages each rank
sends to all other ranks. Similar plots can be generated for the amount of data

sent between ranks [10].
Generating such patterns for a variety of applications and benchmarks is

not difficult. For example, a five-stencil computation using ghost (halo) cells
to exchange data with neighboring ranks has the following loop structure: Send
data to four neighbors, wait for data from these neighbors, perform computation,
repeat. Once in a while a collective operation, such as an allreduce, is inserted
to determine whether convergence of the result has been achieved.

Many similar, fundamental patterns exist that are employed by applications
today. Our simulator is capable of producing all of them, as long there is no data
dependency; i.e., as long as the communication pattern does not change based
on the content of these messages. Currently we have communication patterns
for a five-stencil ghost cell exchange, and two micro benchmarks: A ping-pong
pattern that measures latency and bandwidth, and a message rate benchmark.
We also have a state machine that implements a barrier operation. The only
resilience algorithm implemented so far is CCR.



 0  4  8  12  16  20  24  28  32  36  40  44  48  52  56  60

Destination Node

 0
 4
 8

 12
 16
 20
 24
 28
 32
 36
 40
 44
 48
 52
 56
 60

S
ou

rc
e 

N
od

e

 0

 100

 200

 300

 400

 500

 600

 700

# 
m

es
sa

ge
s

Fig. 3. Communication patterns for
NAS MG, class C, 64 nodes [10].

Additional communication patterns
we are going to implement include the
behavior of the NAS parallel benchmark
programs FT and IS, as well as some pat-
terns that originate from various parallel
graph algorithms; e.g., [9].

3.5 Implementing Pattern
Generators

SST is an event driven parallel simula-
tor. Each component that is integrated
into the SST framework needs to process
events it receives and then relinquish con-
trol back to SST so that the overall sim-
ulation can proceed. A natural way of ex-
pressing and implementing the communication patterns we need to drive our
simulations, are state machines. Event processing is an integral part of state
machines. Therefore, that choice is simple.

What makes this choice a little bit difficult is the state explosion when we
combine a communication pattern generator, a resilience algorithm, collective
operations, and the handling of asynchronous I/O events and faults. What starts
out with a handful of states to express a nearest neighbor data exchange becomes
much more complicated when some events from a collective operation, that has
already started on another rank, arrive early. Even more states are needed to
process the requirements of the resilience algorithm under evaluation. The al-
gorithm will generate I/O and completion events will arrive asynchronously. A
state machine describing all these possibilities will grow very complex quickly.

In addition, we want to use the same communication pattern with different
resilience algorithms and, perhaps, different implementations of collective oper-
ations. The solution we have chosen is that of a gate keeper. It is a C++ SST
component from which all communication patterns inherit. Each instantiated
communication pattern component specifies what other services it needs; e.g.
which collective operations it will perform. The resilience algorithm is chosen
through the configuration file. All of these individual, relatively simple state
machines, register an event handler with the gate keeper.

In some respect, the individual state machines are all subroutines of the com-
munication patter generator. At any given time, only one of those state machines
is active. When a new event arrives at the gate keeper, it determines which state
machine needs to receive that event. If that state machine is currently running,
then the event is delivered right away. For currently inactive state machines,
(early) events are queued. The gate keeper component provides functions for
state machines to call each other and to return to a previous caller. Whenever a
state machine change occurs, pending events for the newly active state machine
are delivered by the gate keeper.



4 Tying it all Together

In the XML configuration file for SST, every component to be used, every link
between any two components, and the parameters for each component need to
be specified. The file structure allows for a common shared parameter, among a
set of components, to be specified only once. Nevertheless, these files, for a large
simulation, are too big to be created manually. Therefore, we wrote a separate
program to create configuration files specific to the subset of SST components
used for our experiments.

The configuration generator takes command line arguments, for main net-
work bandwidth for example, and inserts it into the appropriate places in the
XML file. The choice of which communication pattern to use is also a command
line option, while several other things are hard coded into the generator.

For example, the generator takes as command line parameters the X and Y

dimension of the main network and a separate pair of parameters for the NoC on
each node. But, it is currently hard coded to generate tori. This makes several
things a lot simpler, including source route generation, and should suffice for our
initial experiments.

The simulation design described in this paper has several limitations. Some
stem from the core design. These include the inability to create communication
patterns that are data dependent, computation delays between communications
that vary with the results of computation, and the inaccuracies introduced by
using models instead of more fine-grained simulation.

Other limitations are caused by our implementation choices and the config-
uration generator. These include things like the fixed topologies and the archi-
tecture of the I/O and memory subsystem. These are more easily corrected than
our design choices by adapting our code to the new requirements.

5 Work in Progress

Work in progress includes the study of simple resilience algorithms for exascale
systems, beyond the 256k cores we have already tested, with the support of the
framework proposed in this paper. Future work includes integrating a larger set
of resilient algorithms and a broader range of applications with their communi-
cation patterns in the framework.

For resilience algorithms and methods we plan to look at uncoordinated
checkpoint restart with message logging, log-based rollback-recovery mecha-
nisms [6], the RAID-like approach taken by SCR [7], and communication induced
checkpointing [1].

Validation of a complex simulation tool like ours is of course made extremely
difficult by the lack of existing exascale systems. Nevertheless, we plan to use
micro-benchmarks to calibrate various parameters and models built into our sim-
ulation by comparing them against existing systems. Then we will run bench-
marks and applications that our communication patterns are meant to mimic
on existing, large-scale systems, and compare the results with our simulations.



We will be able to do this using individual multicore CPUs, large clusters, and
clusters containing multicore CPUs. Viewing and comparing the actual results
with our simulations from these different angels will provide us with an indication
of the validity of our approach. Scaling experiments within the range of systems
available to us will further assist with validation and provide us with error bars
for simulations at exascale.

We are building the simulation infrastructure to evaluate resilience algo-
rithms. However, the same infrastructure will be suitable for evaluation of many
different aspects of exascale computing. We have started to investigate projects
in the area of programming models and application performance on a heteroge-
neous network where not all components are (virtually) fully connected.

SST, including the components described in this paper, is open source and
freely available.
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