A PARALLEL EIGENSOLVER
FOR DENSE SYMMETRIC MATRICES*

BRUCE HENDRICKSON†, ELIZABETH JESSUP†, AND CHRISTOPHER SMITH§

Abstract. We describe a parallel algorithm for finding the eigenvalues and eigenvectors of a dense symmetric matrix. We follow the traditional three step process: we reduce the dense matrix to tridiagonal form, solve the tridiagonal problem then backtransform the result. Since the different steps have different algorithmic characteristics, this problem serves as an excellent vehicle for exploring some issues associated with parallel linear algebra calculations. In particular, we examine the effects of matrix distribution and blocking on the computational performance of tridiagonalization and backtransformation. Through experiments on an Intel Paragon, we demonstrate that block storage of the matrix is not necessary for a highly efficient block algorithm. We compare the performance of our implementations to that of the corresponding ScaLapack routines.

1. Introduction. Large order symmetric eigenvalue problems arise in a variety of contexts ranging from real-time signal processing [39] to the analysis of electrical networks [13] to the modeling of acoustic and electromagnetic waveguides [33]. Because determining the eigenvalues and eigenvectors of large matrices is a time-consuming process demanding extensive memory, such applications motivate the study of parallel implementations of symmetric eigensolvers. The increased computing and storage resources provided by multiprocessors can allow efficient solution of large order problems. This paper describes a scalable parallel approach to calculating eigenvectors and eigenvalues of dense symmetric matrices and presents results of its implementation on the Intel Paragon. The emphasis of this paper is on the dense linear algebra operations and not on parallel algorithms for the tridiagonal eigenproblem.

Our work was motivated by two main considerations. First and foremost was our desire to provide a tool for scientists and engineers who need to solve large eigenproblems. Although several such codes are now available [12, 35], none was when we embarked upon this project. Second, we were interested in studying the capabilities and limitations of parallel computers for dense linear algebra problems that are significantly more complex than the well-studied problem of LU factorization. Thus, in implementing our eigensolver, we intentionally chose a different algorithmic approach than that used in ScaLAPACK. Specifically, our approach does not require that the matrix be stored in a blocked manner. As we discuss in §2, this choice has both advantages and disadvantages, and the symmetric eigenproblem is a perfect application with which to investigate them. Furthermore, unlike the developers of ScaLAPACK, we had the luxury of being able to target our code to a single parallel machine and to ignore issues of software portability and reuse of library routines. This gave us the chance to quantify the performance impact of these constraints within ScaLAPACK.

While portability was not our main concern, porting our code to another machine is not a difficult task. All communication is based on the Intel csend/crecv and

† Applied & Numerical Math Dept., Sandia National Labs, Albuquerque, NM 87185-1110. bah@cs.sandia.gov. Hendrickson and Smith were funded by the Applied Mathematical Sciences program, U.S. DOE, Office of Energy Research, and performed research at Sandia National Labs, operated for DOE under contract No. DE-AC04-76DP00789.
‡ Dept. Computer Science, Univ. Colorado, Boulder, CO 80309-0430. jessup@cs.colorado.edu. Jessup was funded by DOE contract DE-FG02-92ER25122, and by an NSF Young Investigator Award.
§ Advanced Product & Process Technology, A.O. Smith, Milwaukee, WI 53216. Xmascb@aol.com.
isend/irecv communication primitives. Thus, the code would run immediately on
the Intel machines supporting those commands (the iPSC/2, iPSC/860, and Delta).
Indeed, initial development of this code took place on an iPSC/860, and tests of a
preliminary version of the code on that machine showed that good performance was
attained on the hypercube. Changing the primitives to the MPI equivalents would
allow the code to run on any machine on which MPI is available.

The traditional method for determining the eigensystem of a real, dense symmetric
matrix \(A \) employs a three step technique [23]. First, \(A \) is reduced to symmetric
tridiagonal form using a series of Householder transformations. Next, the eigensystem
of the tridiagonal matrix \(T \) is computed. The eigenvalues of \(A \) are the same as those
of \(T \), while the eigenvectors of \(A \) are found in the third step by backtransforming the
eigenvectors of \(T \) via the reduction transformations [38]. Specifically, if the transfor-
mations are accumulated into the matrix \(Q \), the tridiagonal matrix \(T \) is formed by
the matrix product \(T = Q^T AQ \). If the eigendecomposition of \(T \) is \(T = XDXT \), then
the eigendecomposition of \(A \) is \(A = (QX)D(QX)^T \).

Although the sequential algorithms for the tridiagonalization and backtransfor-
mation steps are well understood, tridiagonal eigensolvers continue to be an area of
active research (see [1, 23, 30, 31] for surveys.) With respect to parallel algorithms,
the situation is somewhat reversed. There has been more work on the tridiagonal
eigensolver than on parallel methods for tridiagonalization. Investigation of parallel
tridiagonal eigensolvers began with Huang's 1974 study of multisection on the
ILLIAC IV [27] and continued with the implementation of several other tridiagonal
eigensolvers on a variety of shared- and distributed-memory computers and their
simulators [2, 3, 4, 5, 20, 29, 34, 35, 36].

Work on parallel tridiagonalization and backtransformation algorithms began
more recently and has been confined to distributed-memory machines. Chang et
al. described, but did not implement, two parallel versions of the Householder tridiag-
onalization algorithm for the hypercube in 1988 [10, 11]. One of these algorithms uses
the one dimensional mapping of matrix elements to processors that was the common
choice at the time. The second employs a two dimensional mapping that is now gener-
ally recognized as superior for dense linear algebra calculations. We explain why in \(\S \).
Several parallel implementations of the traditional tridiagonalization algorithm have
appeared recently. These include one dimensional mappings on the Intel iPSC/860
by Dongarra and van de Geijn [16] and by Fann, Littlefield, and Maschhoff [35], a
two dimensional mapping on the nCUBE 2 by Hendrickson and Womble [26], and
a two dimensional mapping by Choi, Dongarra and Walker as part of the ScaLA-
PACK project [12] which was developed simultaneously with the current work. This
last reference is the most similar to ours. The differences are discussed in the next
section.

A general approach to parallel band reduction has been proposed by Bischof,
Marquez and Sun [6, 7], but this algorithm looks to be uncompetitive for dense ma-
trices. An entirely different parallel eigensolver rich in efficient matrix-matrix (level
3 BLAS) operations has been proposed by Huss-Leledeman, Tsao, and Zhang [28]. A
parallel algorithm based on one-sided rotations has been described by Hegland in [24].

In \(\S \), we contrast the data mapping used in our algorithm with that used in
ScaLAPACK, and, in \(\S \), we describe the communication operations our algorithm
requires. In \(\S \), we review the sequential algorithm for Householder tridiagonaliza-
tion and describe and analyze our parallel counterpart. This is the most complex
parallel algorithm in this paper. In \(\S \), we explain how we approach the tridiagonal
eigenproblem. In §6, we describe our parallel implementation of backtransformation. In §7, we provide timings of our code on the Intel Paragon along with comparisons to ScaLAPACK, followed by conclusions in §8.

2. Preliminaries. The efficiency of a parallel algorithm depends largely on the cost of data movement between processors. This cost, in turn, depends both on the initial mapping of data to processors and on the algorithms used for interprocessor communication. In this section, we describe the data distribution we use in our algorithm and contrast it with the distributions supported in the ScaLAPACK project.

A critical first step in devising a parallel linear algebra algorithm is deciding which matrix elements are assigned to which processors. We chose to use a square torus-wrap mapping, a special case of the torus-wrap mappings that have been successfully applied to a variety of dense linear algebra problems.

One way to describe a square torus mapping is to consider a square tile of size \(\sqrt{P} \times \sqrt{P} \), where \(P \) is the number of processors in the parallel machine. Each element of the tile is assigned a unique value between 0 and \(P - 1 \). The matrix is then covered with these tiles, and a matrix element is assigned to the processor whose tile number overlays it. In this way, each row and each column of the matrix is distributed among \(\sqrt{P} \) processors. The matrix elements owned by a particular processor lie at the intersection of a set of rows and a set of columns of the matrix. Note that for a symmetric matrix, the array of elements owned by a processor is the transpose of the array owned by the processor in the transpose location on the tile. Equation (1) shows how the elements of a \(7 \times 7 \) matrix \(A \) would be distributed among \(9 = 3^2 \) processors according to a square torus mapping. The number in position \((i, j)\) of the matrix \(M \) shows the processor to which matrix element \(a_{(i, j)} \) is assigned.

\[
M = \begin{pmatrix}
0 & 3 & 6 & 0 & 3 & 6 & 0 \\
1 & 4 & 7 & 1 & 4 & 7 & 1 \\
2 & 5 & 8 & 2 & 5 & 8 & 2 \\
0 & 3 & 6 & 0 & 3 & 6 & 0 \\
1 & 4 & 7 & 1 & 4 & 7 & 1 \\
2 & 5 & 8 & 2 & 5 & 8 & 2 \\
0 & 3 & 6 & 0 & 3 & 6 & 0
\end{pmatrix}
\]

At first glance, it seems that this mapping precludes the use of block algorithms and level 3 BLAS since the elements owned by a processor are not contiguous in the matrix. But this widely held belief is wrong, as has been observed by several researchers [8, 42]. The algorithms we describe below for tridiagonalization and backtransformation use level 3 BLAS. A more detailed discussion of the properties of the torus-wrap mapping can be found in [26] and the references therein.

Our reasons for using a square torus-wrap mapping are threefold. First, compared to a row or column mapping, a torus mapping reduces the communication requirements by a factor of \(\sqrt{P} \) [26]. Second, the square torus allows for an efficient implementation of matrix-vector multiplication [25] which is an important step in the tridiagonalization algorithm. And third, a square torus simplifies the exploitation of matrix symmetry. On the other side of the ledger, insisting on a square torus restricts our algorithm to run on a number of processors that is a perfect square. This restriction limits the machine sizes on which our software can run. For instance, the Intel Paragon at Sandia National Labs has 1840 processors, but we are only able to use 1764 of them – a loss of over 4%.
The ScaLAPACK eigensolver supports a range of data distributions that are in many ways more general than ours but in a crucial way more restrictive. First, ScaLAPACK does not insist upon a square tile but rather allows a tile of arbitrary rectangular shape. We chose not to allow this generality because it significantly complicates the code and because, in practice, the tile must be nearly square for optimal performance to be obtained.

The second manner in which our code differs from ScaLAPACK is that the latter employs a block torus mapping. In this decomposition, the matrix is first decomposed into square blocks, and these blocks are assigned to processors in a torus-wrap manner. In this case, each element in the tile described above covers a $d \times d$ block of the matrix instead of a single entry. Thus, the mapping our code supports is a special case of the block torus mapping in which $d = 1$. We say that ScaLAPACK employs storage blocking while our approach does not.

To obtain peak performance on processors with a memory hierarchy, it is necessary to avoid cache misses as much as possible. In dense linear algebra calculations, this is achieved by recasting algorithms to be rich in matrix–matrix operations carried out by level 3 BLAS routines. The archetypical level 3 routine is the \texttt{dgemm} operation in which an $m \times n$ matrix A is updated by the product of matrices U and V^T of respective sizes $m \times k$ and $k \times n$ ($A = A + UV^T$). Typically, k is much smaller than m and n, but making it larger than 1 allows for cache reuse and greater overall performance. In practice, this means that matrix updates have to be delayed and performed in blocks instead of singly. We refer to this organization of operations as algorithmic blocking.

In principle, the concepts of storage blocking and algorithmic blocking are completely independent. But as a practical matter, a code that completely decoupled them would be painfully complex. To avoid this complexity, ScaLAPACK imposes the restriction that the size k of the algorithmic blocking is equal to d, the size of the storage blocking. We instead chose to restrict storage blocking to be equal to 1 but to impose no restriction on the algorithmic blocking.

Our approach has several advantages when compared to the ScaLAPACK approach and one disadvantage. The first and probably most important advantage is that our mapping is simpler from a user’s perspective. Not only is there one less degree of freedom in the mapping, but also the user can alter algorithmic blocking without having to redistribute the matrix among processors. Second, in linear algebra operations involving several matrix transformations, the algorithmic blocking size can take on optimal values for each transformation independently. When the algorithmic blocking is constrained by the storage blocking, this freedom is lost. The symmetric eigenproblem is such a multistep operation, and so it is an excellent problem with which to investigate these tradeoffs. Third, the amount of load imbalance is generally proportional to the linear size of a storage block [26]. If a processor needs large blocks to obtain peak performance, this load imbalance can significantly degrade performance, as was observed by Strzodka for LU factorization on the AP1000 [40].

The commonly stated advantage of block storage is that it is necessary for block algorithms. As we mentioned above, this supposed advantage is a mirage. However, in some settings block storage does have a distinct, though not widely appreciated, advantage over our approach. Most linear algebra algorithms modify a contiguous block of matrix elements or a block of columns and then apply some transformation to the remainder of the matrix. In some cases, the modification of the block is independent of the remainder of the matrix. If so, and if the block is owned by a single processor, then the block can be modified and sent to other processors in a
single message. In this way, the number of messages can be reduced (although not the total volume of communication), thereby speeding up the algorithm.

As a concrete example, consider LU factorization with and without pivoting. Without pivoting, a diagonal block of the transformation can be generated without any information about the remainder of the matrix. This block can then be sent to other processors in a single message and used to update the remainder of the matrix. With pivoting, the transformation is not independent of the remainder of the matrix. Updates must be applied before the next pivot element can be selected. Thus, messages cannot be bundled into a single large message but rather must be sent individually after each column is transformed.

In this respect, Householder tridiagonalization is like LU factorization with pivoting while backtransformation is like LU factorization without pivoting. Thus, while our storage scheme is advantageous for tridiagonalization, it is disadvantageous for backtransformation. Since we don't use block storage, our approach requires communication after each column operation in the backtransformation. In contrast, the ScaLAPACK implementation of backtransformation requires communication only at the end of each block. It is this fundamental difference between tridiagonalization and backtransformation that makes the symmetric eigenproblem an ideal vehicle by which to investigate the significance of these algorithmic tradeoffs.

3. Communication Operations. Our parallel algorithm involves three well-known communication patterns described in §3.1 and two more complex ones described in §3.2 below.

3.1. Basic Communication Patterns. The first basic pattern is point-to-point communication in which one processor sends a message to another. In our algorithm the pair of interacting processors are those lying in transpose positions in the tile defining the square torus mapping. Point-to-point communication is a primitive operation on any message passing parallel computer.

The second communication pattern is a broadcast where a processor sends the same message to several others. Our broadcasts involve all the \sqrt{P} processors in a single row or single column of the square torus tile. This operation is performed in $\lceil \log_2 \sqrt{P} \rceil$ stages and can generally be performed without any contention for wires. Consider, for example, the simple situation in which the \sqrt{P} processors are connected by a single path of wires. In the first step, the processor originating the message sends it to the processor that is $\sqrt{P}/2$ wires away. In the next step, both processors send it to their counterparts which are $\sqrt{P}/4$ wires away, and so on.

Our third communication operation is global summation in which each processor begins with a value and ends with the sum of all the processors' values. This operation can be implemented in a variety of ways, and code for it is generally provided by the parallel computer vendor. We used our own implementation based on an exchange operation that requires $\lceil \log_2 P + 1 \rceil$ stages. Let $q = 2^k$ be the largest power of two no larger than P. In the first stage, each processor numbered at least q sends its value to a processor numbered less than q. Each receiving processor adds the arriving value to its own. In each of the subsequent k stages, each processor r numbered less than q exchanges its value with a processor whose number differs from r in a single binary bit and adds the received value to its own running total. At the end of these stages, all processors numbered less than q hold the sum of all the values. In a final stage, this sum is communicated back to the processors numbered at least q.
3.2. Recursive Halving and Doubling for Arbitrary Processor Number.

The fourth and fifth communication patterns required by our algorithm are known as recursive halving and recursive doubling. As with broadcasting, we only use these operations among processors in a row or a column of the square torus tile.

In the recursive halving operation, each of \(P \) processors begins with a vector of length \(n \) and completes with \(n/P \) elements of the element-wise sum of the \(P \) vectors. In the recursive doubling operation, each of \(P \) processors begins with a vector segment of length \(n/P \) and ends with the vector of length \(n \) formed by concatenating the \(P \) vector segments in order.

Previous descriptions of these algorithms rely on having a number of processors that is a power of two [22, 41]. In contrast, our algorithm allows arbitrary numbers of processors. In the remainder of this section, we present the details of the recursive halving and doubling operations. To our knowledge, these generalizations are new.

We first describe recursive halving of a vector \(v \) of length \(n \) on an arbitrary number \(P \) of processors. For simplicity of presentation, we assume that \(P \) divides \(n \), although the algorithm is readily modified to work when this assumption does not hold. The recursive halving operation begins by dividing the processors into two sets \(R \) and \(S \) of respective sizes \(r = \lfloor n/P \rfloor \) and \(s = \lfloor n/P \rfloor \). The processors in the two sets are numbered \(R_0, R_1, \ldots, R_{r-1} \) and \(S_0, S_1, \ldots, S_{s-1} \). To begin recursive halving, each processor splits its vector \(v \) into two segments \(a \) and \(b \) (for top and bottom) of respective lengths \(r(n/P) \) and \(s(n/P) \) so that \(v^T = (a^T, b^T) \).

When the number of processors \(P \) is even, each processor \(R_k \) in \(R \) pairs with its corresponding processor \(S_k \) in \(S \). Processor \(R_k \) sends its vector \(b \) to \(S_k \) while processor \(S_k \) sends its vector \(a \) to \(R_k \). Processor \(R_k \) then adds the vector it receives to its own vector \(a \) while processor \(S_k \) adds the vector it receives to its vector \(b \). In this way, \(R_k \) updates the top \(r(n/P) \) elements of the vector \(v \) while \(S_k \) updates the bottom \(s(n/P) \) elements.

When the number of processors is odd, \(r = s + 1 \), and a simple pairing of processors leaves processor \(R_{r-1} \) unpaired and idle. However, all processors can be included and their workload well-balanced by requiring each processor from group \(S \) to pair with two processors in group \(R \). In this way, all processors in \(R \) are paired with two processors in \(S \) (except for \(R_0 \) and \(R_{r-1} \) which communicate only with \(S_0 \) and \(S_{s-1} \), respectively).

Processor \(R_k \), \(k = 1, \ldots, r-1 \), now sends the first \(k(n/P) \) elements of its vector \(b \) to processor \(S_{k-1} \) and the rest of its vector \(b \) to processor \(S_k \). (Note that processors \(R_0 \) and \(R_{r-1} \) send their full \(b \) vectors to their partners in \(S \).) At the same time, processor \(S_k \), \(0 = 0, \ldots, s-1 \), sends the first \((s-k)(n/P) \) elements of its vector \(a \) to processor \(R_k \) and the rest of its vector \(a \) to processor \(R_{k+1} \).

In this way, each processor in \(R \) receives a total of \(s(n/P) \) vector elements and adds them to the elements of its vector \(a \). Each processor in \(S \) receives a total of \(r(n/P) \) vector elements and adds them to elements of its vector \(b \).

This communication pattern is illustrated in Fig. 1 for 5 processors. The processors are divided into groups \(R \) and \(S \) of sizes 3 and 2, and the vectors are divided into subvectors \(t \) and \(b \) of lengths 3n/5 and 2n/5 respectively. The arrows in the figure represent communication. The dark portion of the vectors beside each arrow correspond to the subvectors being communicated.

For both odd and even \(P \), the division and updating process continues recursively until \(P = 1 \). The processors in \(R \) further reduce the the \(t \) subvectors and the processors in \(S \) work on the \(s \) subvectors. Each processor completes the operation with
FIG. 1. Structure of a single stage of recursive halving.

exactly \(n/P \) elements of the elementwise sum of the \(P \) \(n \)-vectors \(jv, j = 0, \ldots, P - 1 \). In this way, the minimum total amount of information is communicated, and the workload is well balanced across processors. However, processors may have to send and receive two messages at each stage. The steps of the recursive halving algorithm are summarized in Fig. 2.

Recursive doubling can be implemented with precisely the reverse of the communication operations used in recursive halving, but, instead of sending and receiving information to be summed, each processor sends and receives information to be concatenated. Each processor begins with a different length \(n/P \) segment of an \(n \)-vector and finishes with a copy of the full vector. The resulting algorithm is sketched in Fig. 3 with the ‘\(U \)’ operator denoting concatenation.

4. Householder Tridiagonalization.

4.1. The Sequential Algorithm. The best sequential algorithm for tridiagonalizing a symmetric matrix uses a sequence of Householder transformations. Let \(A \) be an \(n \times n \) symmetric matrix, and let \(H_1 \) be the Householder transformation that zeros elements in the first column of \(A \) below the subdiagonal by pivoting on the subdiagonal element. It is easy to see that \(H_1^T A H_1 \) also zeros the elements in the first row of \(A \) to the right of the superdiagonal. We can then construct \(H_2 \) to zero the subdiagonal elements of the second column, and so on. After \(n - 2 \) steps of this process, the matrix is reduced to tridiagonal form. An efficient sequential algorithm for this calculation is shown in Fig. 4. In this algorithm, the normalization constants are calculated and applied in nonstandard fashion. Although this makes the presentation somewhat more involved than that found in [23], it will prove to simplify the parallel algorithm.

Steps (1–5) of this algorithm comprise the construction of the Householder vector
Procedure rec_halve(processor list \mathcal{P}, vector $v(1:n)$)

$P = |\mathcal{P}|$, P divides n

If $(P = 1)$ **Return**

Divide \mathcal{P} into \mathcal{R} and \mathcal{S} with $r = |\mathcal{R}| = [P/2]$ and $s = |\mathcal{S}| = [P/2]$

Number processors in \mathcal{R} as R_0, \ldots, R_{r-1}

Number processors in \mathcal{S} as S_0, \ldots, S_{s-1}

$t = v(1 : r(n/P)); \quad b = v(1 + r(n/P) : n)$

If $(r = s)$ **Then** (* Normal recursive halve; pair up. *)

If processor q is $R_k \in \mathcal{R}$ Then

Send b to S_k

Receive t_2 from S_k

Add t_2 to t

Call rec_halve(\mathcal{R}, t)

Else (* processor q is $S_k \in \mathcal{S}$ *)

Send t to R_k

Receive b_2 from R_k

Add b_2 to b

Call rec_halve(\mathcal{S}, b)

Else (* Odd number of processors; $s = r + 1$. *)

If processor q is $R_k \in \mathcal{R}$ Then

Send first kn/P elements of b to S_{k-1}

Send remainder of b to S_k

Receive t_2 from S_{k-1}

Receive t_3 from S_k

Add t_2 and t_3 to t

Call rec_halve(\mathcal{R}, t)

Else (* processor q is $S_k \in \mathcal{S}$ *)

Send first $(s - k)n/P$ elements of t to R_k

Send remainder of t to R_{k+1}

Receive b_2 from R_k

Receive b_3 from R_{k+1}

Add b_2 and b_3 to b

Call rec_halve(\mathcal{S}, b)

Fig. 2. Recursive halving for processor q.

v. In practice, step (1) is merely for notational convenience and is not executed. Also, the entries of the Householder vectors are actually stored in the lower triangle of A for later use in the backtransformation. The off-diagonal entries of the tridiagonal matrix are generated in step (4) and stored in the vector x while the diagonal entries are kept in the diagonal of A. In step (6), we save the norm of the Householder vector for later use while backtransforming the eigenvectors. The two computationally dominant steps in the algorithm are the matrix-vector multiplication in the generation of the updating vector p in step (7) and the rank-two update of A in step (10). Exploiting the symmetry of A allows us nearly to halve the operations required in the rank-two update (although it complicates the calculation of Av). The resulting algorithm requires $4n^3/3 + O(n^2)$ flops [23].

The algorithm in Fig. 4 employs only the vector–vector and matrix–vector operations known as level 1 and level 2 BLAS [18, 15]. On processors with a memory
Procedure rec.double(processor list \(\mathcal{P} \), vector \(v(1:n) \))

\(P = |\mathcal{P}|, \) \(P \) divides \(n \)

If \((P = 1) \) Return

Divide \(\mathcal{P} \) into \(\mathcal{R} \) and \(\mathcal{S} \) with \(r = |\mathcal{R}| = \lfloor P/2 \rfloor \) and \(s = |\mathcal{S}| = \lfloor P/2 \rfloor \)

Number processors in \(\mathcal{R} \) as \(\mathcal{R}_0, \ldots, \mathcal{R}_{r-1} \)

Number processors in \(\mathcal{S} \) as \(\mathcal{S}_0, \ldots, \mathcal{S}_{s-1} \)

If \((r = s)\) Then (* Normal recursive double; pair up. *)

If processor \(q \) is \(\mathcal{R}_k \in \mathcal{R} \) Then

- Call rec.double(\(\mathcal{R}, v \))
- Send \(v \) to \(\mathcal{S}_k \)
- Receive \(v2 \) from \(\mathcal{S}_k \)

\(v = v \cup v2 \)

Else (* processor \(q \) is \(\mathcal{S}_k \in \mathcal{S} \). *)

- Call rec.double(\(\mathcal{S}, v \))
- Send \(v \) to \(\mathcal{R}_k \)
- Receive \(v2 \) from \(\mathcal{R}_k \)

\(v = v2 \cup v \)

Else (* Odd number of processors; \(s = r + 1 \). *)

If processor \(q \) is \(\mathcal{R}_k \in \mathcal{R} \) Then

- Call rec.double(\(\mathcal{R}, v \))
- Send last \(kn/P \) elements of \(v \) to \(\mathcal{S}_{k-1} \)
- Send first \((r - k - 1)n/P \) elements of \(v \) to \(\mathcal{S}_k \)
- Receive \(v2 \) from \(\mathcal{S}_{k-1} \)
- Receive \(v3 \) from \(\mathcal{S}_k \)

\(v = v \cup v2 \cup v3 \)

Else (* processor \(q \) is \(\mathcal{S}_k \in \mathcal{S} \). *)

- Call rec.double(\(\mathcal{S}, v \))
- Send last \((s - k)n/P \) elements of \(v \) to \(\mathcal{R}_k \)
- Send first \((k + 1)n/P \) elements of \(v \) to \(\mathcal{R}_{k+1} \)
- Receive \(v2 \) from \(\mathcal{R}_k \)
- Receive \(v3 \) from \(\mathcal{R}_{k+1} \)

\(v = v2 \cup v3 \cup v \)

Fig. 3. Recursive doubling for processor \(q \).

hierarchy, it is generally more efficient to recast algorithms to allow for greater memory reuse. Dongarra, Sorensen and Hammarling [19] have shown how to modify this algorithm to use some matrix–matrix operations or level 3 BLAS [17]. The basic idea is to save the \(v \) and \(w \) vectors from several steps and use them to update \(A \) simultaneously. If we save \(b \) pairs of vectors, we can perform a rank–2\(b \) update of \(A \). Postponing updates complicates the generation of the vector \(p \), since the values stored in the matrix \(A \) are not always up-to-date, but it allows for higher performance in the outer–product update of \(A \). We note, however, that the generation of the vector \(p \) still requires level 2 BLAS. This block algorithm is summarized in Fig. 5.

The single loop of the algorithm shown in Fig. 4 is now replaced with two loops, the outer one over blocks of columns and the inner one over columns within a block. Steps (1–6) of the algorithm in Fig. 5 precisely mimic steps (1–6) of the algorithm in Fig. 4 except that for completeness we have made the indices more explicit. We have broken out the matrix–vector multiplication into steps (7.1–7.3) to show how to use
only the lower triangular portion of the matrix. Since the matrix L is not updated immediately, steps (7.1–7.3) use an out-of-date version of the matrix. We correct for that in step (7.4). In step (10.1), the columns of L that lie within the current block are updated, but the update of the rest of the matrix is delayed until step (10.4). That update can be performed with a single call to the level 3 BLAS routine dyrk2. We note that the call to dyrk2 requires the matrix to consume n^2 space, even though only the lower triangular portion is used. Without BLAS for blocked storage, exploiting symmetry saves flops but not space.

4.2. The Parallel Algorithm. Besides its intrinsic complexity, there are several features of the algorithm in Fig. 5 that make it challenging to implement in parallel. First, the matrix–vector multiplication in the generation of the vector p is more complicated to parallelize than the simple updates required in LU or QR factorization [26]. Second, exploiting symmetry both increases the communication requirements of the algorithm and makes the design of an efficient matrix–vector multiplication step more difficult. Finally, the outer–product update required in our parallel algorithm is not included in the standard suite of level 3 BLAS. As we will see, the portion of A owned by a processor may be nonsymmetric, and there is no level 3 BLAS routine to perform a nonsymmetric, outer–product update of a lower triangular matrix.

4.2.1. The Tridiagonalization Algorithm. Our parallel algorithm for Householder tridiagonalization for processor q is depicted in Fig. 6. The labels to the left of the executable statements correspond to the numbers of the corresponding operations in Fig. 5. Although the basic structure of this algorithm mimics that of the algorithm in Fig. 5, the parallelization adds considerable complexity. The parallel algorithm is complicated by the fact that the set of matrix elements owned by a processor are not symmetric. That is, a processor holds all the matrix elements in the intersection of a set of rows α and a set of columns β, but these two sets are not generally the same. However, because our tile is square, there is always another processor that contains elements at the intersection of rows β and columns α. These two processors thus own transpose portions of the matrix.

Since the matrix elements assigned to a processor do not form a symmetric submatrix, the processor needs two different sets of components of the Householder vector v in order to compute $L(\alpha, \beta)v_\beta$ and $v_\alpha^T L(\alpha, \beta)$ in steps (7.1) and (7.2). This leads
(* $L \in \mathbb{R}^{n \times n}$ lower triangular part of symmetric matrix; $v, w, p, z \in \mathbb{R}^n$. *)

(* b is the number of columns in a block. *)

(* $V, W \in \mathbb{R}^{n \times b}$ are reused each outer iteration. *)

$N = [(n - 2)/b]$

For $j = 1 : N$

$V = [0], W = [0]$

$s = (j - 1)b + 1$ (* First column in block. *)

$t = \min(n - 2, s + b - 1)$ (* Last column in block. *)

For $i = s : t$ (* Form the block of updates. *)

(1) $v(i + 1 : n) = L(i + 1 : n, i)$

(2) $\mu = v(i + 1 : n)^T v(i + 1 : n)$

(3) $v(i + 1) = v(i + 1) + \text{sign}(v(i + 1))\mu$

(4) $z(i + 1) = -\text{sign}(L(i + 1, i))\mu$

(5) $\phi = 2(\mu + |v(i + 1)|\mu)$ (* $\phi = v^T v$ *)

(6) $\Phi(i) = \phi$

(7.1) $x(i + 1 : n) = L(i + 1 : n, i + 1 : n)v(i + 1 : n)$ (* Without diagonal. *)

(7.2) $y(i + 1 : n) = v^T(i + 1 : n)L(i + 1 : n, i + 1 : n)$ (* With diagonal. *)

(7.3) $p = x + y$ (* Correct for out-of-date entries of L *)

(7.4) $p(t + 1 : n) = p(t + 1 : n) - (V(t + 1 : n, *) W(t + 1 : n, *)^T +
W(t + 1 : n, *) V(t + 1 : n, *)^T) v(t + 1 : n)$

(8) $\gamma = p(i + 1 : n)^T v(i + 1 : n)$

(9) $w(i + 1 : n) = \frac{\gamma}{\phi} (p(i + 1 : n) - \frac{\gamma}{\phi} v(i + 1 : n))$

(* Update remainder of block of L *)

(10.1) $L(i + 1 : n, i + 1 : t) = L(i + 1 : n, i + 1 : t) - v(i + 1 : n) w(i + 1 : t)^T - w(i + 1 : n) v(i + 1 : t)^T$

(10.2) $V = [v \ v]$

(10.3) $W = [w \ w]$

(* Perform symmetric rank-2b update of the submatrix. *)

(10.4) $L(t + 1 : n, t + 1 : n) = L(t + 1 : n, t + 1 : n) - V(t + 1 : n, *) W(t + 1 : n, *)^T - W(t + 1 : n, *) V(t + 1 : n, *)^T$

Fig. 5. Block algorithm for Householder tridiagonalization.

to the communication operations in steps (Y1). Similarly, the results of the two matrix-vector products contribute to different sets of elements of the vector p, and the communication in step (7.3) realigns these indices. A similar communication of the vector w is required in steps (Y2) to prepare for the outer-product update of the matrix A.

Another consequence of processors having nonsymmetric portions of A is that the outer-product update is nonsymmetric. Because there is no level 3 BLAS call to update a lower triangular matrix with a nonsymmetric outer-product, we perform the update by covering the lower triangular matrix with a sequence of rectangular panels and use a standard rectangular outer product update on each panel. The full rank-2b update of a panel can be performed with a single call to the level 3 BLAS routine dgemm. For the tests described in this paper, we used panel widths of 2.

An additional detail of the parallel algorithm is shown in the steps labeled (X). Since only a subset of processors owns each row and column of the matrix, the row and column incrementing requires more attention than in the sequential code.
This algorithm requires several different types of communication operations. We describe and analyze them here for the case where \(L \) has \((k+1)\) unreduced rows and columns remaining. The total communication in the algorithm is the sum of these communication steps for \(k = 1, \ldots, n-2 \). In step (1), \(\sqrt{P} \) broadcasts occur, each involving \(\sqrt{P} \) processors and vectors of length \([k/\sqrt{P}]\). This requires \(\log_2(P)/2 \) startups and \([k/\sqrt{P}][\log_2(P)/2] \) volume for the slowest processor. Steps (2), (7.4) and (8) include global sums of scalars. Each global sum requires \(\log_2(P) \) startups and volume for each processor. In steps (Y1), (Y2) and (7.3), a vector of length \([k/\sqrt{P}]\) is transposed. Each transpose operation requires a single startup and a volume of \([k/\sqrt{P}]\). The final two operations are the recursive halving in step (7.3) and the recursive doubling in step (9). Each of these operations requires \(\log_2(P)/2 \) startups and about \([k/\sqrt{P}]\) volume for the slowest processor.

Counting up all these operations and summing over \(k \), we find that the communication operations require time for about \(4.5n \log_2(P/2) \) message startups and the transmission of about \(n^2(\log_2(P)+10)/4\sqrt{P} \) double precision values. The logarithmic term in the communication volume is due to the use of a binomial tree in the broadcast of Householder vectors. For the LU or QR decomposition, an alternative would be to use a ring shift approach, essentially piping the data through the processors. Processors would not be synchronized, but the communication cost could be reduced. Unfortunately, this is not a viable option for tridiagonalization because the matrix-vector multiplication serves to synchronize the processors. In practice, however, a large number of processors need to be involved before the logarithmic term dominates the communication cost.

As stated, the algorithm requires a fairly large amount of space for temporary vectors. However, with a careful implementation, the space in \(V_A, V_B, W_A \) and \(W_B \) is sufficient to hold all the temporary vectors. What remains is the storage of these four arrays and the storage of \(L, z \) and \(\Phi \). This makes for a total of \([n/\sqrt{P}][n/\sqrt{P} + 4\varepsilon + 2]\) double precision values.

This algorithm involves communication among rows and columns of the torus-wrap tile as well as between transpose processors. Without careful mapping to the parallel architecture, these operations may induce substantial contention for wires in the communication network. However, we note that on a hypercube, a judicious choice of processor assignments ensures that none of these operations induces congestion [25]. Although this isn't true on other topologies of parallel machines, we will assume that the communication cost is proportional to the volume calculated above.

A careful analysis reveals that there is only \(\theta(nP) \) redundant numerical computation in this algorithm. Since the computation is well balanced, the total computation time should scale as \(\frac{4}{3}n^3/P + O(n^2) \). The ratio of computation to communication thus is thus \(n/\sqrt{P}(\log_2(P)+10) \). To retain constant efficiency as the number of processors increases, \(n \) must increase slightly faster than \(\sqrt{P} \), and the total amount of memory per processor must increase as \((\log_2(P) + 10)^2\).

5. The Tridiagonal Eigensolver. To solve the symmetric tridiagonal eigenvalue problem, we use the method of bisection to compute the eigenvalues of \(T \) followed by the method of inverse iteration to compute its eigenvectors [1]. This combination seems particularly well-suited to parallel implementation as the eigenpairs can often be computed essentially independently of one another. Indeed, if \(n/P \) eigenpairs are assigned to each processor, it appears that no interprocessor communication is required. When any of the eigenvalues are close, however, inverse iteration cannot produce orthogonal eigenvectors. In this case, the modified Gram-Schmidt (MGS) procedure
is used to reorthogonalize the computed eigenvectors, but, if the close eigenvalues are distributed between processors, their eigenvectors cannot be computed without communication [1].

One parallel MGS algorithm (PMGS) is described in [29]. PMGS uses a ring of processors and so can be implemented on a hypercube or mesh topology. The parallel inverse iteration routine of [29] is based on EISPACK's TINVIT routine [38]. TINVIT rarely performs more than a single step of inverse iteration, meaning that PMGS generally runs a single time at the end of the parallel inverse iteration routine. Subsequent work [31] demonstrated that more than one step of inverse iteration is required to compute accurate eigenvectors and that MGS is needed at each iteration with close eigenvalues. In this context, PMGS can represent a substantial bottleneck. If eigenvalues $\lambda_j, \ldots, \lambda_{k+j+1}$ are close, PMGS requires that eigenvectors x_j, \ldots, x_{j+k} be fully computed and orthogonalized before the second inverse iteration for eigenvector x_{j+k+1} can complete. If $\lambda_j, \ldots, \lambda_{k+j+1}$ do not lie on the same processor, synchronization and communication costs can quickly become prohibitive.

Alternatives to PMGS are the subject of present research. The PNL Peigs code [21] employs a variant of PMGS that orthogonalizes intermediate iterates when converged eigenvectors are not yet available. While this approach works in practice, its numerical properties are unknown. In [9], Chandrasekaran presents mechanisms for reducing the amount of orthogonalization required, but these changes have not yet been used in a parallel implementation of inverse iteration.

A better approach would replace inverse iteration with an altogether different method when eigenvalues are close. One method presently under development by Dhillon, Fernando, and Parlett produces orthogonal eigenvectors for close eigenvalues by associating each of the close eigenvalues with a particular submatrix of the tridiagonal matrix. Nearly orthogonal eigenvectors of the matrix are produced from the eigenvectors of the submatrices [37].

For the purpose of this paper, we use the naive approach described in first paragraph of this section: each processor computes n/P consecutive eigenvalues and their corresponding eigenvectors. This computation is carried out by independent calls to the LAPACK routines DSTEBAZ and DSTEIN [1]. No interprocessor reorthogonalization is performed. The calls to LAPACK routines are preceded by a global exchange of the tridiagonal matrix so that it is in place on all processors. They are followed by a redistribution of the eigenvectors from the block column arrangement in which they are transformed to the torus-wrap distribution required by the backtransformation algorithm.

We recognize that our approach to the tridiagonal eigenproblem is not robust, and we plan to replace our tridiagonal eigensolver with improved code as it becomes available or as we develop it. The ScaLAPACK implementation (PDSTEIN) also excludes interprocessor reorthogonalization but does attempt not to split close eigenvalues between processors [14].

6.1. The Sequential Algorithm. The purpose of the backtransformation is to compute the eigenvectors QX of A from the eigenvectors X of T. Since Q is comprised of a sequence of Householder transformations, we need merely apply these transformations to T in the reverse of the order in which they were applied to A [23]. Because the eigenvector matrix X is nonsymmetric and the basic operations are less complex, the algorithm for backtransformation is much simpler than that for tridiagonalization.
As with our algorithm for tridiagonalization, we would like to use level 3 BLAS to achieve higher performance. As before, this can be accomplished by saving several updates and applying them all at once. Doing so is considerably simpler for backtransformation than it was for tridiagonalization. In particular, we use the WY representation of the sequence of Householder transformations \cite{23}. The sequential algorithm is sketched in Fig. 7.

In steps (1–2), the sequential algorithm merely retrieves information it generated in the tridiagonalization. The WY representation of the sequence of Householder transformations is generated in steps (3–5) and applied to the matrix of eigenvectors in step (6). Note that we use a nonstandard version of the WY representation in which the Householder operations are combined in the reverse of the usual order. Since the individual Householder matrices are symmetric, reversing the order in this way is equivalent to transposing the product. This allows us to apply YW^T instead of the more familiar WY^T in steps (4) and (6). The advantage of our approach is that our Y and W matrices are lower triangular so step (6) can be performed with two invocations of the level 3 BLAS routine \texttt{dtrmm}, consuming a total of $2kn^2$ flops, where k is the number of eigenvectors being transformed. For our implementation, we actually chose not to exploit this efficiency because \texttt{dgemm} on the Paragon is significantly faster than the BLAS routines for triangular matrices. Presumably because of its importance in the LINPACK benchmark, \texttt{dgemm} has received more attention from the library developers.

When k is significantly larger than one, step (6) dominates the computation time. Thus, in contrast to the tridiagonalization routine, the bulk of the flops in backtransformation can be handled by calls to a level 3 BLAS routine. We also note that we need never explicitly form Y since the Householder vectors are already stored properly in L. This will not be the case in the parallel algorithm.

6.1.1. The Parallel Algorithm. Although our parallel backtransformation algorithm has the same structure as the sequential algorithm in Fig. 7, the parallelism inevitably adds some complexity. We use the Householder vectors and their norms as generated and stored by the parallel tridiagonalization algorithm in Fig. 6. We store the eigenvector matrix X in the same square torus–wrap manner in which we distribute L. This arrangement keeps the communication cost of the algorithm low. Unfortunately, the tridiagonal eigensolver described in \S 5 leaves the eigenvector matrix X distributed by block columns so that it must be redistributed before the backtransformation begins. This redistribution is conceptually straightforward so we won’t describe it in detail except to make the following observation. The operations in backtransformation are independent of the ordering of the eigenvectors in X, so we aren’t required to keep them in any particular order. If we let a particular column set β correspond to the eigenvectors computed by \sqrt{P} processors, then these \sqrt{P} processors need only communicate among themselves to remap X. Exploiting this observation allows us to perform the redistribution by having communication among the \sqrt{P} processors in each of \sqrt{P} sets, instead of requiring communication between all processors.

Our parallel backtransformation algorithm is depicted in Fig. 8, with the statement labels matching those in Fig. 7. The algorithm blocksize is denoted B to differentiate it from that used in the tridiagonalization algorithm. As mentioned in \S 2, our code allows these two blocksizes to be tuned independently.

The first notable difference between the parallel and sequential algorithms is indicated by the steps marked (X) which have no sequential counterparts. These steps
keep track of the rows of the eigenvector matrix owned by a particular processor that are modified by the Householder transformation. In the sequential case, this number of active rows simply increases by one with each step.

The second and more substantial complication induced by parallelism occurs in the generation of the vector z_α in step (4). This computation proceeds in two phases: first, the vector $r = W^T v$ is computed and then z_α is obtained by $z_\alpha = (-2/\phi)(v_\alpha + Y_\alpha r)$. Note that each processor owns entire rows of W and Y and that these are distributed so that \sqrt{P} processors could compute the same product $W_\alpha^T v_\alpha$. To avoid this redundant computation, we assign each processor a distinct subset of α, and each computes an independent contribution to the vector r. These results are then summed among all the processors. Computation of the product $Y_\alpha r$ is similarly distributed. Each processor computes a different set of elements of the product, and these results are concatenated within processor rows to produce the vector z_α.

The final change in the parallel algorithm happens in step (6), the update of the eigenvectors. As with step (4), this operation is broken into two steps, the multiplication by W_α^T followed by the multiplication by Y_α. Since each processor owns a distinct set of elements of X, there is no concern here with duplicating computation. Each processor first computes its own values for the $B \times (k/\sqrt{P})$ matrix product $W_\alpha^T X$ using a call to dgemm. Although the complete W matrix is lower triangular, the portion owned by a particular processor does not have such a nice structure, so we can't use dtrmm. The values in this product must be summed among the processors owning a column of X to yield Z_β. Since there may be a large number of values being summed, we perform this with a recursive halving, followed by a recursive doubling to avoid duplication of numerical operations. Each processor can then update its elements of X independently via another call to dgemm.

Although this organization does not allow us to exploit the triangular structure of W and Y, the total amount of unnecessary computation is $O(kB^2)$ when k eigenvectors are backtransformed. As long as the blocksize B is much less than n, the impact of the redundant computation is not significant, and typical values of B are less than 10. The total number of floating point operations in the backtransformation algorithm is $2kn^2 + O(kB^2)$ (we assume that $n \gg B$). The flops are well balanced among processors, and the dominant calculation is entirely within level 3 BLAS.

The communication occurs in steps (1&2), (4) and (6). As with the parallel tridiagonalization algorithm, this backtransformation approach requires the processors to remain synchronized, so we can't perform the broadcast of Householder vectors as a ring shift efficiently. Instead, we use a binomial tree, and, assuming the communication cost is dominated by transmission time, this induces a cost of $n^2 \log_2(P)/4\sqrt{P}$. In step (4), the summation of r vectors costs a total of $nB \log_2(P)/2$, while the recursive doubling costs $n^2/2\sqrt{P}$. The recursive halving and doubling in step (6) requires a total communication volume of $2nk/\sqrt{P}$. Summing all of this communication volume gives a total of $(n/\sqrt{P})(n \log_2(P)/4 + n/2 + 2k)$. As with our tridiagonalization algorithm, the logarithmic broadcast of Householder vectors is the dominant communication cost asymptotically.

Like the tridiagonalization algorithm, the temporary vectors v_α and z_α can use space inside Y_α and W_α. Besides W and Y, the algorithm needs space for L, Φ, X and Z, consuming a total of $[n/\sqrt{P}](\lfloor n/\sqrt{P} \rfloor + \lfloor k/\sqrt{P} \rfloor + 3B + 1)$ double precision values.

7. Experimental Results. We have implemented our algorithm on the Intel Paragon, a mesh-connected MIMD computer at Sandia's Massively Parallel Comput-
ing Research Laboratory, running the SUNMOS operating system. Although each logical node in the Paragon has two processors, the results reported below for our code and its counterpart in ScaLAPACK Version 1.0 use only a single processor per node. Our results are for random matrices with entries selected uniformly between -1 and 1. In all tests, all eigenvalues of the tridiagonal matrix are computed and backtransformed (i.e., \(k = n \)), although no times for the tridiagonal problem are reported.

We first ran a sequence of factorizations of a 4000 \(\times \) 4000 matrix on 64 processors in which we varied the algorithmic blocksize. The run times for our Householder tridiagonalization and backtransformation routines (HJS) and for the ScaLAPACK tridiagonalization and backtransformation routines (SLP) are shown in Fig. 9. All four routines reach a minimum runtime for blockizes near 10, and the HJS routines show little variation in runtime for larger blockizes. The ScaLapack routines, on the other hand, show a marked increase in runtime for the larger blockizes. In particular, at a blocksize of 10, the ratio of the time for SLP to the time for HJS is 1.56. This ratio grows to 1.78 for a blocksize of 50. This increase is due to the load imbalance which accompanies ScaLAPACK's use of storage blocking. Clearly, an implementation with algorithm blocking but no storage blocking (like HJS) scales better as the blocksize is increased.

Another notable feature of the figure is the variation in optimal block size for the different algorithms. In these experiments, the best blocksize for the backtransformation is smaller than that for the tridiagonalization. However, the code performance is very similar over a range of blockizes. So the freedom within HJS to use different blockizes for the different algorithms seems to be of only modest value. For fairness in comparisons, we used a blocksize of 10 in all subsequent experiments.

Next, we ran two different fixed-size problems on a range of machine sizes (with blocksize of 10). The tridiagonalization results are shown in Fig. 10, while those for backtransformation are in Fig. 11. The most notable point about the tridiagonalization times is that HJS is significantly faster than SLP, even on a single processor. We do not have an adequate explanation for this difference, but it may be due to SLP's need to work for an arbitrary \(q \times r \) tile of processors, while HJS is limited to a square tile. The SLP generality induces code complexity which could lead to reduced performance. The shape of the tridiagonalization curves is quite similar, indicating similar scalability in the two implementations.

In contrast to the tridiagonalization runtimes, the difference in backtransformation performance revealed in Fig. 11 is relatively small on modest numbers of processors. This similar performance provides evidence that the software overheads incurred by SLP for portability are small, at least when the problem size per processor is fairly large. As expected, the reduction in message number allowed by the block torus-wrap mapping translates to a better performance for SLP as the number of processors increases. For the 1500 \(\times \) 1500 matrix on 100 processors, the SLP backtransformation code takes only 64% of the time required by HJS.

Although serial backtransformation requires 1.5 times the number of floating point operations of serial tridiagonalization the tridiagonalization takes much more time than the backtransformation for both HJS and SLP. This is due to several factors. While all the backtransformation flops are level 3, half the tridiagonalization flops are level 2. Also, the level 3 operation in the HJS implementation is performed in an awkward manner since the appropriate BLAS operation is missing. Finally, the amount of communication in the parallel tridiagonalization algorithm is significantly

16
greater than the amount in backtransformation.

Thus, for block sizes of 10 and a range of problem sizes, HJS tridiagonalization is substantially faster than SLP while HJS backtransformation is somewhat slower. But since tridiagonalization is a much more costly operation, the overall performance of HJS is significantly better than that of SLP. Fig. 12 shows the total time for tridiagonalization, and backtransformation versus number of processors for both HJS and ScaLapack for matrix order \(n = 1500 \). This plot does not include time for solution of the tridiagonal eigenproblem. The total time for ScaLapack is about 1.33 times greater than the time for HJS for all machine sizes.

Next, we ran a series of experiments in which the problem size grew with the number of processors so that the submatrix owned by each processor remained of size 500 x 500. Figs. 13 and 14 show the performance of the tridiagonalization and backtransformation codes respectively for this set of problems. In computing the flop/s numbers, we have assumed the optimal sequential flop count of \(\frac{43}{7} \) for tridiagonalization and \(2n^3 \) for backtransformation. The dotted diagonal line in the two figures corresponds to a perfect (scaled) speedup of the HJS code from its single processor level. Both codes scale fairly well. On a single processor, the HJS tridiagonalization runs at 31.0 Mflop/s, while it runs at 5.06 Gflop/s on 256 processors. This yields a scaled efficiency of 63.7%. The corresponding speeds for SLP are 18.6 Mflop/s on one processors and 3.34 Gflop/s on 256, implying a scaled efficiency of 70.0%. The performance of the HJS tridiagonalization is consistently 1.5 to 1.6 times that attained by SLP.

The comparatively simple backtransformation code scales better than the more complex tridiagonalization. On one processor the HJS backtransformation attains 45.4 Mflop/s, and on 256 it runs at 9.42 Gflop/s, implying a scaled efficiency of 81.1%. For SLP backtransformation, the performance is 42.4 Mflop/s on one processor and 9.37 Gflop/s on 256; a scaled efficiency of 86.3%.

These comparisons lead us to the following observations.

- Block storage is not necessary for block algorithms and level 3 performance. Indeed, the use of block storage leads to significant load imbalance when the blocksize is large. This is not a concern on the Paragon, but may be problematic for machines requiring larger blocksizes for optimal BLAS performance [40].
- Although unnecessary for block algorithms, block storage does enable a reduction in the number of messages (but not the total message volume) for some matrix transformations. Specifically, the ScaLAPACK backtransformation algorithm is superior to ours due to the use of block storage.
- When the piece of the matrix owned by a processor is large, ScaLAPACK can perform nearly as well as a more targeted implementation. This indicates that the ScaLAPACK overhead associated with portability and library reuse is modest, at least for large problems.
- We believe that one reason for the superior performance of our tridiagonalization routine is that we constrained our implementation to a square torus, thereby simplifying the code significantly. With parallel software, there is a tradeoff between performance and generality, and our results argue that the cost of generality can be significant.

8. Conclusions. We have described a parallel methodology for finding eigenvalues and eigenvectors of dense, symmetric matrices, focusing on the reduction to tridiagonal form and the backtransformation of the eigenvectors. The symmetric
eigenproblem is an ideal vehicle for investigating the tradeoffs associated with algorithmic variants because it involves several computational stages with quite different properties. The efficiency of our approach is a result of carefully minimizing the communication in the algorithm and maximizing the use of level 3 BLAS kernels. An important observation is that block storage of the matrix is not necessary for a block algorithm, but that block storage does have advantages in the backtransformation. We are aware of no advantage of block storage except for algorithms (like backtransformation) in which it allows for fewer, longer messages.

While our implementation runs faster than other available software for a variety of problem and machine sizes, the efficiency of tridiagonalization is limited by the need for level 2 BLAS operations in forming the updating vector \(p \). Its performance is further constrained by the absence of a BLAS 3 routine for performing a nonsymmetric outer product update of a lower triangular matrix. The most efficient alternative is to apply the dense matrix routine to panels which cover the lower triangular matrix.

Note that the nonsymmetric outer product update of a lower triangular matrix is not an operation unique to the parallel tridiagonalization routine. It also arises, for example, in the indefinite linear system solver of [32]. The software for that problem is similarly slowed by the lack of the appropriate BLAS 3 routine.

Although our implementation is written using native Paragon communication calls, we use only simple send and receive calls, and so the code should be easy to port to other platforms.

Our generalization of recursive halving and doubling to an arbitrary number of processors is likely to be of independent interest, as these communication operations are quite widely used.

Acknowledgements. We are also deeply indebted to Ken Stanley for insights into the tradeoffs associated with the use of block storage. We also appreciate the helpful discussions we had with Robert van de Geijn, Xiaobai Sun and David Womble about the tridiagonalization algorithm. We are further indebted to Robert for providing preliminary communication routines on the Paragon.
(Processor \(q \) holds rows \(\alpha \) and columns \(\beta \) of \(L \), which is
the lower triangular part of \(A \in \mathbb{R}^{n \times n} \).)

(\(\Phi \in \mathbb{R}^{n/\sqrt{N}} \) saves norms of Householder vectors for
backtransformation. *)

(\(b \) is the number of columns in a block. *)

(\(V_\alpha, V_\beta, W_\alpha, W_\beta \in \mathbb{R}^{\sqrt{N} \times b} \) are reused each outer iteration. *)

(\(z_\alpha, y_\beta, y_\beta, p_\alpha, v_\alpha, v_\beta, w_\alpha, w_\beta \in \mathbb{R}^{n/\sqrt{N}} \).)

\[N = [(n - 2)/b] \]

For \(j = 1 : N \)

\[V_\alpha = [0] ; W_\alpha = [0] ; V_\beta = [0] ; W_\beta = [0] \]

\(s = (j - 1)b + 1 \) (* First column in block. *)

\(t = \min(N - 2, s + b - 1) \) (* Last column in block. *)

For \(i = s : t \) (* Form the block of updates. *)

\[(X) \]

If \(i \in \alpha \) Then \(\alpha = \alpha \setminus \{i\} \) (* Remove \(i \) from active rows. *)

(* Generate and broadcast next Householder vector. *)

(1)

(1) Broadcast \(v_\alpha \) to processors sharing rows \(\alpha \)

(1) Else Receive \(v_\alpha \)

(2) \(\mu^a = \) independent contribution to \(v^T v \)

(2) Sum \(\mu^a \) contributions to form \(\mu \), and append \(v(i + 1) \) to communication

(3) If \(i + 1 \in \alpha \) Then (* Update first element of \(v \). *)

(3) \(v(i + 1) = v(i + 1) + \text{sign}(v(i + 1))/\mu \)

(4) If \(i \in \beta \) Then (* Compute subdiagonal element of \(T \). *)

(4) \(L(i + 1, i) = -\text{sign}(L(i + 1, i))/\mu \)

(5) \(\phi = 2(\mu + |v(i + 1)|/\mu) \)

If \(i \in \beta \) Then

(6) \(\Phi([i/\sqrt{N}]) = \phi \) (* Save norm for backtransformation. *)

(X) \(\beta = \beta \setminus \{i\} \) (* Remove \(i \) from active columns. *)

(* Get elements of \(v^T \) to the correct processors. *)

(1) Send \(v_\alpha \) to transpose processor

(1) Receive \(v_\beta \) from transpose processor

(7.1) \(x_\alpha = L(\alpha, \beta)v_\beta \) (* Without diagonal. *)

(7.2) \(y_\beta = v_\beta^T L(\alpha, \beta) \) (* With diagonal. *)

(7.3) Send \(y_\beta \) to transpose processor

(7.3) Receive \(y_\alpha \) from transpose processor

(7.3) \(p_\alpha = x_\alpha + y_\alpha \)

(7.3) Recursive halve \(p_\alpha \) within rows yielding \(p_\eta \)

(7.4) \(\delta^2 = V_\alpha^T v_\eta \)

(7.4) \(\epsilon^2 = W_\alpha^T v_\eta \)

(7.4) Sum \(\delta^2 \) and \(\epsilon^2 \) among all processors yielding \(\delta \) and \(\epsilon \)

(7.4) \(\zeta = \eta \cap (i + 1 : N) \) (* Just indices outside block. *)

(7.4) \(p_\zeta = p_\zeta - \epsilon V_\zeta - \delta W_\zeta \)

(7.4) (* Compute \(w \). *)

(8) \(\gamma^2 = p_\eta^T v_\eta \)

(8) Sum \(\gamma^2 \) among all processors yielding \(\gamma \)

(9) \(w_\eta = \frac{2}{\gamma} [p_\eta - \frac{2}{\phi} v_\eta] \)

(9) Recursive double \(w_\eta \) within rows yielding \(w_\alpha \)

(Y2) Send \(w_\alpha \) to transpose processor

(Y2) Receive \(w_\beta \) from transpose processor

(10.1) \(\nu = \beta \cap (i + 1 : t) \) (* Columns within current block. *)

(10.1) \(L(\alpha, \nu) = L(\alpha, \nu) - v_\alpha w_\nu^T - w_\alpha v_\nu^T \)

(10.2) \(V_\alpha = [V_\alpha \ v_\alpha] ; V_\beta = [V_\beta \ v_\beta] \)

(10.3) \(W_\alpha = [W_\alpha \ w_\alpha] \ ; W_\beta = [W_\beta \ w_\beta] \)

(10.4) \(L(\alpha, \beta) = L(\alpha, \beta) - V_\alpha W_\beta^T - W_\alpha V_\beta^T \)

Fig. 6. Parallel block algorithm for Householder tridiagonalization for processor \(q \).
(*) $X \in \mathbb{R}^{n \times k}$ matrix of eigenvectors; $v, w, p \in \mathbb{R}^n$. *)
(* $L \in \mathbb{R}^{n \times n}$ matrix of Householder vectors. $\Phi \in \mathbb{R}^n$ Householder norms. *)
(* $W, Y \in \mathbb{R}^{n \times \bar{b}}$ are reused each outer iteration. *)
(* \bar{b} is the number of columns in a block. *)

\[
N = \left\lfloor \frac{n - 2}{\bar{b}} \right\rfloor
\]

For $j = N : 1 : -1$

\[
W = [0]; Y = [0]
\]
\[
s = (j - 1)b + 1
\]
\[
t = \min(n - 2, s + b - 1)
\]

For $i = t : s : -1$ (* Form the block of updates. *)

1. $\phi = \Phi(i)$ (* $\phi = v^Tv$, saved from tridiagonalization. *)
2. $v = L(i + 1 : n, i)$ (* Householder vector from column i of L. *)

If $(i = t)$ Then

\[
z = \phi^2 v
\]

Else

\[
z = \frac{1}{\phi} (I + YW^T) v
\]

\[
W = [z \ W]; Y = [v \ Y]
\]

(* Update eigenvectors. *)

\[
X = (I + YW^T) X
\]

Fig. 7. Sequential block algorithm for backtransformation
(* Processor q owns row set \(\alpha_0 \) and column set \(\beta \) of eigenvectors \(X \in \mathbb{R}^{n \times k} \) and Householder vectors \(L \in \mathbb{R}^{n \times n} \). *)

(* \(\Phi \in \mathbb{R}^{n/\sqrt{p}} \) Householder norms; \(B \) is the number of columns in a block. *)

(* \(Y_\alpha, W_\alpha \in \mathbb{R}^{n/\sqrt{p} \times B} \) reused each outer iteration; \(v_\alpha, z_\alpha \in \mathbb{R}^{n/\sqrt{p}} \). *)

(* \(Z_\beta \in \mathbb{R}^{B \times \sqrt{p}} \). *)

\[N = [(n - 2)/B] \]

(X) \(\alpha = \emptyset \)

(X) If \((n \in \alpha_0) \alpha = \alpha \cup n \)

For \(j = N : 1 : -1 \)

\[W = [\emptyset]; Y = [\emptyset] \]

\[s = (j - 1)B + 1 \]

\[t = \min(n - 2, s + B - 1) \]

For \(i = t : s : -1 \) (* Form the block of updates. *)

(X) If \((i + 1 \in \alpha_0) \alpha = \alpha \cup i + 1 \) (* Add \(i + 1 \) to active rows. *)

(* Retrieve and broadcast Householder vector & norm. *)

(1&2) If \((i \in \beta) \) Then

(1) \(v_\alpha := L(\alpha, i) \)

(2) \(\phi = \Phi([i/\sqrt{p}]) \) (* Retrieve Householder norm.*)

(1&2) Broadcast \(v_\alpha \) and \(\phi \) to processors sharing rows \(\alpha \)

(1&2) Else Receive \(v_\alpha \) and \(\phi \)

If \((i = s) \) Then (* First pass through inner loop. *)

(3) \(z_\alpha = \frac{-\phi}{\phi} v_\alpha \)

Else (* Compute \(z_\alpha = \frac{-2}{\phi} (I + YW^T)v_\alpha \). *)

(4) \(r^\beta = \) independent contribution to \(W_\alpha^\beta v_\alpha \) (* \(r^\beta \in \mathbb{R}^{i-i} \). *)

(4) Sum \(r^\beta \) among all processors yielding \(r \)

(4) \(z_\alpha^\beta = \) independent set of rows of \(\frac{-2}{\phi} (v_\alpha + Y_\alpha r) \)

(4) Recursive double \(z_\alpha^\beta \) within rows yielding \(z_\alpha \)

(5) \(W_\alpha = [z_\alpha W_\alpha]; Y_\alpha = [v_\alpha Y_\alpha] \)

(* Update eigenvectors. *)

(6) \(Z_\beta^\beta = W_\alpha^T X(\alpha, \beta) \)

(6) Sum \(Z_\beta^\beta \) within columns yielding \(Z_\beta \)

(6) \(X(\alpha, \beta) = X(\alpha, \beta) + Y_\alpha Z_\beta \)

Fig. 8. A parallel block backtransformation algorithm for processor q.
Fig. 9. Time for the HJS and ScaLapack tridiagonalization and backtransformation routines versus block size.

Fig. 10. Time for the HJS and ScaLapack tridiagonalization routines versus number of processors for matrix orders $n = 600$ and $n = 1500$.

22
FIG. 11. Time for the HJS and ScaLapack backtransformation routines versus number of processors for matrix orders $n = 600$ and $n = 1500$.

FIG. 12. Time for the HJS and ScaLapack tridiagonalization, and backtransformation routines versus number of processors for matrix order $n = 1500$.

23
Fig. 13. Mflop/s for HJS and ScaLapack tridiagonalization versus number of processors when the matrix order is varied so that there are 500×500 matrix elements per processor.

Fig. 14. Mflop/s for HJS and ScaLapack backtransformation versus number of processors when the matrix order is varied so that there are 500×500 matrix elements per processor.
REFERENCES

