
Exploring Embedded UQ Approaches for
Improved Scalability and Efficiency

Eric Phipps (etphipp@sandia.gov)
Sandia National Laboratories

Uncertainty Quantification in High Performance

Computing Workshop

May 2-4, 2012

SAND 2012-3582C
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of
Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.!

Outline
•  Challenges for embedded algorithms

•  Approach to mitigating these challenges
–  Template-based generic programming
–  Agile components

•  Embedded UQ R&D this enables
–  Gradient-enhanced sampling
–  Embedded sampling
–  Stochastic Galerkin
–  Multiphysics UQ

•  Diverse set of
–  People
–  Projects
–  Funding sources

•  Embedded UQ R&D primarily funded by ASCR Multiscale Math
–  Joint project between Sandia and USC (Roger Ghanem)

Forward UQ

•  UQ means many things
–  Best estimate + uncertainty
–  Model validation
–  Model calibration
–  Reliability analysis
–  Robust design/optimization
–  …

•  A key to many UQ tasks is forward uncertainty propagation
–  Given uncertainty model of input data (aleatory, epistemic, …)
–  Propagate uncertainty to output quantities of interest

•  Key challenges:
–  Achieving good accuracy
–  High dimensional uncertain spaces
–  Expensive forward simulations

Can These Challenges be (Partially) Met by
Embedded Methods?

• Embedded algorithms leverage simulation structure
–  Adjoint sensitivities/error estimates
–  Derivative-based optimization/stability analysis
–  Stochastic Galerkin or adjoint-based UQ methods
–  …

• Many kinds of quantities required
–  State and parameter derivatives
–  Various forms of second derivatives
–  Polynomial chaos expansions
– …

•  Incorporating directly requires significant effort
–  Developers must understand algorithmic requirements
–  Limits embedded algorithm R&D and its impact

A solution

• Need a framework that
–  Allows simulation code developers to focus on complex

physics development
–  Doesn’t make them worry about advanced analysis
–  Allows derivatives and other quantities to be easily

extracted
–  Is extensible to future embedded algorithm requirements

•  Template-based generic programming
–  Code developers write physics code templated on scalar

type
–  Operator overloading libraries provide tools to propagate

needed embedded quantities
–  Libraries connect these quantities to embedded solver/

analysis tools

•  Foundation for this approach lies with Automatic
Differentiation (AD)

What is Automatic Differentiation (AD)?

•  Technique to compute analytic
derivatives without hand-coding the
derivative computation

•  How does it work -- freshman calculus
– Computations are composition

of simple operations (+, *, sin(),
etc…) with known derivatives

– Derivatives computed line-by-
line, combined via chain rule

•  Derivatives accurate as original
computation

– No finite-difference truncation
errors

•  Provides analytic derivatives without
the time and effort of hand-coding
them

2.000 1.000

7.389 7.389

0.301 0.500

0.602 1.301

7.991 8.690

0.991 -1.188

2.000

7.389

0.301

0.602

7.991

0.991

Sacado: AD Tools for C++ Codes

• Several modes of Automatic Differentiation
–  Forward
–  Reverse
–  Univariate Taylor series
–  Modes can be nested for various forms of

higher derivatives

• Sacado uses operator overloading-based
approach for C++ codes
–  Phipps, Gay (SNL ASC)
–  Sacado provides C++ data type for each AD

mode
–  Replace scalar type (e.g., double) with template

parameter
–  Instantiate template code on various Sacado AD

types
–  Mathematical operations replaced by

overloaded versions
–  Expression templates to reduce overhead

http://trilinos.sandia.gov

Our AD Tools Perform Extremely Well

• Simple set of representative PDEs
–  Total degrees-of-freedom = number of nodes x number of PDEs for

each element
• Operator overloading overhead is nearly zero
•  2x cost relative to hand-coded, optimized Jacobian (very problem

dependent)

!"!#

$"!#

%"!#

&"!#

'"!#

(!"!#

($"!#

(%"!#

!# $!# %!# &!# '!# (!!# ($!# (%!#

!"
#$
%&
"'

()
%"
*+
",

$'
(-
&.

/(
0/

*"
,%

/(
1$
(2
"'

34
#$
3/

3(

-$1"*(5/67//84$94:7//3$.(;/7()*/./'1(

)*+,+-./#0.1.23#456#

789#0.1.23#456#

03:*18#;*.-<=3*>.?3-#

@.-2A13282#

AD to TBGP

•  Benefits of templating
–  Developers only develop, maintain, test one templated code base
–  Developers don’t have to worry about what the scalar type really is
–  Easy to incorporate new scalar types

•  Templates provide a deep interface into code
–  Can use this interface for more than derivatives
–  Any calculation that can be implemented in an operation-by-operation

fashion will work

•  We call this extension Template-Based Generic Programming (TBGP)
–  Extended precision

•  Shadow double
–  Floating point counts
–  Logical sparsity
–  Uncertainty propagation

•  Intrusive stochastic Galerkin/polynomial chaos
•  Simultaneous ensemble propagation

–  2 papers under revision to Jou. Sci. Prog.

Sandia Agile Components Strategy

• Create, use, and improve a common base of software
components
–  Component = modular, independent yet interoperable

software
•  Libraries, interfaces, software quality tools, demo applications

–  Leverage software base for new efforts
–  Use new efforts to improve software base
–  Path to impact for basic research (e.g., ASCR)

•  Large effort encapsulating much of SNL CIS R&D
–  Driven by Andy Salinger

•  Foundation for new simulation code efforts
–  E.g., Drekar for CASL (Pawlowski, Cyr, Shadid, Smith)

Element Level Fill
Material Models

Sensitivities

Field Manager
Discretization Library

Remeshing

UQ Solver

Nonlinear Solver
Time Integration

Optimization

Objective Function

Local Fill

Mesh Database

Mesh Tools
I/O Management

Input File Parser
Utilities

UQ (sampling)
Parameter Studies

Mesh I/O

Optimization

Geometry Database

Discretizations

Derivative Tools

Adjoints
UQ / PCE

Propagation

Constraints
Error Estimates

Continuation

Constrained Solves

Sensitivity Analysis
Stability Analysis

V&V, Calibration
Parameter List

Verification
Visualization

PostProcessing

Adaptivity Model Reduction

Memory Management
System Models

MultiPhysics Coupling

OUU, Reliability

Communicators

Partitioning
Load Balancing

Analysis Tools
 (black-box)

Physics Fill

Composite Physics

Data Structures

Direct Solvers

Linear Algebra

Architecture-
Dependent Kernels

Preconditioners

Iterative Solvers

Eigen Solver

System UQ

Analysis Tools
 (embedded)

Matrix Partitioning

Inline Meshing

MMS Source Terms

Grid Transfers
Quality Improvement

Mesh Database

Solution Database

Derivatives

The Components Effort is Large (~100 modular pieces)

Regression Testing

Bug Tracking

Version Control
Software Quality

Porting

Performance Testing
Code Coverage

Mailing Lists

Release Process

Unit Testing

Web Pages

Build System
Backups

Verification Tests

DOF map

Multi-Core
Accelerators

Linear Programming

Graph Algorithms
Data-Centric Algs

SVDs
Map-Reduce

Network Models

Templating is a Key Component Software Design
Principal

• C++ templating is a powerful method of abstraction
– STL containers
– Boost MPL
– Trilinos Kokkos node API

• Templating components on the scalar type provides API
to support embedded algorithms
– Developers focus on component implementation
– Embedded quantities are easily incorporated
– Scalable to many embedded techniques

Templated Components Orthogonalize Physics
and Embedded Algorithm R&D

Application
component/library

Embedded Analysis
component/library

PCE
Adjoint

Hessian

Field Manager

Gather (Seed)

FE Interpolation
Compute Derivs

Get Coordinates

Scatter (Extract)

Source Terms

Tangent
Jacobian

Residual

Generic Template Type
used for Compute Phase <EvalT>

PDE Terms

Template Specializations for
Seed and Extract phases:

Legend:

Properties

Global Data Structures

Local Data Structures

Application Interface

computeResidual()

computeJacobian()

computeTangent()

computeHessian()

computeAdjoint()

computePCE()

computeResponse()

…

Nonlinear solver

Optimization

UQ

Error estimation

Stability Analysis

…

Discretization

Cell Topology

Mesh

MDArray

DOF Manager

DOF Manager

Approach Supports Complex Physics
Development

Albany/LCM – Thermo-Elasto-Plasticity
–  J. Ostein et al

Albany/QCAD – Quantum Device Modeling
–  R. Muller et al

Charon/MHD – Magnetic Island Coalescence
–  Shadid, Pawlowski, Cyr

Drekar/CASL – Thermal-Hydraulics
–  Pawlowski, Shadid, Smith, Cyr

Embedded Algorithms R&D using TBGP

Polynomial Chaos Expansions (PCE)
•  Steady-state finite dimensional model problem:

•  (Global) Polynomial Chaos approximation:

•  Non-intrusive polynomial chaos (NIPC, NISP):

•  Regression PCE:

•  Reduce number of samples by adding derivatives
–  Mike Eldred (SNL ASC)

Find u(ξ) such that f(u, ξ) = 0, ξ : Ω → Γ ⊂ RM , density ρ

u(ξ) ≈ û(ξ) =
P�

i=0

uiΨi(ξ), �ΨiΨj� ≡
�

Γ
Ψi(x)Ψj(x)ρ(x)dx = δij�Ψ2

i �

ui =
1

�Ψ2
i �

�

Γ
û(x)Ψi(x)ρ(x)dx ≈

1

�Ψ2
i �

Q�

k=0

wkūkΨi(xk), f(ūk, xk) = 0

û(xk) = ūk =⇒
P�

i=0

uiΨi(xk) = ūk, f(ūk, xk) = 0, k = 0, . . . , Q

P�

i=0

uiΨi(xk) = ūk, k = 0, . . . , Q

P�

i=0

ui
∂Ψi

∂x
(xk) =

∂ūk

∂xk
, k = 0, . . . , Q

Computing Accurate Gradients Efficiently
in PDE Simulations

•  Steady-state sensitivities
–  Forward:

–  Adjoint :

–  Single forward/transpose solve for each parameter/response
–  Accuracy determined by accuracy of partials, solution to linear systems

•  Transient sensitivities:
–  Forward:

–  Transient adjoint sensitivities are possible, but much harder

�
ds∗

dp

�T

= −
�
∂f

∂p
(u∗, p)

�T �
∂f

∂u
(u∗, p)

�−T �
∂g

∂u
(u∗, p)

�T

+

�
∂g

∂p
(u∗, p)

�T

f(u∗, p) = 0, s∗ = g(u∗, p) =⇒
ds∗

dp
= −

∂g

∂u
(u∗, p)

�
∂f

∂u
(u∗, p)

�−1 ∂f

∂p
(u∗, p) +

∂g

∂p
(u∗, p)

f(u̇, u, p) = 0,

∂f

∂u̇

∂u̇

∂p
+

∂f

∂u

∂u

∂p
+

∂f

∂p
= 0

Small Model Problem

• 2-D incompressible fluid flow past a cylinder

– Albany code -- stabilized Galerkin FEM
• SUPG, PSPG

– GMRES with RILU(2) preconditioning (Belos, Ifpack)
– Uncertain viscosity field

Comparisons on Model Problem

Solver Reuse for Sampling-based
Approaches

• Sampling method can be viewed as a block-diagonal
nonlinear system:

• Leverage reuse
–  Preconditioner
– Krylov basis1,2

• Compute multiple residual/Jacobian samples
simultaneously
– Multi-point TBGP scalar type

–  Improved vectorization, data locality




f1(u1, x1) = 0

...
fN(uN , xN) = 0



 =⇒





∂f1

∂u1

. . .
∂fN

∂uN








∆u1
...

∆uN



 = −




f1
...

fN





1C. Jin, X-C. Cai, and C. Li, Parallel Domain Decomposition Methods for Stochastic Elliptic Equations, SIAM Journal on
Scientific Computing, Vol. 29, Issue 5, pp. 2069—2114, 2007.
2Michael L. Parks, Eric de Sturler, Greg Mackey, Duane Johnson, and Spandan Maiti, Recycling Krylov Subspaces for
Sequences of Linear Systems, SIAM Journal on Scientific Computing, 28(5), pp. 1651-1674, 2006

a = {a1, . . . , aN}, b = {b1, . . . , bN}, c = a×b = {a1×b1, . . . , aN×bN}

Multi-point Sampling of Model Problem

•  Only real improvement is
reusing preconditioner

•  Recycling benefits can be
had just by recycling
between Newton steps

•  Steady-state stochastic problem (for simplicity):

•  Stochastic Galerkin method (Ghanem and many, many others…):

–  Multivariate orthogonal basis of total order at most N – (generalized polynomial chaos)
•  Method generates new coupled spatial-stochastic nonlinear problem (intrusive)

•  Advantages:
–  Many fewer stochastic degrees-of-freedom for comparable level of accuracy

•  Challenges:
–  Computing SG residual and Jacobian entries in large-scale, production simulation codes
–  Solving resulting systems of equations efficiently, particularly for nonlinear problems

Find u(ξ) such that f(u, ξ) = 0, ξ : Ω → Γ ⊂ RM , density ρ

0 = F (U) =





F0

F1
...

FP




, U =





u0

u1
...

uP





Stochastic sparsity	

 Spatial sparsity	

∂F

∂U
:

Embedded Stochastic Galerkin UQ Methods

û(ξ) =
P�

i=0

uiψi(ξ) → Fi(u0, . . . , uP) =
1

�ψ2
i �

�

Γ
f(û(y), y)ψi(y)ρ(y)dy = 0, i = 0, . . . , P

Stokhos: Trilinos tools for embedded
stochastic Galerkin UQ methods

•  Eric Phipps, Chris Miller, Habib Najm, Bert Debusschere,
Omar Knio

•  Tools for describing SG discretization
–  Stochastic bases, quadrature rules, etc…

•  C++ operator overloading library for automatically evaluating
SG residuals and Jacobians

– Replace low-level scalar type with orthogonal polynomial
expansions

–  Leverages Trilinos Sacado automatic differentiation library

•  Tools forming and solving SG linear systems
–  SG matrix operators
–  Stochastic preconditioners
– Hooks to Trilinos parallel solvers and preconditioners

•  Nonlinear SG application code interface
– Connect SG methods to nonlinear solvers, time integrators,

optimizers, …

a =
P�

i=0

aiψi, b =
P�

j=0

bjψj, c = ab ≈
P�

k=0

ckψk, ck =
P�

i,j=0

aibj
�ψiψjψk�

�ψ2
k�

Embedded UQ in Drekar:
Multiphysics: Rod to Fluid Heat Transfer

•  True multiphysics formulation: conjugate heat
transfer demonstrated in Drekar

•  Embedded uncertainty quantification demonstration
run using TBGP concepts at the 1 year mark

•  Agile components significantly decreases the time to
import cutting edge research into production
applications

Stochastic Galerkin UQ analysis propagating
uncertainty in the magnitude of the model fuel source term
and the average inflow velocity.

Unique Embedded UQ R&D

• Spatially adaptive UQ of a strongly convected field in Drekar
– Eric Cyr – SNL LDRD
– 2-D convection-diffusion with stochastically varying inlet angle
–  Intrusive stochastic Galerkin with spatially varying polynomial order

• Possible only through embedded approaches

Comparison between linear and nonlinear PDEs

−∇ · (a(x, ξ)∇u) = 1, x ∈ [0, 1]3

a(x, ξ) = µ + σ
M�

k=1

�
λkfk(x)ξk, ξk ∼ U(−1, 1)

−∇ · (a(x, ξ)∇u) = αu2, x ∈ [0, 1]3

a(x, ξ) = µ + σ
M�

k=1

�
λkfk(x)ξk, ξk ∼ U(−1, 1)

•  Albany FEM code
•  AztecOO Krylov solver
•  ML mean-preconditioner
•  Stokhos approximate Gauss-Seidel stochastic preconditioner

Linear Problem Nonlinear Problem

• Difference in performance due to dramatically reduced
sparsity of the stochastic Galerkin operator
–  Increased cost of matrix-vector products

• On-going R&D
–  Improved stochastic preconditioning
– Dimension reduction for SG Jacobian operator
– Multicore acceleration

Linear Problem	

 Nonlinear Problem	

Comparison between linear and nonlinear PDEs

Emerging Architectures Motivate New Approaches

•  UQ approaches usually implemented as an outer loop
–  Repeated calls of deterministic solver

•  Single-point forward simulations use very little available node
compute power (unstructured, implicit)
–  3-5% of peak FLOPS on multi-core CPUs (P. Lin, Charon, RedSky)
–  2-3% on contemporary GPUs (Bell & Garland, 2008)

•  Emerging architectures leading to dramatically increased on-
node compute power
–  Not likely to translate into commensurate improvement in forward

simulation
–  Many simulations/solvers don’t contain enough fine-grained

parallelism

•  Can this be remedied by inverting the outer UQ/inner solver
loop?
–  Add new dimensions of parallelism through embedded approaches

Structure of Galerkin Operator

• Operator traditionally organized with outer-stochastic, inner-spatial
structure
–  Allows reuse of deterministic solver data structures and preconditioners
–  Makes sense for sparse stochastic discretizations

•  For nonlinear problems, makes sense to commute this layout to outer-
spatial, inner-stochastic
–  Leverage emerging architectures to handle denser stochastic blocks
–  Phipps, Edwards, Hu (SNL LDRD)

Stochastic sparsity	

 Spatial sparsity	

 Stochastic sparsity	

Spatial sparsity	

Jtrad =
P�

k=0

Gk ⊗ Jk Jcom =
P�

k=0

Jk ⊗ Gk

SG Mat-Vec Floating-point Rate

!"

#"

$"

%"

&"

'!"

'#"

'$"

'%"

'&"

!" '!!" #!!" (!!" $!!")!!"

*+
,-

./
"

/01234562"78529:6;461<"/8;:"."

=<0:>"?:50@:9:""
A<B(#CD"'#"039:4E5F""

.1>G<1@84>"
HI>6J>G"AKB(F"

.1>G<1@84>"
HI>6J>G"AKB)F"

-98L8<4>"H4098M"
+9::"AKB(F"

-98L8<4>"H4098MN
+9::"AKB)F"

!"

#!"

$!"

%!"

&!"

'!"

(!"

!" #!!" $!!" %!!" &!!" '!!"

)*
+,

-.
"

./0123451"6741895:350;".7:9"-"

"<=>6>?"@$!A!"
B;C%$DE"

-0FG;0H73F"
IJF5KFG"B<C%E"

-0FG;0H73F"
IJF5KFG"B<C'E"

,87L7;3F"I3/87MN
*899"B<C%E"

,87L7;3F"I3/87M"
*899"B<C'E"

• Significant performance improvement,
particularly for GPUs

Multiphysics Embedded UQ

• SNL
– Phipps, Constantine, Eldred, Pawlowski,

Red-Horse, Schmidt, Wildey
• USC

– Ghanem, Arnst, Tipireddy

Stochastic Coupled Nonlinear Systems
• Shared-domain multi-physics coupling

–  Equations coupled at each point in domain

•  Interfacial multi-physics coupling

–  Equations are coupled through boundaries

• Network coupling

–  Equations are coupled through a set of scalars

L1(u1(x), u2(x), ξ1) = 0

L2(u1(x), u2(x), ξ2) = 0

L1(u1(x), v2(x2), ξ1) = 0, v2(x2) = G2(u2(x2)), x2 ∈ Γ2

L2(v1(x1), u2(x), ξ2) = 0, v1(x1) = G1(u1(x1)), x1 ∈ Γ1

L1(u1(x), v2, ξ1) = 0, v2 = G2(u2)

L2(v1, u2(x), ξ2) = 0, v1 = G1(u1)

Curse of Dimensionality
•  All three forms can be written after discretization

•  Because system is coupled, each component must compute approximation over

full stochastic space:

–  For segregated methods, requires solving sub-problems of larger dimensionality
–  Adding more components, or more sources of uncertainty in other components, increases

cost of each sub-problem

• Mitigate curse of dimensionality by defining new random variables

–  Size of each UQ problem now number of uncertain variables + number of interface

variables
–  Challenges: computing new orthogonal polynomials, associated quadrature rules

û1(ξ1, ξ2) = û1(v̂2(ξ1, ξ2), ξ1)

û1(ξ1, ξ2) =
P�

j=0

u1,jΨj(ξ1, ξ2) −→ ũ1(η2, ξ1) =
P̃1�

j=0

ũ1,jΦj(η2, ξ1), η2 = v̂2(ξ1, ξ2)

f1(u1, v2, ξ1) = 0, u1 ∈ Rn1 , v2 = g2(u2) ∈ Rm2 , f1 : Rn1+m2+M1 → Rn1

f2(v1, u2, ξ2) = 0, u2 ∈ Rn2 , v1 = g1(u1) ∈ Rm1 , f2 : Rm1+n2+M2 → Rn2

Stochastic Dimension Reduction
•  Consider simplified problem of composite functions

•  with discrete inner product

•  We wish to approximate

•  Conceptual basis for dimension reduction:

–  Compute subspace W given by span of monomials in y, projected onto V

–  Compute orthogonormal basis for this subspace

–  Compute reduced quadrature rule by requiring exactness on this space

–  Compute reduced projection

–  Compute final transformation back to original basis

y = f(x) = (y1, . . . , yL), W = span

�
P�

i=0

�
yk1
1 . . . ykL

L ,Ψi

�
Ψi

�
⊂ V

span{Φi : i = 0, . . . , P̃} = W, (Φi,Φj) = δij, P̃+1 = dim(W), P̃ � P

ĥ(x) =
P�

i=0

hiΨi(x), hi = (h,Ψi), V = span{Ψi}

(f1, f2) =
Q�

k=0

wkf1(x
(k))f2(x

(k))

h(x) = g(y), y = f(x), f : Γ ⊂ RM → RL, g : f(Γ) → RS, L � M

h̄(x) =
P�

i=0

h̄iΨi(x), h̄i =
P̃�

j=0

h̃jαij, αij = (Ψi,Φj)

Q̃�

l=0

w̃lΦi(x
(kl))Φj(x

(kl)) = δij, Q̃ � Q

h̃(x) =
P̃�

i=0

h̃iΦi(x), h̃i =
Q̃�

l=0

w̃lg(y
(kl))Φi(y

(kl)), y(kl) = f(x(kl))

Devil is in the Details

•  Computing W, orthogonal basis accurately is challenging
–  Gram-Schmidt QR

•  Variety of approaches for reduced quadrature
–  Least-squares
–  Linear program (arXiv: 1112.4772)

•  In 1-D (L = 1) this is much easier
–  Discretized Stieltjes = Lanczos (arXiv 1110.0058)

•  Alternative approach
–  Apply Lanczos approach to each component of y

•  1-D orthogonal polynomials, Gauss rules
–  Total order tensor product polynomials, sparse grid quadrature

•  This spans W, but is not an orthogonal basis!
–  Project onto this basis using this quadrature rule/inner product
–  Project onto original basis, using above as a surrogate

•  Relying on point-wise convergence w.r.t. wrong inner product/measure
•  This can fail catastrophically

Coupled neutron-transport and heat transfer
demonstration

•  2-D “slab reactor” (H. Stripling):

•  2-component network system, nonlinear elimination coupling
–  Non-intrusive: Sparse-grid quadrature provided through Dakota on space of size 2*M

•  Dimension reduction:
–  Tensor-product Lanczos variant of approach outlined previously
–  Intrusive (stochastic Galerkin) at 2x2 network level, non-intrusive for each component
–  Each component UQ problem of size M+1

Q −
1

L2

�

D
Φ(x)Σf(T̄)Efdx = 0 s.t. − ∇ · (D(T̄)∇Φ(x)) + (Σa(T̄) − νΣf(T̄))Φ(x) = S(x, ξ1),

T̄ −
1

L2

�

D
T (x)dx = 0 s.t. − ∇ · (k(x, ξ2)∇T (x)) = Q,

x ∈ D = [0, L]2, Σ(T̄) = Σ(T0)

�
T̄0

T̄
, D =

1

3(Σa + Σs)

S(x, ξ1) = S0(x) + σS

M�

i=0

�
λiai(x)ξ1,i, k(x, ξ2) = k0(x) + σk

M�

i=0

√
µibi(x)ξ2,i,

ξ1,i, ξ2,i Uniform on (−1, 1)

Results

Dimension Reduction in Shared-Domain/
Interfacial Coupling

• Approaches rely on small dimensional interfaces between physics
–  Network coupling – built into the model
–  Shared-domain/interfacial – transfer between physics may live on

small dimensional manifold
•  Use KL to parameterize this (arXiv: 1112.4761)

0 2 4 6 8 100

0.5

1

1.5

2x 104

Index []
Ei

ge
nv

al
ue

 [K
2]

0 2 4 6 8 100

10

20

30

40

Index []

Ei
ge

nv
al

ue
 [

]

! "#! $ "#! !!

"#!

$

"#!

!

%&' (

"&'
(

! "#! $ "#! !!

"#!

$

"#!

!

%&' (

"&'
(

Concluding Remarks

• Looked at a variety of embedded UQ algorithms
leverage structure
–  Simulation structure
– Architecture structure

• An approach for incorporating them in large-scale
codes
–  Template-based generic programming
– Agile components

• Powerful vehicle for investigating embedded
algorithms with path to impact important applications

Nonlinear elimination

Nonlinear Elimination for
Network Coupled Systems

Component 1

Component 2
v1

v2

v2 = G1(v1, p1) = g1(u1(v1), p1) s.t. f1(u1, v1, p1) = 0

v1 = G2(v2, p2) = g2(u2(v2), p2) s.t. f2(u2, v2, p2) = 0

Equations Newton Step
v2 − G1(v1, p1) = 0
v1 − G2(v2, p2) = 0

�
−dG1/dv1 1

1 −dG2/dv2

� �
∆v1

∆v2

�
= −

�
v2 − G1(v1, p1)
v1 − G2(v2, p2)

�

dGi

dvi
= −

∂gi

∂ui

�
∂fi

∂ui

�−1 ∂fi

∂vi

