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Outline 
•  Challenges for embedded algorithms 

•  Approach to mitigating these challenges 
–  Template-based generic programming 
–  Agile components 

•  Embedded UQ R&D this enables 
–  Gradient-enhanced sampling 
–  Embedded sampling 
–  Stochastic Galerkin 
–  Multiphysics UQ 

•  Diverse set of 
–  People 
–  Projects 
–  Funding sources 

•  Embedded UQ R&D primarily funded by ASCR Multiscale Math 
–  Joint project between Sandia and USC (Roger Ghanem) 



Forward UQ 

•  UQ means many things 
–  Best estimate + uncertainty 
–  Model validation 
–  Model calibration 
–  Reliability analysis 
–  Robust design/optimization 
–  … 
 

•  A key to many UQ tasks is forward uncertainty propagation 
–  Given uncertainty model of input data (aleatory, epistemic, …) 
–  Propagate uncertainty to output quantities of interest 

•  Key challenges: 
–  Achieving good accuracy 
–  High dimensional uncertain spaces 
–  Expensive forward simulations 



Can These Challenges be (Partially) Met by 
Embedded Methods? 

• Embedded algorithms leverage simulation structure 
–  Adjoint sensitivities/error estimates 
–  Derivative-based optimization/stability analysis 
–  Stochastic Galerkin or adjoint-based UQ methods 
–   … 

• Many kinds of quantities required 
–  State and parameter derivatives 
–  Various forms of second derivatives 
–  Polynomial chaos expansions 
– … 
 

•  Incorporating directly requires significant effort 
–  Developers must understand algorithmic requirements 
–  Limits embedded algorithm R&D and its impact 



A solution 

• Need a framework that  
–  Allows simulation code developers to focus on complex 

physics development 
–  Doesn’t make them worry about advanced analysis 
–  Allows derivatives and other quantities to be easily 

extracted 
–  Is extensible to future embedded algorithm requirements 

•  Template-based generic programming 
–  Code developers write physics code templated on scalar 

type 
–  Operator overloading libraries provide tools to propagate 

needed embedded quantities 
–  Libraries connect these quantities to embedded solver/

analysis tools 

•  Foundation for this approach lies with Automatic 
Differentiation (AD) 



What is Automatic Differentiation (AD)? 

•  Technique to compute analytic 
derivatives without hand-coding the 
derivative computation 

•  How does it work -- freshman calculus 
– Computations are composition 

of simple operations (+, *, sin(), 
etc…) with known derivatives 

– Derivatives computed line-by-
line, combined via chain rule 

•  Derivatives accurate as original 
computation  

– No finite-difference truncation 
errors 

•  Provides analytic derivatives without 
the time and effort of hand-coding 
them 

2.000 1.000 

7.389 7.389 

0.301 0.500 

0.602 1.301 

7.991 8.690 

0.991 -1.188 

2.000 

7.389 

0.301 

0.602 

7.991 

0.991 



Sacado:  AD Tools for C++ Codes 

• Several modes of Automatic Differentiation 
–  Forward  
–  Reverse 
–  Univariate Taylor series 
–  Modes can be nested for various forms of 

higher derivatives 

• Sacado uses operator overloading-based 
approach for C++ codes 
–  Phipps, Gay (SNL ASC) 
–  Sacado provides C++ data type for each AD 

mode 
–  Replace scalar type (e.g., double) with template 

parameter 
–  Instantiate template code on various Sacado AD 

types 
–  Mathematical operations replaced by 

overloaded versions  
–  Expression templates to reduce overhead 

http://trilinos.sandia.gov  



Our AD Tools Perform Extremely Well 

• Simple set of representative PDEs 
–  Total degrees-of-freedom = number of nodes x number of PDEs for 

each element 
• Operator overloading overhead is nearly zero 
•  2x cost relative to hand-coded, optimized Jacobian (very problem 

dependent) 
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AD to TBGP 

•  Benefits of templating 
–  Developers only develop, maintain, test one templated code base 
–  Developers don’t have to worry about what the scalar type really is 
–  Easy to incorporate new scalar types 

•  Templates provide a deep interface into code 
–  Can use this interface for more than derivatives 
–  Any calculation that can be implemented in an operation-by-operation 

fashion will work 

•  We call this extension Template-Based Generic Programming (TBGP) 
–  Extended precision 

•  Shadow double 
–  Floating point counts 
–  Logical sparsity 
–  Uncertainty propagation 

•  Intrusive stochastic Galerkin/polynomial chaos 
•  Simultaneous ensemble propagation 

–  2 papers under revision to Jou. Sci. Prog. 



Sandia Agile Components Strategy 

• Create, use, and improve a common base of software 
components 
–  Component = modular, independent yet interoperable 

software 
•  Libraries, interfaces, software quality tools, demo applications 

–  Leverage software base for new efforts 
–  Use new efforts to improve software base 
–  Path to impact for basic research (e.g., ASCR) 

•  Large effort encapsulating much of SNL CIS R&D 
–  Driven by Andy Salinger 

•  Foundation for new simulation code efforts 
–  E.g., Drekar for CASL (Pawlowski, Cyr, Shadid, Smith) 



Element Level Fill 
Material Models 

Sensitivities 

Field Manager 
Discretization Library 

Remeshing 

UQ Solver 

Nonlinear Solver 
Time Integration 

Optimization 

Objective Function 

Local Fill 

Mesh Database 

Mesh Tools 
I/O Management 

Input File Parser 
Utilities 

UQ (sampling) 
Parameter Studies 

Mesh I/O 

Optimization 

Geometry Database 

Discretizations 

Derivative Tools 

Adjoints 
UQ / PCE 

Propagation 

Constraints 
Error Estimates 

Continuation 

Constrained Solves 

Sensitivity Analysis 
Stability Analysis 

V&V, Calibration 
Parameter List 

Verification 
Visualization 

PostProcessing 

Adaptivity Model Reduction 

Memory Management 
System Models 

MultiPhysics Coupling 

OUU, Reliability 

Communicators 

Partitioning 
Load Balancing 

Analysis Tools 
   (black-box) 

Physics Fill 

Composite Physics 

Data Structures 

Direct Solvers 

Linear Algebra 

Architecture- 
Dependent Kernels 

Preconditioners 

Iterative Solvers 

Eigen Solver 

System UQ 

Analysis Tools 
   (embedded) 

Matrix Partitioning 

Inline Meshing 

MMS Source Terms 

Grid Transfers 
Quality Improvement 

Mesh Database 

Solution Database 

Derivatives 

The Components Effort is Large (~100 modular pieces) 

Regression Testing 

Bug Tracking 

Version Control 
Software Quality 

Porting 

Performance Testing 
Code Coverage 

Mailing Lists 

Release Process 

Unit Testing 

Web Pages 

Build System 
Backups 

Verification Tests 

DOF map 

Multi-Core 
Accelerators 

Linear Programming 

Graph Algorithms 
Data-Centric Algs 

SVDs 
Map-Reduce 

Network Models 



Templating is a Key Component Software Design 
Principal 

• C++ templating is a powerful method of abstraction 
– STL containers 
– Boost MPL 
– Trilinos Kokkos node API 

• Templating components on the scalar type provides API 
to support embedded algorithms 
– Developers focus on component implementation 
– Embedded quantities are easily incorporated 
– Scalable to many embedded techniques 



Templated Components Orthogonalize Physics 
and Embedded Algorithm R&D 

Application  
component/library 
 
Embedded Analysis 
component/library 
 

PCE 
Adjoint 

Hessian 

Field Manager 

Gather (Seed) 

FE Interpolation 
Compute Derivs 

Get Coordinates 

Scatter (Extract) 

Source Terms 

Tangent 
Jacobian 

Residual 

Generic Template Type 
used for Compute Phase <EvalT> 

PDE Terms 

Template Specializations for 
Seed and Extract phases: 

Legend: 

Properties 

Global Data Structures 

Local Data Structures 

Application Interface 

computeResidual() 
 
computeJacobian() 
 
computeTangent() 
 
computeHessian() 
 
computeAdjoint() 
 
computePCE() 
 
computeResponse() 
 
… 

Nonlinear solver 

Optimization 

UQ 

Error estimation 

Stability Analysis 

… 

Discretization 
 
Cell Topology 
 
Mesh 
 
MDArray 

 

DOF Manager 
 

DOF Manager 
 



Approach Supports Complex Physics 
Development 

Albany/LCM – Thermo-Elasto-Plasticity  
–  J. Ostein  et al 

Albany/QCAD – Quantum Device Modeling 
–  R. Muller et al 

Charon/MHD – Magnetic Island Coalescence  
–  Shadid, Pawlowski, Cyr 

Drekar/CASL – Thermal-Hydraulics  
–  Pawlowski, Shadid, Smith, Cyr 



 
 
 

Embedded Algorithms R&D using TBGP 



Polynomial Chaos Expansions (PCE) 
•  Steady-state finite dimensional model problem: 

 
•  (Global) Polynomial Chaos approximation: 

 
•  Non-intrusive polynomial chaos (NIPC, NISP): 

•  Regression PCE: 

•  Reduce number of samples by adding derivatives 
–  Mike Eldred (SNL ASC) 

Find u(ξ) such that f(u, ξ) = 0, ξ : Ω → Γ ⊂ RM , density ρ

u(ξ) ≈ û(ξ) =
P�

i=0

uiΨi(ξ), �ΨiΨj� ≡
�

Γ
Ψi(x)Ψj(x)ρ(x)dx = δij�Ψ2

i �

ui =
1

�Ψ2
i �

�

Γ
û(x)Ψi(x)ρ(x)dx ≈

1

�Ψ2
i �

Q�

k=0

wkūkΨi(xk), f(ūk, xk) = 0

û(xk) = ūk =⇒
P�

i=0

uiΨi(xk) = ūk, f(ūk, xk) = 0, k = 0, . . . , Q

P�

i=0

uiΨi(xk) = ūk, k = 0, . . . , Q

P�

i=0

ui
∂Ψi

∂x
(xk) =

∂ūk

∂xk
, k = 0, . . . , Q



Computing Accurate Gradients Efficiently  
in PDE Simulations 

•  Steady-state sensitivities 
–  Forward: 

–  Adjoint : 

–  Single forward/transpose solve for each parameter/response 
–  Accuracy determined by accuracy of partials, solution to linear systems 

•  Transient sensitivities: 
–  Forward: 

–  Transient adjoint sensitivities are possible, but much harder 

�
ds∗

dp

�T

= −
�
∂f

∂p
(u∗, p)

�T �
∂f

∂u
(u∗, p)

�−T �
∂g

∂u
(u∗, p)

�T

+

�
∂g

∂p
(u∗, p)

�T

f(u∗, p) = 0, s∗ = g(u∗, p) =⇒
ds∗

dp
= −

∂g

∂u
(u∗, p)

�
∂f

∂u
(u∗, p)

�−1 ∂f

∂p
(u∗, p) +

∂g

∂p
(u∗, p)

f(u̇, u, p) = 0,

∂f

∂u̇

∂u̇

∂p
+

∂f

∂u

∂u

∂p
+

∂f

∂p
= 0



Small Model Problem 

• 2-D incompressible fluid flow past a cylinder 

– Albany code -- stabilized Galerkin FEM 
• SUPG, PSPG 

– GMRES with RILU(2) preconditioning (Belos, Ifpack) 
– Uncertain viscosity field 



Comparisons on Model Problem 



Solver Reuse for Sampling-based 
Approaches 

• Sampling method can be viewed as a block-diagonal 
nonlinear system: 

• Leverage reuse 
–  Preconditioner 
– Krylov basis1,2 

• Compute multiple residual/Jacobian samples 
simultaneously 
– Multi-point TBGP scalar type 

–  Improved vectorization, data locality 




f1(u1, x1) = 0

...
fN(uN , xN) = 0



 =⇒





∂f1

∂u1

. . .
∂fN

∂uN








∆u1
...

∆uN



 = −




f1
...

fN





1C. Jin, X-C. Cai, and C. Li, Parallel Domain Decomposition Methods for Stochastic Elliptic Equations, SIAM Journal on 
Scientific Computing, Vol. 29, Issue 5, pp. 2069—2114, 2007. 
2Michael L. Parks, Eric de Sturler, Greg Mackey, Duane Johnson, and Spandan Maiti, Recycling Krylov Subspaces for 
Sequences of Linear Systems, SIAM Journal on Scientific Computing, 28(5), pp. 1651-1674, 2006 

a = {a1, . . . , aN}, b = {b1, . . . , bN}, c = a×b = {a1×b1, . . . , aN×bN}



Multi-point Sampling of Model Problem 

•  Only real improvement is 
reusing preconditioner 

•  Recycling benefits can be 
had just by recycling 
between Newton steps 



•  Steady-state stochastic problem (for simplicity): 

•  Stochastic Galerkin method (Ghanem and many, many others…): 

–  Multivariate orthogonal basis of total order at most N – (generalized polynomial chaos) 
•  Method generates new coupled spatial-stochastic nonlinear problem (intrusive) 

 

•  Advantages: 
–  Many fewer stochastic degrees-of-freedom for comparable level of accuracy 

•  Challenges: 
–  Computing SG residual and Jacobian entries in large-scale, production simulation codes 
–  Solving resulting systems of equations efficiently, particularly for nonlinear problems 

Find u(ξ) such that f(u, ξ) = 0, ξ : Ω → Γ ⊂ RM , density ρ

0 = F (U) =





F0

F1
...

FP




, U =





u0

u1
...

uP





Stochastic sparsity	

 Spatial sparsity	



∂F

∂U
:

Embedded Stochastic Galerkin UQ Methods 

û(ξ) =
P�

i=0

uiψi(ξ) → Fi(u0, . . . , uP ) =
1

�ψ2
i �

�

Γ
f(û(y), y)ψi(y)ρ(y)dy = 0, i = 0, . . . , P



Stokhos:  Trilinos tools for embedded 
stochastic Galerkin UQ methods 

•  Eric Phipps, Chris Miller, Habib Najm, Bert Debusschere, 
Omar Knio 

•  Tools for describing SG discretization 
–  Stochastic bases, quadrature rules, etc… 

•  C++ operator overloading library for automatically evaluating 
SG residuals and Jacobians 

– Replace low-level scalar type with orthogonal polynomial 
expansions 

–  Leverages Trilinos Sacado automatic differentiation library 

•  Tools forming and solving SG linear systems 
–  SG matrix operators 
–  Stochastic preconditioners 
– Hooks to Trilinos parallel solvers and preconditioners 

•  Nonlinear SG application code interface 
– Connect SG methods to nonlinear solvers, time integrators, 

optimizers, … 

a =
P�

i=0

aiψi, b =
P�

j=0

bjψj, c = ab ≈
P�

k=0

ckψk, ck =
P�

i,j=0

aibj
�ψiψjψk�

�ψ2
k�



Embedded UQ in Drekar:  
Multiphysics: Rod to Fluid Heat Transfer 

•  True multiphysics formulation: conjugate heat 
transfer demonstrated in Drekar 

•  Embedded uncertainty quantification demonstration 
run using TBGP concepts at the 1 year mark 

•  Agile components significantly decreases the time to 
import cutting edge research into production 
applications 

Stochastic Galerkin UQ analysis propagating  
uncertainty in the magnitude of the model fuel source term 
and the average inflow velocity. 



Unique Embedded UQ R&D 

• Spatially adaptive UQ of a strongly convected field in Drekar 
– Eric Cyr – SNL LDRD 
– 2-D convection-diffusion with stochastically varying inlet angle 
–  Intrusive stochastic Galerkin with spatially varying polynomial order 

• Possible only through embedded approaches 



Comparison between linear and nonlinear PDEs 

−∇ · (a(x, ξ)∇u) = 1, x ∈ [0, 1]3

a(x, ξ) = µ + σ
M�

k=1

�
λkfk(x)ξk, ξk ∼ U(−1, 1)

−∇ · (a(x, ξ)∇u) = αu2, x ∈ [0, 1]3

a(x, ξ) = µ + σ
M�

k=1

�
λkfk(x)ξk, ξk ∼ U(−1, 1)

•  Albany FEM code 
•  AztecOO Krylov solver 
•  ML mean-preconditioner 
•  Stokhos approximate Gauss-Seidel stochastic preconditioner 

Linear Problem Nonlinear Problem 



• Difference in performance due to dramatically reduced 
sparsity of the stochastic Galerkin operator 
–  Increased cost of matrix-vector products 

• On-going R&D 
–  Improved stochastic preconditioning 
– Dimension reduction for SG Jacobian operator 
– Multicore acceleration 

Linear Problem	

 Nonlinear Problem	



Comparison between linear and nonlinear PDEs 



Emerging Architectures Motivate New Approaches 

•  UQ approaches usually implemented as an outer loop 
–  Repeated calls of deterministic solver 

•  Single-point forward simulations use very little available node 
compute power (unstructured, implicit) 
–  3-5% of peak FLOPS on multi-core CPUs (P. Lin, Charon, RedSky) 
–  2-3% on contemporary GPUs (Bell & Garland, 2008) 

•  Emerging architectures leading to dramatically increased on-
node compute power 
–  Not likely to translate into commensurate improvement in forward 

simulation 
–  Many simulations/solvers don’t contain enough fine-grained 

parallelism 

•  Can this be remedied by inverting the outer UQ/inner solver 
loop? 
–  Add new dimensions of parallelism through embedded approaches 



Structure of Galerkin Operator 

• Operator traditionally organized with outer-stochastic, inner-spatial 
structure 
–  Allows reuse of deterministic solver data structures and preconditioners 
–  Makes sense for sparse stochastic discretizations 

•  For nonlinear problems, makes sense to commute this layout to outer-
spatial, inner-stochastic 
–  Leverage emerging architectures to handle denser stochastic blocks 
–  Phipps, Edwards, Hu (SNL LDRD) 

Stochastic sparsity	

 Spatial sparsity	

 Stochastic sparsity	

Spatial sparsity	



Jtrad =
P�

k=0

Gk ⊗ Jk Jcom =
P�

k=0

Jk ⊗ Gk



SG Mat-Vec Floating-point Rate 
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• Significant performance improvement, 
particularly for GPUs 



 
 
 

Multiphysics Embedded UQ 
 

• SNL 
– Phipps, Constantine, Eldred, Pawlowski, 

Red-Horse, Schmidt, Wildey  
• USC 

– Ghanem, Arnst, Tipireddy 
 



Stochastic Coupled Nonlinear Systems 
• Shared-domain multi-physics coupling 

–  Equations coupled at each point in domain 

 
 
•  Interfacial multi-physics coupling 

–  Equations are coupled through boundaries 

 
 
• Network coupling 

–  Equations are coupled through a set of scalars 

L1(u1(x), u2(x), ξ1) = 0

L2(u1(x), u2(x), ξ2) = 0

L1(u1(x), v2(x2), ξ1) = 0, v2(x2) = G2(u2(x2)), x2 ∈ Γ2

L2(v1(x1), u2(x), ξ2) = 0, v1(x1) = G1(u1(x1)), x1 ∈ Γ1

L1(u1(x), v2, ξ1) = 0, v2 = G2(u2)

L2(v1, u2(x), ξ2) = 0, v1 = G1(u1)



Curse of Dimensionality 
•  All three forms can be written after discretization 

 
•  Because system is coupled, each component must compute approximation over 

full stochastic space: 

–  For segregated methods, requires solving sub-problems of larger dimensionality 
–  Adding more components, or more sources of uncertainty in other components, increases 

cost of each sub-problem 

• Mitigate curse of dimensionality by defining new random variables 

 
–  Size of each UQ problem now number of uncertain variables + number of interface 

variables 
–  Challenges:  computing new orthogonal polynomials, associated quadrature rules 

û1(ξ1, ξ2) = û1(v̂2(ξ1, ξ2), ξ1)

û1(ξ1, ξ2) =
P�

j=0

u1,jΨj(ξ1, ξ2) −→ ũ1(η2, ξ1) =
P̃1�

j=0

ũ1,jΦj(η2, ξ1), η2 = v̂2(ξ1, ξ2)

f1(u1, v2, ξ1) = 0, u1 ∈ Rn1 , v2 = g2(u2) ∈ Rm2 , f1 : Rn1+m2+M1 → Rn1

f2(v1, u2, ξ2) = 0, u2 ∈ Rn2 , v1 = g1(u1) ∈ Rm1 , f2 : Rm1+n2+M2 → Rn2



Stochastic Dimension Reduction 
•  Consider simplified problem of composite functions 
 

•  with discrete inner product 
 
•  We wish to approximate 
 
•  Conceptual basis for dimension reduction: 

–  Compute subspace W given by span of monomials in y, projected onto V 

–  Compute orthogonormal basis for this subspace 

–  Compute reduced quadrature rule by requiring exactness on this space 

–  Compute reduced projection 

–  Compute final transformation back to original basis 

y = f(x) = (y1, . . . , yL), W = span

�
P�

i=0

�
yk1
1 . . . ykL

L ,Ψi

�
Ψi

�
⊂ V

span{Φi : i = 0, . . . , P̃} = W, (Φi,Φj) = δij, P̃+1 = dim(W ), P̃ � P

ĥ(x) =
P�

i=0

hiΨi(x), hi = (h,Ψi), V = span{Ψi}

(f1, f2) =
Q�

k=0

wkf1(x
(k))f2(x

(k))

h(x) = g(y), y = f(x), f : Γ ⊂ RM → RL, g : f(Γ) → RS, L � M

h̄(x) =
P�

i=0

h̄iΨi(x), h̄i =
P̃�

j=0

h̃jαij, αij = (Ψi,Φj)

Q̃�

l=0

w̃lΦi(x
(kl))Φj(x

(kl)) = δij, Q̃ � Q

h̃(x) =
P̃�

i=0

h̃iΦi(x), h̃i =
Q̃�

l=0

w̃lg(y
(kl))Φi(y

(kl)), y(kl) = f(x(kl))



Devil is in the Details 

•  Computing W, orthogonal basis accurately is challenging 
–  Gram-Schmidt QR 

•  Variety of approaches for reduced quadrature 
–  Least-squares 
–  Linear program (arXiv: 1112.4772) 

•  In 1-D (L = 1) this is much easier 
–  Discretized Stieltjes = Lanczos (arXiv 1110.0058) 

•  Alternative approach 
–  Apply Lanczos approach to each component of y 

•  1-D orthogonal polynomials, Gauss rules 
–  Total order tensor product polynomials, sparse grid quadrature 

•  This spans W, but is not an orthogonal basis! 
–  Project onto this basis using this quadrature rule/inner product 
–  Project onto original basis, using above as a surrogate 

•  Relying on point-wise convergence w.r.t. wrong inner product/measure 
•  This can fail catastrophically 



Coupled neutron-transport and heat transfer 
demonstration 

•  2-D “slab reactor” (H. Stripling): 

•  2-component network system, nonlinear elimination coupling 
–  Non-intrusive:  Sparse-grid quadrature provided through Dakota on space of size 2*M 

•  Dimension reduction: 
–  Tensor-product Lanczos variant of approach outlined previously   
–  Intrusive (stochastic Galerkin) at 2x2 network level, non-intrusive for each component 
–  Each component UQ problem of size M+1  

Q −
1

L2

�

D
Φ(x)Σf(T̄ )Efdx = 0 s.t. − ∇ · (D(T̄ )∇Φ(x)) + (Σa(T̄ ) − νΣf(T̄ ))Φ(x) = S(x, ξ1),

T̄ −
1

L2

�

D
T (x)dx = 0 s.t. − ∇ · (k(x, ξ2)∇T (x)) = Q,

x ∈ D = [0, L]2, Σ(T̄ ) = Σ(T0)

�
T̄0

T̄
, D =

1

3(Σa + Σs)

S(x, ξ1) = S0(x) + σS

M�

i=0

�
λiai(x)ξ1,i, k(x, ξ2) = k0(x) + σk

M�

i=0

√
µibi(x)ξ2,i,

ξ1,i, ξ2,i Uniform on (−1, 1)



Results 



Dimension Reduction in Shared-Domain/
Interfacial Coupling 

• Approaches rely on small dimensional interfaces between physics 
–  Network coupling – built into the model 
–  Shared-domain/interfacial – transfer between physics may live on 

small dimensional manifold 
•  Use KL to parameterize this (arXiv: 1112.4761) 
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Concluding Remarks 

• Looked at a variety of embedded UQ algorithms 
leverage structure 
–  Simulation structure 
– Architecture structure 

• An approach for incorporating them in large-scale 
codes 
–  Template-based generic programming 
– Agile components 

• Powerful vehicle for investigating embedded 
algorithms with path to impact important applications 



Nonlinear elimination 

Nonlinear Elimination for 
Network Coupled Systems 

Component 1 

Component 2 
v1

v2

v2 = G1(v1, p1) = g1(u1(v1), p1) s.t. f1(u1, v1, p1) = 0

v1 = G2(v2, p2) = g2(u2(v2), p2) s.t. f2(u2, v2, p2) = 0

Equations Newton Step 
v2 − G1(v1, p1) = 0
v1 − G2(v2, p2) = 0

�
−dG1/dv1 1

1 −dG2/dv2

� �
∆v1

∆v2

�
= −

�
v2 − G1(v1, p1)
v1 − G2(v2, p2)

�

dGi

dvi
= −

∂gi

∂ui

�
∂fi

∂ui

�−1 ∂fi

∂vi


