
SAND96-0822J

A PARALLEL EIGENSOLVER
FOR DENSE SYMMETRIC MATRICES*

BRUCE Hendrickson , ELIZABETH JESSUP† , AND CHRISTOPHER SMITH§

Abstract. We describe a parallel algorithm for finding the eigenvalues and eigenvectors of a
dense symmetric matrix. We follow the traditional three step process: we reduce the dense matrix
to tridiagonal form, solve the tridiagonal problem then backtransform the result. Since the different
steps have different algorithmic characteristics, this problem serves as an perfect vehicle for exploring
some issues associated with parallel linear algebra calculations, In particular we examine the effects
of matrix distribution and blocking on the computational performance of tridiagonalization and
backtransformation. Through experiments on an Intel Paragon, we demonstrate that block storage
of the matrix is not necessary for a highly efficient block algorithm. We compare the performance of
our implementations to that of the corresponding ScaLapack routines.

1. Introduction. Large order symmetric eigenvalue problems arise in a variety
of contexts ranging from real-time signal processing [39] to the analysis of electri-
cal networks [13] to the modeling of acoustic and electromagnetic waveguides [33].
Because determining the eigenvalues and eigenvectors of large matrices is a time-
consuming process demanding extensive memory, such applications motivate the study
of parallel implementations of symmetric eigensolvers. The increased computing and
storage resources provided by multiprocessors can allow efficient solution of large order
problems. This paper describes a scalable parallel approach to calculating eigenvectors
and eigenvalues of dense symmetric matrices and presents results of its implementa-
tion on the Intel Paragon. The emphasis of this paper is on the dense linear algebra
operations and not on parallel algorithms for the tridiagonal eigenproblem.

Our work was motivated by two main considerations. First and foremost was our
desire to provide a tool for scientists and engineers who need to solve large eigen-
problems. Although several such codes are now available [12, 35], none was when we
embarked upon this project. Second, we were interested in studying the capabilities
and limitations of parallel computers for dense linear algebra problems that are sig-
nificantly more complex than the well-studied problem of LU factorization. Thus, in
implementing our eigensolver, we intentionally chose a different algorithmic approach
than that used in ScaLAPACK. Specifically, our approach does not require that the
matrix be stored in a blocked manner. As we discuss in §2, this choice has both ad-
vantages and disadvantages, and the symmetric eigenproblem is a perfect application
with which to investigate them. Furthermore, unlike the developers of ScaLAPACK,
we had the luxury of being able to target our code to a single parallel machine and
to ignore issues of software portability and reuse of library routines. This gave us the
chance to quantify the performance impact of these constraints within ScaLAPACK.

While portability was not our main concern, porting our code to another machine
is not a difficult task. All communication is based on the Intel csend/crecv and

* Submitted to SIAM J. Sci. Comput.
† Applied & Numerical Math Dept., Sandia National Labs, Albuquerque, NM 87185–1110.

bah@cs.sandia.gov. Hendrickson and Smith were funded by the Applied Mathematical Sciences
program, U.S. DOE, Office of Energy Research, and performed research at Sandia National Labs,
operated for DOE under contract No. DE-AC04-76DPOO789.

† Dept. Computer Science, Univ. Colorado, Boulder, CO 80309–0430. jessup@cs.colorado.edu.
Jessup was funded by DOE contract DE-FG02-92ER25122, and by an NSF Young Investigator
Award.

§ Advanced product & process Technology, A.O. Smith, Milwaukee, WI .53216.
Xmascb@aol.com.

1

-,.

isend/irecv communication primitives. ‘Thus, the code would run immediately on
the Intel machines supporting those commands (the iPSC/2, iPSC/860, and Delta).
Indeed, initial development of this code took place on an iPSC/860, and tests of a
preliminary version of the code on that machine showed that good performance was
attained on the hypercube. Changing the primitives to the MPI equivalents would
allow the code to run on any machine on which MPI is available.

The traditional method for determining the eigensystem of a real, dense symmet-
ric matrix A employs a three step technique [23]. First, A is reduced to symmetric
tridiagonal form using a series of Householder transformations. Next, the eigensystem
of the tridiagonal matrix T is computed. The eigenvalues of A are the same as those
of T, while the eigenvectors of A are found in the third step by backtransforming the
eigenvectors of T via the reduction transformations [38]. Specifically, if the transfor-
mations are accumulated into the matrix Q, the tridiagonal matrix T is formed by
the matrix product T = Q~AQ. If the eigendecomposition of T is T = XDXT, then
the eigendecomposition of A is A = (QX)D(QX)~.

Although the sequential algorithms for the tridiagonalization and backtransfor-
mation steps are well understood, tridiagonal eigensolvers continue to be an area of
active research (see [1, 23, 30, 31] for surveys.) With respect to parallel algorithms,
the situation is somewhat reversed. There has been more work on the tridiagonal
eigensolver than on parallel methods for tridiagonalization. Investigation of paral-
lel tridiagonal eigensolvers began with Huang’s 1974 study of multisection on the
ILLIAC IV [27] and continued with the implementation of several other tridiagonal
eigensolvers on a variety of shared– and distributed–memory computers and their
simulators [2, 3, 4, 5, 20, 29, 34, 35, 36].

Work cm parallel tridiagonalization and backtransformation algorithms began
more recently and has been. confined to distributed–memory machines. Chang et
al, described> but did not implement, two parallel versions of the Householder tridiag-
onalization algorithm for the hypercube in 1988 [10, 11]. One of these algorithms uses
the one dimensional mapping of matrix elements to processors that was the common
choice at the time. The second employs a two dimensional mapping that is now gener-
ally recognized as superior for dense linear algebra calculations. We explain why in ~2.
Several parallel implementations of the traditional tridiagonalization algorithm have
appeared recently. These include one dimensional mappings on the Intel iPSC/860
by Dongarra and van de Geijn [16] and by Farm, Littlefield, and Maschhoff [35], a
two dimensional mapping on the nCtJBE 2 by Hendrickson and Womble [26], and
a two dimensional mapping by Choi, Dongarra and Walker as part of the ScaLA-
PACK project [12] which was developed simultaneously with the current work. This
last reference is the most similar to ours. The differences are discussed in the next
section.

A general approach to parallel band reduction has been proposed by Bischof,
Marquez and Sun [6, 7], but this algorithm looks to be uncompetitive for dense ma-
trices. An entirely different parallel eigensolver rich in efficient matrix-matrix (level
3 BLAS) operations has been proposed by Huss-Lederman, Tsao, and Zhang [28]. A

parallel algorithm based on one-sided rotations has been described by 13egland in [24].
In 52, we contrast the data mapping used in our algorithm with that used in

ScaLAPACK, and, in 53, we describe the communication operations our algorithm
requires. In $4, we review the sequential algorithm for Householder tridiagonaliza-
tion and describe and analyze our parallel counterpart. This is the most complex
parallel algorithm in this paper. In $5, we explain how we approach the tridiagonal

2

.!‘,

eigenproblem. In \6~we describe our parallel implementation of backtransformation.
In ~7, we provide timings of our code on the Intel Paragon along with comparisons to
ScaLAPACK, followed by conclusions in $8.

2. Preliminaries. The efficiency of a parallel algorithm depends largely on the
cost of data movement between processors. This cost, in turn, depends both on the
initial mapping of data to processors and on the algorithms used for interprocessor
communication. In this section, we describe the data distribution we use in our
algorithm and contrast it with the distributions supported in the ScaLAPACK project.

A critical first step in devising a parallel linear algebra algorithm is deciding which
matrix elements are assigned to which processors. We chose to use a square iorus-
wrap mapping, a special case of the torus-wrap mappings that have been successfully
applied to a variety of dense linear algebra problems.

One way to describe a square torus mapping is to consider a square tile of size
@x@, where P is the number of processors in the parallel machine. Each element
of the tile is assigned a unique value between Oand P – 1. The matrix is then covered
with these tiles, and a matrix element is assigned to the processor whose tile number
overlays it. In this way, each row and each column of the matrix is distributed
among @ processors. The matrix elements owned by a particular processor lie at
the intersection of a set of rows and a set of columns of the matrix. Note that for a
symmetric matrix, the array of elements owned by a processor is the transpose of the
array owned by the processor in the transpose location on the tile. Equation (1) shows
how the elements of a 7 x 7 matrix A would be distributed among 9 = 32 processors
according to a square torus mapping. The number in position (i, j) of the matrix &f
shows the processor to which matrix element i4(i, j) is assigned.

[

0360360
1471471
2 582582

(1) M= 0360360
1471471
2582582
0360360

At first glance, it seems that this mapping precludes the use of block algorithms and
level 3 BLAS since the elements owned by a processor are not contiguous in the matrix.
But this widely held belief is wrong, as has been observed by several researchers [8, 42]
The algorithms we describe below for tridiagonalization and backtransformation use
level 3 BLAS. A more detailed discussion of the properties of the torus-wrap mapping
can be found in [26] and the references therein.

Our reasons for using a square torus-wrap mapping are threefold. First, com-
pared to a row or column mapping, a torus mapping reduces the communication
requirements by a factor of @ [26]. Second, the square torus allows for an efficient
implementation of matrix-vector multiplication [25] which is an important step in the
tridiagcmalization algorithm, And third, a square torus simplifies the exploitation of
matrix symmetry. On the other side of the ledger, insisting on a square torus restricts
our algorithm to run on a number of processors that is a perfect square. This restric-
tion limits the machine sizes on which our software can run. For instance, the Intel
Paragon at Sandia National Labs has 1840 processors, but we are only able to use
1764 of them – a loss of over 470.

3

1

The ScaLAPACX eigensolver supports a range of data distributions that are in
many ways more general than ours but in a crucial way more restrictive. First,
ScaLAPACK does not insist upon a square tile but rather aHows a tile of arbitrary
rectangular shape, We chose not to allow this generality because it significantly
complicates the code and becauseJ in practice, the tile must be nearly square for
optimal performance to be obtained.

The second manner in which our code differs from ScaLAPACK is that the latter
employs a block torus mapping. In this decomposition, the matrix is first decomposed
into square blocks, and these blocks are assigned to processors in a torus-wrap manner.
In this case, each element in the tile described above covers a d x d block of the matrix
instead of a single entry. Thusl the mapping our code supports is a special case of
the block torus mapping in which d = 1. We say that ScaLAPACK employs sforage
blocking while our approach does not.

TO obtain peak performance on processors with a memory hierarchy, it is necessary
to avoid cache misses as much as possible. In dense linear algebra calculations, this is
achieved by recasting algorithms to be rich in matrix–matrix operations carried out
by Ievel 3 BLAS routines. The archetypical level 3 routine is the dgemmoperation in
which an m x n matrix A is updated by the product of matrices U and VT of respective
sizes m x k and k x n (A = A + UV~). Typically, k is much smaller than m and n,
but making it larger than 1 allows for cache reuse and greater overall performance. In
practice, this means that matrix updates have to be delayed and performed in blocks
instead of singly. We refer to this organization of operations as algorithmic blocking.

In principle, the concepts of storage blocking and algorithmic blocking are com-
pletely independent, But as a practical matter, a code that completely decoupled
them would be painfully complex. To avoid this complexity, ScaLAPACK imposes
the restriction that the size k of the algorithmic blocking is equal to d, the size of the
storage blocking. We instead chose to restrict storage blocking to be equal to 1 but
to impose no restriction on the algorithmic blocking.

Our approach has several advantages when compared to the ScaLAPACK ap-
proach and one disadvantage. The first and probably most important advantage is
that our mapping is simpler from a user’s perspective. Not only is there one less
degree of freedom in the mapping, but also the user can alter algorithmic blocking
witbout having to realistribut e the matrix among processors. Second, in linear al-
gebra operations involving several matrix transformations, the algorithmic blocking
size can take on optimal values for each transformation independently. When the
algorithmic blocking is constrained by the storage blocking, this freedom is lost. The
symmetric eigenproblem is such a multistep operation} and so it is an excellent prob-
lem with which to investigate these tradeoffs, Third, the amount of load imbalance is
generally proportional to the linear size of a storage block [26]. If a processor needs
large blocks to obtain peak performance, this load imbalance can significantly degrade
performance, as was observed by Stra,.zdinsfor LX-Jfactorization on the APIOOO [40].

The commonly stated advantage of block storage is that it is necessary for block
algorithms. As we mentioned above} this supposed advantage is a mirage. However}

in some settings block storage does have a distinct, though not widely appreciated,
advantage over our approach. Most linear algebra algorithms modify a contiguous
block of matrix elements or a block of columns and then apply some transformation
to the remainder of the matrix. In some cases, the modification of the block is
independent of the remainder of the matrix. If so, and if the block is owned by a
single processor, then the block can be modified and sent to other processors in a

4

single message. In this way, the number of messages can be reduced (although not
the total volume of communication), thereby speeding up the algorithm.

As a concrete example, consider LU factorization with and without pivoting.
Without pivoting, a diagonal block of the transformation can be generated without
any information about the remainder of the matrix. This block can then be sent
to other processors in a single message and used to update the remainder of the
matrix. With pivoting, the transformation is not independent of the remainder of
the matrix. Updates must be applied before the next pivot element can be selected.
Thus, messages cannot be bundled into a single large message but rather must be sent
individually after each column is transformed.

In this respect, Householder tridiagonalization is like LU factorization with piv-
oting while backtransformation is like LU factorization without pivoting. Thus$ while
our storage scheme is advantageous for tridiagonalization, it is disadvantageous for
backtransformation. Since we don’t use block storage, our approach requires com-
munication after each column operation in the backtransformation. In contrast, the
ScaLAPACK implementation of backtransformation requires communication only at
the end of each block. It is this fundamental difference between tridiagonalization
and backtransformation that makes the symmetric eigenproblem an ideal vehicle by
which to investigate the significance of these algorithmic tradeoffs.

3. Communication Operations. Our parallel algorithm involves three well-
known communication patterns described in ~3.1 and two more complex ones de-
scribed in ~3.2 below.

3.1. Basic Communication Patterns. The first basic pattern is point-to-point

communication in which one processor sends a message to another. In our algorithm
the pair of interacting processors are those lying in transpose positions in the tile defin-
ing the square torus mapping. Point-to-point communication is a primitive operation
on any message passing parallel computer.

The second communication pattern is a broadcast where a, processor sends the
same message to several others. Our broadcasts involve all the @ processors in a
single row or single column of the square torus tile, This operation is performed in
[logz @l stages and can generally be performed without any contention for wires.
Consider, for example, the simple situation in which the @ processors are connected
by a single path of wires. In the first step, the processor originating the message sends
it to the processor that is @/2 wires away. In the next step, both processors send
it to their counterparts which are 0/4 wires away, and so on.

Our third communication operation is global summation in which each processor
begins with a value and ends with the sum of all the processors’ values. This operation
can be implemented in a variety of ways, and code for it is generally provided by the
parallel computer vendor. We used our own implementation based on an exchange
operation that requires [logz P + II stages. Let q = 2~ be the largest power of two no
larger than F’. In the first stage, each processor numbered at least q sends its value
to a processor numbered less than q. Each receiving processor adds the arriving value
to its own. In each of the subsequent k stages, each processor r numbered less than
q exchanges its value with a processor whose number differs from r in a single binary
bit and adds the received value to its own running total. At the end of these stages,
all processors numbered less than q hold the sum of all the values. In a final stage,
this sum is communicated back to the processors numbered at least q.

5

[

3.2. Recursive Halving and Doubling for Arbitrary Processor Number.
The fourth and fifth communication patterns required by our algorithm are known
as recursive ?iaJvingand recursive doubling. As with broadcasting, we only use these
operations among processors in a row or a column of the square torus tile.

In the recursive halving operation, each of F’ processors begins with a vector of
length n and completes with n/P elements of the element-wise sum of the P vectors.
In the recursive doubling operation, each of P processors begins with a vector segment
of length n/P and ends with the vector of length n formed by concatenating the P
vector segments in order.

Previous descriptions of these algorithms rely on having a number of processors
that is a,power of two [22, 41]. In contrast, our algorithm allows arbitrary numbers
of processors. In the remainder of this section, we present the details of the recursive
halving and doubling operations. To our knowledge, these generalizations are new.

We first describe recursive halving of a vector v of length n on an arbitrary number
P of processors. For simplicity of prese~tation, we assume that P divides n, although
the algorithm is readily modified to work when this assumption does not hold. The
recursive halving operation begins by dividing the processors into two sets 7? and S
of respective sizes r = ($1 and s = [~]. The processors in the two sets are numbered
RO, nl, ..., %?,_l and S., S1, ..., S~- ~. TO begin recursive halving, each processor
splits its vector v into two segments t and b (for top and bottom) of respective lengths
r(n/P) and s(n/P) so that VT = (-t~j bT).

When the number of processors F’ is even, each processor %!~ in 7? pairs with
its corresponding processor Sk in S. Processor 73~ sends its vector b to Sk while
processor Sk sends its vector t to ‘l?~. Processor 7i!~ then adds the vector it receives
to its own vector -t while processor Sk adds the vector it receives to its vector b. In
this way, R~ updates the top r(n/P) elements of the vector v while Sh updates the
bottom s(n/P) elements,

When the number of processors is odd, r = s+ 1, and a simple pairing of processors
leaves processor R.- ~ unpaired and idle. However, all processors can be included and
their workload well-balanced by requiring each processor from group S to pair with
two processors in group 7?. In this way, all processors in R are paired with two
processors in S (except for 7?0 and 7?,- 1 which communicate only with So and S,_ 1,
respectively).

F’rocessor7?~, k = 1, ..., r —1, now sends the first k(n/P) elements of its vector b

to to processor Sk-1 and the rest of its vector b to processor Sk, (Note that processors
720 and 7?,,- 1 send their full b vectors to their partners in S.) At the same time,
processor Sk, O= 0, , ,., s – 1, sends the first (s – k) (n/P) elements of its vector t to
to processor 7?~ and the rest of its vector t to processor l?~+l.

In this way, each processor in 7? receives a total of s(n/P) vector elements and
adds them to the elements of its vector t. Each processor in S receives a total of
r(n/P) vector elements and adds them to elements of its vector b.

This communication pattern is illustrated in Fig. 1 for 5 processors. The proces-
sors are divided into groups R and 8 of sizes 3 and 2, and the vectors are divided

into subvectors t and b of lengths 3n/5 and 2n/5 respectively. The arrows in the
figure represent communication. The dark portion of the vectors beside each arrow
correspond to the subvectors being communicated.

For both odd and even P, the division and updating process continues recursively
until P = 1. The processors in 7? further reduce the the t subvectors and the pro-
cessors in S work on the s subvectors. Each processor completes the operation with

6

% o

t
7?1o

7?2 o

0 &

b

o SI

FIG. 1. Structure of a singlestage of recursivehalving.

exactly n/P elements of the elementwise sum of the P n-vectors jv, j = 0, P – 1.

In this way, the minimum total amount of information is communicated, and the
workload is well balanced across processors. However, processors may have to send
and receive two messages at each stage. The steps of the recursive halving algorithm
are summarized in Fig. 2.

Recursive doubling can be implemented with precisely the reverse of the commu-
nication operations used in recursive halving, but, instead of sending and receiving
information to be summed, each processor sends and receives information to be con-
catenated. Each processor begins with a different length n/P segment of an n-vector
and finishes with a copy of the full vector. The resulting algorithm is sketched in
Fig. 3 with the ‘U’ operator denoting concatenation.

4. Householder ‘l?ridiagonalization.

4.1. The Sequential Algorithm. The best sequential algorithm for tridiago-
nalizing a symmetric matrix uses a sequence of Householder transformations. Let A
be an n x n symmetric matrix, and let H: be the Householder transformation that
zeros elements in the first column of A below the sub diagonal by pivoting on the
sub diagonal element. It is easy to see that If~A.H1 also zeros the elements in the
first row of A to the right of the superdiagonal. We can then construct Hz to zero
the subdiagonal elements of the second column, and so on. After n – 2 steps of this
process, the matrix is reduced to tridiagonal form. An efficient sequential algorithm
for this calculatio~ is shown in Fig. 4, In this algorithm, the normalization constants
are calculated and applied in nonstandard fashion. Although this makes the presen-
tation somewhat more involved than that found in [23], it will prove to simplify the
parallel algorithm.

Steps (l–5) of this algorithm comprise the construction of the Householder vector

7

Procedure rec.halve(processor list P, vector w(I : n))
P = I’P\, P divides n
If (P = 1) Return
Divide T’ into 7? and .S with r = ~%1~= [P/2~ and s = ISI = lP/2]
Number processors in 73 as ‘Ro, R.- I

Number processors in $ as SO,. . ~, cS~- I

f = V(1 : T(n/~)); b = ?J(~+ r(n/P) : n)

If (r = s) Then (x Normal recursive halve; pair up. *)
M processor q is ‘R~ E %. Then

send b to Sk
Receive t2 from Sk
Add t2 to i
Call rec-halve(’k?, t)

Else (* processor q is Sk G $. *)
Send t to 7?~
Receive b2 from 7i!~
Add b2 tO b

Call rec.halve(~, b)

Eke (* Odd number of processors; s = r + 1. *)
If processor q is %?kE ‘?? Then

Send first kn/P elements of b to Sk--I
Send remainder of b to Sk
Receive t2 from Sk. ~
R,eceive t3 from Sk
Add t2 and t3 to t

Call rec.halve(%, t)
Else (* processor q is Sk c $. *)

Send first (s – k)n/P elements oft to 72~
Send remainder of i to %1~+1
Receive b2 from 7?~
Receive b3 from 7?~~l
Add b2 and b3 to b
Call rec-halve(S, b)

~lG. 2. Recursive halting for pvocessor q.

v. In practice, step (1) is merely for notational convenience and is not executed. Also,
the entries of the Householder vectors me actually stored in the lower triangle of A for
later use in the backtransformation. ‘The off-diagonal entries of the tridiagonal matrix
are generated in step (4) and stored in the vector z while the diagonal entries are kept
in the diagonal of A, In step (6), we save the norm of the Householder vector for later
use while backtransforrning the eigenvectors. The two computationally dominant
steps in the algorithm are the matrix–vector multiplication in the generation of the
updating vector p in step (7’) and the rank–two update of A in step (10). Exploiting
the symmetry of A allows us nearly to halve the operations required in the rank–
two update (although it complicates the calculation of Av), The resulting algorithm
requires 4n3/’3 + 0(n2) flops [23].

The algorithm in Fig. 4 employs only the vector-vector and matrix-vector op-
erations known as level 1 and level 2 BLAS [18, 15]. On processors with a memory

8

1

,

Procedure rec.double(processor list T, vector v(1 : n))
P = lp~, P divides n
If (P = 1) Return
Divide ‘P into 7? and S with ~ = 1$31= [P/2~ and s = ~~~= [P/2]
Number processors in 7? as 7?0, ,.., %3,_I
Number processors in S as SO,..., Ss- 1
If (r = s) Then (x Normal recursive double; pair up. *)

If processor q is %?~c 7? Then
Call rec.double(%?, v)
Send v to sk
Receive V2 from $k
V= VUV2

Eke (* processor q is sk E S. *)
Call rec.double(S, v)
Send v to ~k
Receive V2 from ~k
V= V2UV

Else (x Odd number of processors; s = r + 1. *)
If processor q is %?kE 72 Then

Call rec_double(7?, v)
Send last kn/P elements of v to Sk_ 1
Send first (r – k – l)n/P elements of v to $k
Receive V2 from $k. 1
Receive V3 from $k
V= OUV2UV3

Else (* processor q is $k 6 S. *)
CaU rec.double(S, v)
Send last (s – k)n/P elements of v to 7?~
Send first (k+ l)n/P elements of v to %+1

Receive V2 from ~k
Receive V3 from %?-k+l
V= V2UV3UW

l?lG. 3. Recum{ve doubling for processor q.

hierarchy, it is generally more efficient to recast algorithms to allow for greater mem-
ory reuse. Dongarra, Sorensen and Hammarling [19] have shown how to modify this
algorithm to use some matrix–matrix operations or level 3 BLAS [17]. The basic
idea is to save the v and w vectors from several steps and use them to update A
simultaneously. If we save b pairs of vectors, we can perform a rank–2b update of A.
Postponing updates complicates the generation of the vector p, since the values stored
in the matrix A are not always up–to–date, but it allows for higher performance in
the outer–product update of A. We note, however, that the generation of the vector
p still requires level 2 BLAS. This block algorithm is summarized in Fig. 5.

The single loop of the algorithm shown in Fig. 4 is now replaced with two loops,
the outer one over blocks of columns and the inner one over columns within a block.
Steps (1–6) of the algorithm in Fig. 5 precisely mimic steps (1–6) of the algorithm in
Fig. 4 except that for completeness we have made the indices more explicit. We have
broken out the matrix–vector multiplication into steps (7. 1–7.3) to show how to use

9

(* Symmetric A G JR”’”; x,v, w,p, z e Et”. *)
Fori=l:n–2

(1) w= A(i+l:n, i)

(2) p = VTv

(3) v(l) = v(1) + sign(v(l))fi
(4) .z(i + 1) = –sign(v(l))fi
(5) 4 = 2(P + Iv(l) l@) (* 4 = VTV *)
(6) @(i) = 4
(7) p= A(i+l:n, i+l:n)v
(8) y = pTv

(9)

(10)
‘w= $(P– $V)
A(i+l:n, i+l:n)=A(i+l:n, i+ l:n)–vwT–wvT

l?lG, 4. Sequential algorithm for Householder tridiagonali.za tion.

only the lower triangular portion of the matrix. Since the matrix L is not updated
immediately, steps (7. 1–7.3) use an out–of–date version of the matrix. We correct for
that in step (7.4). In step (10.1), the columns of L that lie within the current block
are updated, but the update of the rest of the matrix is delayed until step (10.4). That
update can be performed with a single call to the level 3 BLAS routine dyr2k. We
note that the call to dyr2k requires the matrix to consume nz space, even though only
the lower triangular portion is used. Without BLAS for blocked storage, exploiting
symmetry saves flops but not space.

4.2. ‘The Parallel Algorithm. Besides its intrinsic complexity, there are sev-
eral features of the algorithm in Fig. 5 that make it challenging to implement in
parallel. First, the matrix–vector multiplication in the generation of the vector p
is more complicated to parallelize than the simple updates required in LU or QR
factorization [26], Second, exploiting symmetry both increases the communication
requirements of the algorithm and makes the design of an efficient matrix–vector
multiplication step more difficult. Finally, the outer–product update required in our
-parallel algorithm is not included in the standard suite of level 3 BLAS. As we will
see, the portion of A owned by a processor may be nonsymmetric, and there is no
level 3 13LAS routine to perform a ~onsymmetric, outer–product update of a lower
triangular matrix.

4.2.1. The !llidiagonzdiza tionAlgorithm. Our parallel algorithm for House-
holder tridiagonalization for processor q is depicted in Fig. 6. The labels to the left of
the executable statements correspond to the numbers of the corresponding operations
in Fig. 5t Although the basic structure of this algorithm mimics that of the algorithm
in Fig, 5~the parallelization adds considerable complexity. The parallel algorithm is
complicated by the fact that the set of matrix elements owned by a processor are not
symmetric. That is, a processor holds all the matrix elements in the intersection of a
set of rows a and a set of columns ~, but these two sets are not generally the same.
However, because our tile is square, there is always another processor that contains
elements at the intersection of rows @ and columns a. These two processors thus own
transpose portions of the matrix,

Since the matrix elements assigned to a processor do not form a symmetric sub-
matrix, the processor needs two different sets of components of the Householder vector
v in order to compute L(a, /3)v@ and v~L(a, /3) in steps (’?’.1) and (7.2). This leads

10

,.

(* LclRnxnlower triangular part of symmetric matrix; v, w, p, .z G Etn. *)
(* b is the number of columns in a block. *)
(* V,wellw’b

,
are reused each outer iteration. *)

N = [(n – 2)/bl
Forj=l:N

v = [0],W = [0]
s = (j – l)b + 1 (* First column in block. *)
t = min(n – 2,s + b – 1) (* Last column in block. *)
For i = s : t (* Form the block of updates. *)

(1) v(i+l:n) =L(i+l:n, i)
(2) p=v(i+l: n)’T?J(i+l:n)
(3) v(i + 1) = v(i + 1) + sign(v(i + I))@
(4) z(i + 1) = –sign(L(i + 1, i)fi
(5) @ = 2(P+ 1~(~+ l)l@) (* # = ?JT?J*)
(6) @(i) = ~
(7.1) z(i + 1: n) = L(i + 1: n, i + 1: n)v(i + 1: n) (* Without diagonal. *)
(7.2) y(i + 1: n) = v~(i+ 1: n)L(i + 1: n,i+ 1: n) (* With diagonal. *)
(7.3) p=z+y

(* Correct for out-of-date entries of L *)

(7.4) p(t+l:n) =p(t+l: n)–(v(t+l:n, *)w(t+ l:n, *)T+
W(t + 1: n,*)v(t + 1: n,*)T)?J(t + 1: n)

(8) y=p(i+l: n)Tv(i+l:n)
(9) w(i+l:n) =~(p(i+l:n)–$v(i +1: n))

(* Update remainder of block of L. *)
(10.1) L(i+l:n, i+l:t)=L(i+l:n, i+l :t)–v(i +l:n)w(i+l:t)~–

W(i + 1: n)v(i + 1 : t)~
(10.2) V=[vv]
(10.3) W=[ww]

(* Perform symmetric rank-2b update of the submatrix. *)
(10.4) L(t+l:n, t+l:n)= L(t+l:n, t+l:n)-V(t+l :n, *) W(t+l; n,*)~-

I“V(t + 1: n,*)v(t + 1: n,*)T

l?lG. 5. Block algorithm for Householder i%idiagonalization,

to the communication operations in steps (Yl). Similarly, the results of the two
matrix–vector products contribute to different sets of elements of the vector p, and
the communication in step (7.3) realigns these indices. A similar communication of
the vector w is required in steps (Y2) to prepare for the outer–product update of the
matrix A.

Another consequence of processors having nonsymmetric portions of A is that
the outer–product update is nonsymmetric. Because there is no level 3 BLAS call
to update a lower triangular matrix with a nonsymmetric outer–product, we perform
the update by covering the lower triangular matrix with a sequence of rectangular
panels and use a standard rectangular outer product update on each panel. The full
rank–2b update of a panel can be performed with a single call to the level 3 BLAS
routine dgemm. For the tests described in this paper, we used panel widths of 2.

ArI additional detail of the parallel algorithm is shown in the steps labeled (X).
Since only a subset of processors owns each row and column of the matrix, the row
and column incrementing requires more attention than in the sequential code.

This algorithm requires several different types of communication operations. We
describe and analyze them here for the case where L has (k+ 1) unreduced rows and
columns remaining. The total communication in the algorithm is the sum of these
communication steps for k = 1~. . ., n – 2. In step (1), @ broadcasts occur, each
involving @ processors and vectors of length [k/@l. This requires [logz (P)/2]
startups and [k/~1 [log2(P)/21 volume for the slowest processor. Steps (2), (7.4)
and (8,) include global sums of scalars. Each global sum requires [logz (P)l startups
and volume for each processor. In steps (Yl), (Y2) and (7.3), a vector of length
[k/@l is transposed. Each transpose operation requires a single startup and a
volume of [k/fi~. The final two operations are the recursive halving in step (7.3)
and the recursive doubling in step (9). Each of these operations requires [logz (P)/21
startups and about [k/@l volume for the slowest processor.

Counting up all these operations and summing over k, we find that the commu-
nication operations require time for about 4..5T2logz (P/2) message startups and the
transmission of about nz (logz (P) + 10)/4@ double precision values. The logarithmic
term in the communication volume is due to the use of a binomial tree in the broad-
cast of Householder vectors, For the LIJ or QR decomposition, an alternative would
be to use a ring shift approach, essentially piping the data through the processors.
Processors would not be synchronized, but the communication cost could be reduced.
Unfortunately, this is not a viable option for tridiagonalization because the matrix–
vector multiplication serves to synchronize the processors. In practice, however, a
large number of processors need to be involved before the logarithmic term dominates
the communication cost.

As stated, the algorithm requires a fairly large amount of space for temporary
vectors. However, with a careful implementation, the space in Va, VP, Wa and WP is
sufficient to hold all the temporary vectors. What remains is the storage of these four
arrays and the storage of L, z and 0. This makes for a total of [n/@l ([n/@l +
4b + 2) double precision values,

This algorithm involves communication among rows and columns of the torus–
wrap tile as well as between transpose processors, Without careful mapping to the
parallel architecture, these operations may induce substantial contention for wires in
the communication network. However, we note that on a hypercube, a judicious choice
of processor assignments ensures that none of these operations induces congestion [25].
Although this isn’t true on other topologies of parallel machines, we will assume that
the communication cost is proportional to the volume calculated above.

A careful analysis reveals that there is only L9(nP) redundant numerical computa-
tion in this algorithm. Since the computation is well balanced, the total computation
time should scale as ~n3/P+ 0(n2). The ratio of computation to communication thus

is thus n/fi(log2 (P)+ 10). To retain constant efficiency as the number of processors
increases, n must increase slightly faster than ~, and the total amount of memory
per processor must increase as (log~(P) + 10)2.

5. ‘The ‘llidiagonal Eigensolver. To solve the symmetric tridiagonal eigen-
value problem, we use the method of bisection to compute the eigenvalues of T followed
by the method of inverse iteration to compute its eigenvectors [1]. This combination
seems particularly well-suited to parallel implementation as the eigenpairs can often be
computed essentially independently of one another. Indeed, if n/P eigenpairs are as-
signed to each processor, it appears that no interprocessor communication is required.
When any oft he eigenvalues are close, however, inverse iteration cannot produce or-
thogonal eigenvectors. In this case, the modified Gram-Schmidt (MGS) procedure

t

is used to reorthogonalize the computed eigenvectorsj but, if the close eigenvalues
are distributed between processors, their eigenvectors cannot be computed without
communication [1].

One parallel MGS algorithm (PMGS) is described in [29]. PMGS uses a ring of
processors and so can be implemented on a bypercube or mesh topology. The parallel
inverse iteration routine of [29] is based cm EMPACK’S TINVIT routine [38]. TIN-
VIT rarely performs more than a single step of inverse iteration, meaning that PMGS
generally runs a single time at the end of the parallel inverse iteration routine. Subse-
quent work [31] demonstrated that more than one step of inverse iteration is required
to compute accurate eigenvectors and that MGS is needed at each iteration with close
eigenvalues. In this context, PMGS can represent a substantial bottleneck. If eigen-
values Aj ~. . . ~Jk+j+l are close, PMGS requires that eigenvectors xj, zj+~ be fully
computed and orthogonalized before the second inverse iteration for eigenvector xjk+l

can complete. If Jj, . . . ~~k+~+l do not lie on the same processor, synchronization and
communication costs can quickly become prohibitive.

Alternatives to PMGS are the subject of present research. The PNL Peigs code
[21] employs a variant of PMGS that orthogonalizes intermediate iterates when con-
verged eigenvectors are not yet available. While this approach works in practice, its
numerical properties are unknown. In [9], Chandrasekaran presents mechanisms for
reducing the amount of orthogonalization required, but these changes have not yet
been used in a parallel implementation of inverse iteration.

A better approach would replace inverse iteration with an altogether different
method when eigenvalues are close. One method presently under development by
Dhillon, Fernando, and Parlett produces orthogonal eigenvectors for close eigenvalues
by associating each of the close eigenvalues with a particular submatrix of the tridi-
agonal matrix. Nearly orthogonal eigenvectors of the matrix are produced from the
eigenvectors of the submatrices [37].

For the purpose of this paper, we use the naive approach described in first para-
graph of this section: each processor computes n/P consecutive eigenvalues and their
corresponding eigenvectors. This computation is carried out by independent calls to
the LAPACK routines DSTEBZ and DSTEIN [I]. No interprocessor reorthogonaliza-
tion is performed. The calls to LAPACK routines are preceded by a global exchange
of the tridiagonal matrix so that it is in place on all processors. They are followed by
a redistribution of the eigenvectors from the block column arrangement in which they
are transformed to the torus–wrap distribution required by the backtransformation
algorithm.

We recognize that our approach to the tridiagonal eigenproblem is not robust,
and we plan to replace our tridiagonal eigensolver with improved code as it becomes
available or as we develop it. The ScaLAPACK implementation (PDSTEIN) also
excludes interprocessor reorthogonalization but does attempt not to split close eigen-
values between processors [14].

6. Backt ransforrnationo

6.1. The Sequential Algorithm. The purpose of the backtransformation is to
compute the eigenvectors QX of A from the eigenvectors X of T. Since Q is comprised
of a sequence of Householder transformations, we need merely appl y these transfor-
mations to T in the reverse of the order in which they were applied to A [23]. Because
the eigenvector matrix X is nonsymmetric and the basic operations are less complex,
the algorithm for backtransformation is much simpler than that for tridiagonalization.

13

As with our algorithm for tridiagonalization, we would like to use level 3 BLAS
to achieve higher performance. As before, this can be accomplished by saving sev-
eral updates and applying them all at once. Doing so is considerably simpler for
backtransformation than it was fortridiagonalization. Inparticular, weusethe WY
representation of the sequence of Householder transformations [23]. The sequential
algorithm is sketched in Fig. 7.

In steps (1–2), the sequential algorithm merely retrieves information it generated
in the tridiagonalization. The WY representation of the sequence of Householder
transformations is generated in steps (3–5) and applied to the matrix of eigenvectors
in step (6). Note that we me a nonstandard version of the WY representation in which
the Householder operations are combined in the reverse of the usual order. Since the
individual Householder matrices are syrnmetricj reversing the order in this way is
equivalent to transposing the product. This allows us to apply YW~ instead of the
more familiar WY~ in steps (4) and (6). The advantage of our approach is that our Y
and ,W matrices are lower triangular so step (6) can be performed with two invocations
of the level 3 13LAS routine dtrmm, consuming a total of 2kn2 flops, where k is the
number of eigenvectors being transformed. For our implementation, we actually chose
not to exploit this efficiency because dgemmon the Paragon is significantly faster than
the BLAS routines for triangular matrices. Presumably because of its importance
in the IJNPACK benchmark, dgemm has received more attention from the library
developers.

When k is significantly larger than one, step (6) dominates the computation
time. Thus, in contrast to the tridiagonalization routine, the bulk of the flops in
backtransformation can be handled by calls to a level 3 BLAS routine. We also note
that we need never explicitly form Y since the Householder vectors are already stored
properly in L. This will not be the case in the parallel algorithm.

6.1.1. The Parallel Algorithm. Although our parallel backtransformation al-
gorithm has the same structure as the sequential algorithm in Fig. 7, the parallelism
inevitably adds some complexity. We use the Householder vectors and their norms
as generated and stored by the parallel tridiagonalization algorithm in Fig. 6. We
store the eigenvector matrix X in the same square torus–wrap manner in which we
distribute L. This arrangement keeps the communication cost of the algorithm low.
Unfortunately, the tridiagonal eigensolver described in \5leaves the eigenvector matrix
X distributed by block columns so that it must be redistributed before the backtrans-
formation begins. This redistribution is conceptually straightforward so we won’t
describe it in detail except to make the following observation. The operations in
backtransformation are independent of the ordering of the eigenvectors in X, so we
aren’t required to keep them in any particular order. If we let a particular column
set P correspond to the eigenvectors computed by @ processors, then these *
processors need only communicate among themselves to remap X. Exploiting this
observation allows us to perform the redistribution by having communication among
the @ processors in each of @ sets, instead of requiring communication between
all processors.

Our parallel backtransformation algorithm is depicted in Fig. 8, with the state-
ment labels matching those in Fig. 7. The algorithm blocksize is denoted B to dif-
ferentiate it from that used in the tridiagonalization algorithm. As mentioned in ~2,
our code allows these two blocksizes to be tuned independently.

The first notable difference between the parallel and sequential algorithms is in-
dicated by the steps marked (X) which have no sequential counterparts. These steps

14

.

keep track of the rows of the eigenvector matrix owned by a particular processor that
are modified by the Householder transformation. In the sequential case, this number
of active rows simply increases by one with each step.

The second and more substantial complication induced by parallelism occurs in
the generation of the vector Za in step (4). This computation proceeds in two phases:
first, the vector r = WTV is computed and then Za is obtained by .za = (–2/q5)(va +
Yar). Note that each processor owns entire rows of W and Y and that these are
distributed so that @ processors could compute the same product W$v.. To avoid
this redundant computation, we assign each processor a distinct subset of a, and each
computes an independent contribution to the vector r. These results are then summed
among all the processors. Computation of’ the product YOr is similarly distributed,
Each processor computes a different set of eleme~ts of the product, and these results
are concatenated within processor rows to produce the vector .zO.

The final change in the parallel algorithm happens in step (6), the update of the
eigenvectors. As with step (4) ~this operation is broken into two steps, the multiplica-
tion by W: followed by the multiplication by Ya. Since each processor owns a distinct
set of elements of X, there is no concern here with duplicating computation. Each
processor first computes its own values for the B x (k/@) matrix product WfX us-

ing a call to dgerm. Although the complete W matrix is lower triangular, the portion
owned by a particular processor does not have such a nice structure, so we can’t use
dtrmn. The values in this product must be summed among the processors owning a
column of X to yield 28. Since there maybe a large number of values being summed,
we perform this with a recursive halvingj followed by a recursive doubling to avoid
duplication of numerical operations. Each processor can then update its elements of
X independently via another call to dgenm.

Although this organization does not allow us to exploit the triangular structure
of W and Y, the total amount of unnecessary computation is 0(kB2) when k eigen-
vectors are backtransformed. As long as the blocksize B is much less than n, the
impact of the redundant computation is not significant, and typical values of B are
less than 10. The total number of floating point operations in the backtransformation
algorithm is 2kn2 + 0(kB2) (we assume that n >> B). The flops are well balanced
among processors, and the dominant calculation is entirely within level 3 13LAS.

The communication occurs in steps (l&2), (4) and (6). As with the parallel tridi-
agonalization algorithm, this backtransformation approach requires the processors to
remain synchronized, so we can’t perform the broadcast of Householder vectors as a
ring shift efficiently. Instead, we use a binomial tree, and, assuming the communica-
tion cost is dominated by transmission time, this induces a cost of nz log2(F’)/4@.
In step (4), the summation of r vectors costs a total of nB log2 (.P)/2, while the recur-
sive doubling costs n2/2@. The recursive halving and doubling in step (6) requires
a total communication volume of 2nk/@. Summing all of this communication vol-
ume gives a total of (n/@)(n Iogz (F’)/4 + n/2 + 2k). As with our tridiagonalization
algorithm, the logarithmic broadcast of Householder vectors is the dominant commu-
nication cost asymptotically.

Like the tridiagonalization algorithm, the temporary vectors Va and za can use
space inside YO and W.. Besides W and Y, the algorithm needs space for L, @, X
and Z, consuming a total of [n/@l ([n~~~ + [k/@~ + 3B + 1) double precision
values.

7. Experimental Results. We have implemented our algorithm on the Intel
Paragon, a mesh-connected MIMD computer at Sandia’s Massively Parallel ClomPut-

15

ing Research Laboratory, running the SUNNIOS operating system. Although each
logical node in the Paragon has two processors, the results reported below for our
code and its counterpart in ScaLAPACK Version 1.0 use only a single processor per
node. Our results are for random matrices with entries selected uniformly between
– 1 and 1. In all tests, all eigenvalues of the tridiagonal matrix are computed and
backtransforrned (i.e., k = n), although no times for the tridiagonal problem are
reported.

We first ran a sequence of factorization of a 4000 x 4000 matrix on 64 processors
in which we varied the algorithmic blocksize. The run times for our Householder
tridiagonalization and backtransformation routines (HJS) and for the ScaLAPACK
tridiagonalization and backtramformation routines (SLP) are shown in Fig. 9. All
four routines reach a minimum runtime for blocksizes near 10, and the HJS routines
show lit tle variation in runtime for larger blocksizes. The ScaLapack routines, on the
other hand, show a marked increase in mntirne for the larger blocksizes. In particular,
at a blocksize of 10, the ratio of the time for SLI? to the time for HJS is 1.56. This ratio
grows to 1.78 for a blocksize of 50. This increase is due to the load imbalance which
accompanies ScaLAPACK’s use of storage blocking. Clearly, an implementation with
algorithm blocking but no storage blocking (like HJS) scales better as the blocksize
is increased.

Another notable feature of the figure is the variation in optimal block size for the
different algorithms. In these experiments, the best blocksize for the backtransforma-
tion is smaller than that for the tridiagonalization. However, the code performance
is very similar over a range of blocksizes. So the freedom within HJS to use different
blocksizes for the different algorithms seems to be of only modest value. For fairness
in comparisons, we used a blocksize of 10 in all subsequent experiments.

Next, we ran two different fixed-size problems on a range of machine sizes (with
blocksize of 10). The tridiagonalization results are shown in Fig. 10, while those for
backtransformation are in Fig. 11. The most notable point about the tridiagonaliza-
tion times is that HJS is significantly faster than SLI?, even on a single processor,
We do not have an adequate explanation for this difference, but it may be due to
SLP’S need to work for an arbitrary q x r tile of processors, while HJS is limited to a
square tile. The SLP generality induces code complexity which could lead to reduced
performance, The shape of the tridiagonali~ation curves is quite similar, indicating
similar scalability in the two implementations.

In contrast to the tridiagonalization runtimes, the difference in backtransforma-
tion performance revealed in Fig. 11 is relatively small on modest numbers of proces-
sors. This similar performance provides evidence that the software overheads incurred
by SLP for portability are small, at least when the problem size per processor is fairly
large. As expected, the reduction in message number allowed by the block torus-wrap
mapping translates to a better performance for SLP as the number of processors in-
creases. For the 1500 x 1500 matrix on 100 processors, the SLP backtransformation
code takes only 64% of the time required by HJS.

Although serial backtransformation requires 1.5 times the number of floating point
operations of serial tridiagonalization the tridiagonalization takes much more time
than the backtransformation for both HJS and SLF’. This is due to several factors.
While all the backtransformation flops are level 3, half the tridiagonalization flops
are level 2. Also, the level 3 operation in the HJS implementation is performed in
an awkward manner since the appropriate BLAS operation is missing. Finally, the
amount of communication in the parallel tridiagonalizatio~ algorithm is significantly

16

greater than the amount in backtransformation.
Thus, for block sizes of 10 and a range of problem sizes, HJS tridiagonalization

is subst antially faster than SLP while HJS backt ransformat ion is somewhat slower.
But since tridiagonalization is a much more costly operation, the overall performance
of HJS is significantly better than that of SLP. Fig. 12 shows the total time for
tridiagonalization, and backtrarxsformation versus number of processors for both HJS
and ScaLapack for matrix order n = 1500. This plot does not include time for solution
of the tridiagonal eigenproblem. The total time for ScaLapack is about 1.33 times
greater than the time for HJS for all machine sizes.

Next, we ran a series of experiments in which the problem size grew with the
number of processors so that the submatrix owned by each processor remained of size
500 x 500. Figs. 13 and 14 show the performance of the tridiagonalization and back-
transformation codes respectively for this set of problems. In computing the flop/s

numbers, we have assumed the optimal sequentia~ flop count of %3 for tridiagonal-
ization and 2n3 for backtransformation. The dotted diagonal line in the two figures
corresponds to a perfect (scaled) speedup of the HJS code from its single processor
level. Both codes scale fairly well. On a single processor, the HJS tridiagonalization
runs at 31.0 Mflop/s, while it runs at 5.06 Gfiop/s on 256 processors. This yields a
scaled eficiency of 63.7~0. The corresponding speeds for SLP are 18.6 Mflop/s on one
processors and 3.34 Gflop/s on 256, implying a scaled etllciency of 70.0%. The per-
formance of the HJS tridiagonalization is consistently 1.5 to 1.6 times that attained
by SLP.

The comparatively simple backtransformation code scales better than the more
complex tridiagonalization. On one processor the HJS backtransformation attains
45.4 Mflop/s, and on 256 it runs at 9.42 Gflop/s, implying a scaled efficiency of 81.1%.
For SLP backtransformation, the performance is 42.4 Mflop/s on one processor and
9.37 Gflop/s on 256; a scaled efficiency of 86.3%.

These comparisons lead us to the following observations,
● Block storage is not necessary for block algorithms and level 3 performance.

Indeed, the use of block storage leads to significant load imbalance when
the blocksize is large. This is not a concern on the Paragon, but may be
problematic for machines requiring larger blocksizes for optimal BLAS per-
formance [40].

● Although unnecessary for block algorithms, block storage does enable a re-
duction in the number of messages (but not the total message volume) for
some matrix transformations. Specifically, the ScaLAPACK backtransforma-
tion algorithm is superior to ours due to the use of block storage.

● When the piece of the matrix owned by a processor is large, ScaLAPACK
can perform nearly as well as a more targeted implementation. This indicates
that the ScaLAPACK overhead associated with portability and library reuse
is modest, at least for large problems.

● We believe that one reason for the superior performance of our tridiagonal-
ization routine is that we constrained our implementation to a square torus,
thereby simplifying the code significantly. With parallel soft ware, there is a
tradeoff between performance and generality, and our results argue that the
cost of generality can be significant.

8. Conclusions. We have described a parallel methodology for finding eigen-
values and eigenvectors of dense, symmetric matrices, focusing on the reduction to
tridiagonal form and the backtransformation of the eigenvectors. The symmetric

17

.’

eigenproblern is an ideal vehicle for investigating the tradeoffs associated with algo-
rithmic variants because it involves several computational stages with quite different
properties. The efficiency of our approach is a restdt of carefully minimizing the
communication in the algorithm and maximizing the use of level 3 13LAS kernels.
An important observation is that block storage of the matrix is not necessary for a
block algorithm, but that block storage does have advantages in the backtramfor-
mationt We are aware of no advantage of block storage except for algorithms (like
backtransformation) in which it allows for fewer, longer messages.

While our implementation runs faster than other available software for a variety
of problem and machine sizes, the efficiency of tridiagonalization is limited by the
need for level 2 BLAS operations in forming the updating vector p. Its performance is
further constrained by the absence of a BLAS 3 routine for performing a nonsymmetric
outer product update of a lower triangular matrix, The most efficient alternative is
to apply the dense matrix routine to panels which cover the lower triangular matrix.

Note that the nonsymmetric outer product update of a lower triangular matrix is
not an operation unique to the parallel tridiagonalization routine. It also arises, for
example, in the indefinite linear system solver of [32]. The software for that problem
is similarly slowed by the lack of the appropriate BLAS 3 routine.

Although our implementation is written using native Paragon communication
calls, we use only simple send and receive calls, and so the code should be easy to
port to other platforms.

Our generalization of recursive halving and doubling to an arbitrary number of
processors is likely to be of independent interest, as these communication operations
are quite widely used.

Ackrmwleclgements. We are also deeply indebted to Ken Stanley for insights
into the tradeoffs associated with the use of block storage. We also appreciate the
helpful discussions we had with Robert van de Geijn, Xiaobai Sun and David Womble
about the tridiagonalization algorithm. We are further indebted to Robert for pro-
viding preliminary communication routines on the Paragon.

..

(* Processor q holds rows Q and columns ~ of L, which is

the lower triangular part of A G JR.n‘n. *)

(* @ c ll%”~m saves norms of Householder vectors for backtransforrnatiom *)

(* b is the number of columns in a block. *)

(* Va,vp,wa,wpEIR*xb are reused each outer iteration. *)

(* xa, YP>Y@, Pa>va, v@, wa, w@ E lRnl@. *)
N = [(n – 2)/bl

Fori=l:N

(x)

(1)

(1)

(1)

(1)

(2)

(2)

(3)

(3)

(4)

(4)

(5)

(6)

(x)

(Yl)
(Yl)
(7.1)

(7.2)

(7.3)

(7.3)

(7.3)

(7.3)

(7.4)

(7.4)

(7.4)

(7.4)

(7.4)

(8)

(8)

(9)

(9)

(Y2)

(Y2)

(10.1)

(10.1)
(10.2)

(10.3)

(10.4)

i’. =[O]; vva=[O] ;v@=[O]; w#= [O]
s = (j – l)b + 1 (* First column in block. *)
t= min(N – 2,s + b – 1) (* Last column in block. *)
For z = s ; t (* Form the block of updates. *)

If i G a Then a = a \ {i} (* Remove i from active rows. *)
(* Generate and broadcast next Householder vector. *)
If i 6 ,!3Then

wa= L(a, i)
Broadcast Va to processors sharing rows a

Else Receive v~
pq = independent contribution to VTV
Sum ,uqcontributions to form p, and append v(i + 1) to communication
If i+ 1 G a Then (* Update first element of v. *)

v(i + 1) = o(i + 1) + sign(v(i + l))fi
If i E /3 Then (* Compute subdiagonal element of T. *)

L(2 + 1, i) = –sign(L(i + 1, i))fi
= 2(P + Iv(i+ l)lfi)
If i c /3 Then

0([i/v@l) = q5 (* Save norm for backtransformation. *)

@ = O \ {i} (* Remove i from active colu~. *)
(* Get elements of v~ to the correct processors.

Send V. to transpose processor

Receive VP from transpose processor

Z. = L(a, /3)vp (* Without diagonal. *)

Vp = v~L(a, ~) (* With diagonal. *)
Send yp to transpose processor

Receive ya from transpose processor

Pa=za+ !/a
Recursive halve pa within rows yielding pq
(* Correct for out-of-date entries of L. *)
W = vqTvv
@ = JJl:vq

Sum 6q and Cqamong all processors yielding 6 and e
~ = q n (t + 1: N) (* Just indices outside block. *)
p< = p(– Cv(– C$w(
(* Compute w. *)
-/q = p;vq
Sum ~q among all processors yielding ~
W.= $’~q – ;Vq]
Recursive double Wq within rows yielding W.
Send w. to transpose processor
Receive W6 from transpose processor
(* Update remainder of block of L. *)
v = @ n (i + 1 : t) (x Columns within current block. *)
L(a, ?/) = L(a, v) – Vaw; – Wav:
v. = [Vav.] ; VP= [VPup]

w. = [Waw.] ; W@= [w@lap]

(* Update remainder of matrix. *)

L(cr, /3)= L(a, /3)– V~Wf – W~V~

!?lG. 6. Para[[e[block a[goTithm for Householder tTidiagonakzation for processor q.

—-

.,

(*xc R”’k matrix of eigenvectors; v, w, p 6 JRn. *)
(* LGRn’” matrix of Householder vectors. @ c Etn Householder norms. *)
(* W,Y CIR.””b are reused each outer iteration. *)
(*b is the number of columns in a block. *)
N = [(n – 2)/b~
Forj=.N:l:-l

w= [0]; Y = [0]
S=(j–l)b+l
t=min(n–2, s+ b–1)
Fori=f:s:–1 (* Form the block of updates. *)

(1) # = @(i) (* # = VTv, saved from tridiagonahzation. *)
(2) v = L(i + 1: n, i) (* Householder vector from column i of L. *)

If (i = t) Then
(3) ~=du

+
Else

(4)
(5)

~ = $?(1 + y~T)v
I’V=[ZW]; Y=[VY]

(* Update eigenvectors. *)
(6) x = (1+ YWT)X

FIG.7. Sequential block algorithm joT backtransformation

20

1

.
..

(* Processor q owns row set a~ and column set@ of
eigenvectors X G Etnx~ and Householder vectors L 6 JR” x”. *)

(* @ c lR”f@ Householder norms; B is the number of columns in a block. *)

(* Y., wa eIR*xB reused each outer iteration; Va, Za c IRnln. *)

~x*. *)(*ZQCIR
N = [(n– 2)/Bl

(x)a=tJ
(x) If(n Ea!~)o!=aun

For.j=lV:l:-l

(x)

[;:2)

(2)
(l&2)
(l&2)

(3)

(4)
(4)
(4)

(4)
(5)

(6)

(6)

(6)

iv=[O];Y = [0]
S=(j–l)l?+l
t=min(n–2, s+ B–1)
Fori=t:s:–1 (* Form the block of updates. *)

If(i+lecto)a=a Ui+l (* Addi+lto active rows.*)
(* Retrieve and broadcast Householder vector& norm. *)
If (i 6 /3) Then

va := L(cx, i)

= cD([i/@l) (* Retrieve Householder norm.*)
Broadcast VOand @ to processors sharing rows a

Else Receive Va and ~
If (i = s) Then (~ First pass through inner loop. x)

‘a = ?Vff
Else (* Compute z. = $(I + y~T)v. *)

rg = independent contribution to Wfva (* rq E lRt-i. *)

Sum r~ among all processors yielding r
.z~= independent set of rows of ~(va + Y~r)

Recursive double z: within rows yielding ZO
w. = [Za w.];Y.= [Va Y.]

(* Update eigenvectors. *)
z;= W:x(a,p)
Sum Z; within columns yielding Z@
X(o!, p) = x(~,P) +y~z-~

l?IG.8. A parallel block backtransfovmation algorithm fo~ processor q.

21

. .

time vs. block size
200-

180-
n=4000

160- P.64
o =HJS

140 - x = ScaLapack

%

tridiagonalization
backtransformation

40

20

1

01 I I I I , 1 I 1 I 1
0 5 10 15 20 25 30 35 40 45 50

blocksize

~lG. 9. Time fov the HJS and ScaLapack tra’diagonaliza tion and backtransformat ion routines
versus block .&e.

tricfiagonalization time vs. number of processors

b=10

o = HJS

x = ScaLapack

35-

30 -

25 -

-20 -
8$0_

~
“= 15 -

x

x
n= 1500

10 - “
‘, o

1
‘.x.

“x..,,X...X’X n = 600
5 ;..

“00.. ...0

01 I t t , (I , , , ,

0 10 20 30 40 50 60 70 80 90 100
number of processors

I?Ic. 10. Time for the HJS and ScaLapack tm’diagonalization routines vemus number of pro-
cessors ~or matrix OTdeTsn = 600 and n = 1500.

22

..*

backtranaformation time vs. number of processors

‘“~

\
B=lo

o = HJS

[.

x = ScaLapack

n= 1500

x

2 - ““:9:::::2;;:;:;$ n = 600

n I I I , , 1 , I I I
“O 10 20 30 40 50 60 70 80

number of processors

FIG. 11. Time for the HJS and ScaLapack backt’ransfoTma tion
pTocessoTs .foT matrix orders n = 600 and n = 1500.

total time vs. number of processors

90 100

ro%tines ve?%us numbeT of

I x

n= 1500

b=10

o = l-fJS

x = ScaLapack

35

30 [\

‘;~
o 10 20 30 40 50 60 70 60 90 100

number of processors

~IG. 12. Time .foT the HJS and ScaLapack tridiagonalization, and backtTansformation routines
ve’rsus number of proce880r8 joT matrix order n = 1500,

23

Mflop/s for tridiagonalization

9000
t

8000
1

7000

6000
1

rWP = 50rY2

b=10

o = ENS

x = ScaLapack

.,’

,..
,,.

,.,”

,.,’

,,
g 5000 -

,,.”
,..

,,.
=
:

4000 -
,.,”

.,”,.,
,,.

3000 - ,.,’
.,”

,.,”
,.,

2000 - ,.,,.
,.,’

0 I
o 50 100 150 200 250 300

number of processors

~lG. 13. I14j70pjs for HJS and ScaLapack tridiagonalization versus number of processors when
the matrix order is varied so that there are 500 x 500 matrix elements per processor.

Mflop/sfor backtransformation

12000

10000

8000
OJ
a
GO

2 6000

4000

,,
,.

,,,’
,,,

,.,’

,.,
,,.

,,.
nA2/P= 50rY2 ,..’

/

,,
b=10 ,.,”

,.
0 = HJS .“,,.
x = ScaLapack ,.,’

,.,
,.,

“1
.

.,’”

,..’

/

,.,
,.,

,,.
,.,”

,.,
,.’2000

0 I ! I I , I
o 50 100 150 200 250 300

numberof processors

~lG. 14. It&op\s for HJS and ScaLapach backtTansformation versus number of processors when
the matrix order’ is varied so that there are 500 X 500 matriz elements per pTocessor.

24

.4
.

REFERENCES

[1] E. ANDERSON, Z. BAI, C. BISCHOF, J. DEMMEL, J. DONGARRA,J. DUCROZ, A. GREENBAUM,
AND S. HAMMARLING, LAPA CK User’s Guide, SIAM, 1992.

[2] R. H. BARLOW AND D. EVANS, A parallel organization of the bisection algorithm, The Com-
puter Journal, 22 (1977), pp. 267–69.

[3] R. H. BARLOW, D. J. EVANS, AND J. SHANEHCHI, Parallel multisection applied to the eigen-
vahte problem, The Computer Journal, 26 (1983), pp. 6–9.

[4] H. J. BERNSTEIN AND M. GOLDSTEIN, Parallel implementation of bisection for the calculation
o.f eigenv.laes of tridiagonal symmetric matrices, Computing, 37 (1986), pp. 85–91.

[5] —, Optimizing Givens’ algorithm for multiprocessors, SIAM J. Sci. Stat. Comput., 9 (1988),
pp. 601–602.

[6] C. BISOHO~, M. MARQLUIS, AND X. SUN, Pa~allel band ~eduction and tridiagonalization, in
l%oc. 6th SIAM Conf. Parallel Proc. Sci. Comput., SIAM, March 1993, pp. 383–390.

[7] C. BISCHOF AND X. SUN, A fmmewo,k foT symmet,ic band Teduction and tvidiagonatization,
Tech. Rep. MCS-P298–0392, Math & Comp. Sci. Div. Argonne NatL Lab., Argonne, IL
60439, 1992.

[8] R. BISSELING, Persona/ communication, 1992.
[9] S. CHANDRASEKARAN,When is a linear system ill-conditioned?, PhD thesis, Dept. of Computer

Science, Yale University, 1994.
[10] H. Y. CHANG, S. UTKU, M. SALAMA, AND D. RAPP, A parallel Householder tridiagonalization

stvatagem using scattered square decomposition, Parallel Comput., 6 (1988), pp. 297–311.
[11] —, A parallel Householder t?’idiagona[iza tion strategem using scatteTed Tow decomposition,

[12] J.

[13] J.

[14] J.
[15] J.

[16] J.

[17] J.

[18] J.

[19] J.

[20] J.

[21] G.

[22] G.

[23] G.

Intl. J. Num. Meth. Engin., 26 (1988), pp. 857–873.
CHOI, J. DONGARRA, AND D. WALKER, The design of a parallel, dense linear a/gebTa

software library: Reduction to Hessenberg, tridiagonal, and bidiagonal form, Numerical
Algorithms, 10 (1995), pp. 379–400.

CULLUM AND R. A. WILLOUGHBY, Lanczos and -the computation o.f eigenvalues in speci-
jied intema[s of the spectrum of laTge, spame, Teal symmetTic matTices, in Sparse Matrix
Proceedings 1978, SIAM, 1978.

DEMMEL. Personal Communication, 1994.
DONGARRA, , J. DUCROZ, S. HAMMARLING, AND R. HANSON, An eztended set ofjoTtTan

basic linear algebra subprograms: Model implementation and test programs, ACM Trans.
Math. Software, 14 (1988), pp. 18–32.

DONGARRA AND R. V. DE GEIJN, LAPACK woTking note #30: Reduction to condensed
foTm foT the eigenvalue problem on distributed memory architectures, Dept. of Computer
Science, University of Tennessee, 1991.

DONGARRA, J. DUCROZ, I. DUFF, AND S. HAMMARLING, A set of level 3 basic /ineaT
algebra subprograms, ACM Tkans. Math. Software, 16 (1990), pp. 1–17.

DONGARRA, J. DUCROZ, S. HAMMARLING, AND R. HANSON, An extended set of Fortran
Basic Linear AlgebTa Subprograms, ACM Trans. Math. Software, 14 (1988), pp. 1–17.

DONGARRA, S. HAMMARLING, AND D. SORENSEN, Block reduction of matt-ices to condensed
foTm for eigenvalue computations, J. Comp. Appl. Math., 27 (1989), pp. 215-227.

J. DONGARRA AND D. C. SORENSEN, A fully pavallel a[go?+hm forthe symmetric eigenvalue
problem, SIAM J. Sci. Stat. Comput., 8 (1987), pp. 5139–5154.

I. FANN AND R. J. LITTLEFIELD, Parallel inveme iteration with veorthogonakzation, in
Parallel Processing for Scientific Computing, SIAM, 1993, pp. 409-413.

C. Fox, M. A. JOHNSON, G. A. LYZENGA, S. W. OTTO, J. K. SALMON, AND D. W.
WALKER, Solving problems on concurrent processors: Volume 1, Prentice Hall, Englewood
Cliffs, NJ, 1988.

H. GOLUB AND C. F. VAN LOAN, Matriz Computations, The Johns Hopkins Press, BaM-
more, MD, 2nd cd., 1989.

[241 M. HEGLAND. A distribution independent a[ao?’ithm fov the reduction to tridiaaonat form usina. .

[25] B.

[26] B,

[27] H.

. .
one-sided rotations, in Proce~dings of the First IEEE International Conference on Algo-
rithms and Architectures for Parallel Processing, IEEE Computer Society Press, 1995,
pp. 286–289.

HENDRICKSON, R. LELAND, AND S. PL~MPTON, An eficient parallel algorithm for matrix–
vector multiplication, Int, J. High Speed Comput., 7 (1995), pp. 73–88.

HENDRICKSON AND D. WOMBLE, The torus–wrap mapping for dense matrix calculations. .
on massively parallel computers, SIAM J. SCi. Comput., 15 (1994), pp. 1201–1226.

HUANG, A parallel algorithm for symmetTic tridiagonal eigenvalue problems, CAC Docu-
ment No. 109, Center for Advanced Computation, University of Illinois, 1974.

25

-.

[28] S. HUSS-LEDERMAN, A. TSAO, AND G. ZHANG, A parallel implementation of the inva.iant
subspace decomposition algorithm for dense symmetric matrices, in Proc. 6th SIAM Conf.
Parallel Proc. Sci. Comput., SIAM, 1993, pp. 367–374.

[29] I. C. F. IPSEN AND E. R. JESSUP, Solving the symmetric tridiagonal eigenvalue pvoblem on
the hypemube, SIAM J. Sci. Stat. Comput., Vol. 11, No, 2, (1990), pp. 203–229.

[30] E. R. JESSUP, Parallel Solution of the Symmetric Tridiagonal Eigenproblem, PhD thesis, Dept
of Computer Science, Yale University, 1989.

[31] E. R. JESSUP AND 1. C. F. IPSEN, Improving the accuracy of inverse iteration, SIAM J. Sci.
Stat. Comput,, 13 (1992), pp. 550-571.

[32] L. KAUFMAN, Computing the MDMT decomposition, ACM Trans. Math. Software, 21 (1995),
pp. 476–489.

[33] J, i%. KUTTLER AND V, G. SIGILLITO, Eigenva[ue. o~ the Lap/acian in two dimensions, SIAM
Review, 26 (1984), pp. 163-193.

[34] T. LI, H. ZHANG, AND X. SUN, Parallel homotopy algoTithm for symmetric tridiagonal eigen-
value probl em, SIAM J. Sci. Stat. Comput., 12 (1991), pp. 464–485.

[35] R. J. LITTLEFIELD AND K. J. MASCHHOFF, Investigating the performance oj paral~e[eigen-
soluers for large processor counts, Theoretics CNlmica Acts, 84 (1993), pp. 457–473.

[36] S. Lo, B. PHILLtPE, AND A. SAMEH, A multiprocessor algorithm for the symmetric tridiagonal
eigenvalue p~oblem, SIAM J. Sci. Stat. Comput,, 8 (1987), pp. s155–s165.

[37] B. PARLE~T, The construction of orthogonal eigenve.tors fov tight clusters by use of 8ubma-
trices.

[38] B. T. SMITH, J. M. BOYLE, J. J. DONGARRA, B. S. GARBOW, Y. JXEBE, V. C. KLEMA,
AND C. B. MOLER, Matrix Eigensystem Routines–EISPA G’K Guide, Lecture Notes in
Computer Science, Vol. 6, 2nd edition, Springer-Verlag, 1976.

[39] J. SPEISER AND H. WHITEHOUSE, Para/le/ processing algorithms and architecture for real-time
signal processing, in Proc. SPIE Real Time Signal Processing IV, ,SPIE, 1981, pp. 2–9.

[40] F’. E. STRAZDINS, MatTiz factorization using distributed panels on the Fujitsu API 000, in
Proc. IEEE First IntL Conf. Algorithms & Architectures for Parallel Processing, IEEE,
April 1995.

[41] R. A. VAN DE GErJN, Eficient g/oba/combine operations, in Proc. 6th Distributed Memory
Computing Conf., IEEE Computer Society Press, 1991, pp. 291-294.

[42] —, Personal communication, 1992.

26

