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a b s t r a c t

We present a Conforming Delaunay Triangulation (CDT) algorithm based on maximal Poisson disk
sampling. Points are unbiased, meaning the probability of introducing a vertex in a disk-free subregion
is proportional to its area, except in a neighborhood of the domain boundary. In contrast, Delaunay
refinement CDT algorithms place points dependent on the geometry of empty circles in intermediate
triangulations, usually near the circle centers. Unconstrained angles in our mesh are between 30° and
120°, matching some biased CDT methods. Points are placed on the boundary using a one-dimensional
maximal Poisson disk sampling. Any triangulation method producing angles bounded away from 0° and
180°must have some bias near the domain boundary to avoid placing vertices infinitesimally close to the
boundary.

Random meshes are preferred for some simulations, such as fracture simulations where cracks must
followmesh edges, because deterministic meshes may introduce non-physical phenomena. An ensemble
of random meshes aids simulation validation. Poisson-disk triangulations also avoid some graphics
rendering artifacts, and have the blue-noise property.

Wemesh two-dimensional domains thatmay be non-convexwith holes, required points, andmultiple
regions in contact. Our algorithm is also fast and uses littlememory.Wehave recently developed amethod
for generating a maximal Poisson distribution of n output points, where n = Θ(Area/r2) and r is the
sampling radius. It takes O(n) memory and O(n log n) expected time; in practice the time is nearly linear.
This, or a similar subroutine, generates our random points. Except for this subroutine, we provably use
O(n) time and space. The subroutine gives the location of points in a square backgroundmesh. Given this,
the neighborhood of each point can be meshed independently in constant time. These features facilitate
parallel and GPU implementations. Our implementation works well in practice as illustrated by several
examples and comparison to Triangle.

© 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Many applications in computational geometry begin by con-
structing a Delaunay triangulation of a set of points scattered in
a given domain. Triangles in a Delaunay triangulation have cir-
cumcircles that do not contain any other vertices, and have de-
sirable geometric shape. If the domain is non-convex or contains
internal edges, the triangulation must respect the boundaries of
the domain. Constrained Delaunay triangulations contain the re-
quired edges, and a triangle’s circumcircle contains no point visible
to the triangle’s vertices. Covering triangulations [1] add interior
points to improve triangle angles, but constraint edges and vertices
limit the improvement. In a Conforming Delaunay Triangulation
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(CDT), constraint edges are subdivided as well, greatly improving
mesh quality. Each constraint edge is a union of triangle edges,
and triangles are constrained Delaunay. CDT is important in many
fields such as interpolation, rendering, andmesh generation.Well-
shaped meshes of well-spaced points have many useful proper-
ties [2].

A very effective family of CDT algorithms is based on Delaunay
refinement: start with a coarse mesh, and insert a point at the
center of large Delaunay circumcircles. We contrast and bridge our
method to the root of this family’s tree, Chew [3]. Since Chew’s
seminal paper, Delaunay refinement has been generalized inmany
ways. The most relevant generalization for us is that new points
do not need to be at the exact center of a Delaunay circle; indeed
our work shows they can be placed randomly, as long as they are
far enough away from prior points. Off-centers [4] insert a point
between the center and a short edge; it reduces the total number of
inserted points by implicitly grading themesh size. It also improves
numerical stability. In three-dimensions, nearly-planar tetrahedra
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can be avoided by perturbing points. This can be done randomly [5]
or deterministically [6]. This can be done symbolically or with
actual coordinates or the Voronoi weights [7]. Randomly inserting
a point, say within a smaller circle concentric with the Delaunay
circle, reduces the bias.

Parallel Delaunay refinement is possible. The points used to fix
different simplices will interfere with one another, but this can be
resolved by only inserting the non-conflicting points, and taking
multiple passes [8].

In any event, Delaunay refinement inserts biased points; an
unbiased process selects a new point outside the (constant) radius
r disk of any other point, but is otherwise chosen uniformly at
random from the remaining disk-free area of the domain. This is
also known in spatial statistics [9] as the hard-core Strauss disc
processes with inhibition distance r1 and disc radius r2, where for
us r1 = r2. The limiting distribution is called a maximal Poisson-
disk sample (MPS) in graphics.

The probability of inserting a point at a given location is
independent of the location. For Delaunay refinement the insertion
probability depends on intermediate properties of the algorithms,
such as the order in which bad-angle triangles are addressed and
the DT angles and circle centers. The bias may be difficult to
understand, describe, or predict, although spectrum analysis of
pairwise distances canmeasure bias. Unbiased points have spectra
with the ‘‘blue noise’’ property. Unbiased sampling algorithms
have a long history in computer graphics relating to image
synthesis, including applications in anti-aliasing [10] and Monte
Carlo methods for ray tracing, path tracing, and radiosity [11].

Random meshes are useful in several contexts. The effects
of mesh structure on modeling fracture in solid mechanics was
studied in detail in the 1990’s; see [12] for a thorough discussion.
For some finite element methods, crack propagation is limited to
triangle edges, or dual Voronoi cell edges. Structure also plays
a role for spring networks, e.g. crack formation may depend
on the orientation of the mesh with respect to the stress field.
In either method, the locations of fractures are suspect if the
locations ofmesh points are biased. Latticemeshes are particularly
troublesome [13], as is geometric regularity arising from some
adjustment procedures such as point repulsion [14] and centroidal
Voronoi tessellation [15]. Strain and stress rates are independent
of rotations, i.e., the physics are isotropic. For spring networks,
mesh structure may affect the ability to model this isotropy and
reproduce uniform elasticity, independent of fracture.

For computational science validation it may help to have
multiple meshes with nearly identical global properties, but with
local differences. Simulations results over all the meshes can be
compared, to see if the results are dependent on mesh artifacts.
Fracture simulations are dependent, but point location variability
is considered a subset of material property variability. Simulations
over an ensemble of meshes are collected to generate the range of
possible experimental outcomes. Unbiased Poisson-disk sampling
is ideal for these applications; a maximal distribution helps with
angle bounds (Section 3.1) and performance [16].

The meshing literature abounds with methods for handling
sharp features of the domain: small input angles, and edges close to
non-contained vertices. Spielman et al. [8] provides a parallelizable
method for this in 3d. One key idea is to isolate and mesh
these features before handling the rest of the domain [17–19].
The category of algorithms that recovers the domain boundaries
before inserting interior points can be combined with this sort
of preprocessing. For example, we may do that, as can Chew [3].
Preprocessing can even be combined with the family of methods
that follows Ruppert’s [20] variation that meshes (most of) the
boundary at the same time as the interior. Cheng et al. [21] handles
sharp features near vertices in 3d with a protective ball, and
sharp angles between edges and facets are handled in the natural
course of recovering the boundary. They isolate lower dimensional
boundary features with protecting balls, similar to how we use
the empty disks of our sampled boundary points. Handling input
boundary facets in order of increasing dimension is common and
effective. Fu and Zhou [22] samples boundary vertices, curves, then
surfaces, the same order as in our method. Fu and Zhou’s [22]
anisotropic remeshing pipeline provides good triangles in practice,
but without provable angle bounds. It includes random point
insertion, but since it extends Dunbar and Humphreys’s [23]
advancing-front disk sampling method to surfaces embedded in
3d, and does Lloyd relaxation [24], points are geometrically biased.

We use a maximal Poisson-disk sampler as a subroutine. While
we prefer our earlier method [25] for generating sample points,
others may be used. White et al. [26], and Gamito and Mad-
dock [27] are unbiased alternatives. Dunbar and Humphreys [23],
and Wei [28] are very efficient.

Our triangulation algorithm is linear given sample points
prelocated in a uniform grid of squares. Many problems, including
DT, are known to be O(n) when the points are sorted or
otherwise geometrically organized [29,30]. Some triangulation
methods use a quadtree [31] or other background mesh to aid
point location. Buchin and Mulzer [30] use quadtrees to control
point insertion, yielding a linear Delaunay algorithm even over
badly-distributed points. Kil and Amenta [32] provide a robust
parallel-GPU implementation of a serial linear-time local Delaunay
triangulation of nicely-distributed data. This is very similar to our
setting. Kil andAmenta do someCPUpre-processingwhile our GPU
version does none.

1.1. Our contribution

We present a linear CDT algorithm based on uniform random
points. See Figs. 1 and 2 for examplemeshes. Algorithm complexity
and provable triangle angles are similar to the best known
for (biased) uniform Delaunay refinement CDT methods. To our
knowledge [33], ours is the first provably optimal algorithm based
on Poisson-disk sampling. Efficiency is achieved using locality
(background grid and bounded edge lengths) and radial sorting.

Section 3.2 and Remark 7 shows the near-equivalence of De-
launay refinement and our MPS approach in terms of the out-
come, despite the processes being opposite. Delaunay refinement
inserts points to reduce circumcircle radii and as a byproduct prov-
ably produces a (biased) maximal sampling. Our method produces
a maximal sampling, and as a byproduct a provably good De-
launay mesh results. Our sampling is unbiased, but any maximal
disk sampling is sufficient for provable angle bounds. For example,
Section 3.2 may be a way to show that many practical Poisson-
disk sampling methods, and many variants of Delaunay refine-
ment, achieve provable angle bounds similar to Chew, because they
achieve a maximal empty-disk sampling.

Our implementation performance appears reasonable com-
pared to Shewchuk’s [34,17] popular Triangle software. Our typ-
ical serial running time is 2.7 s to triangulate 1000,000 points, plus
10 s to generate the sample points. Our algorithm and Triangle take
about the same amount of time to triangulate. Triangle generates
points much faster, because the points it generates are determin-
istic rather than unbiased random. Our GPU triangulation code is
a 2× speedup over our serial code, about 29% of the theoretical
memory-limited speedup.

Our algorithm is modular in the sense that it may be
incorporated into a complete mesh generation toolkit that
performs many other steps, such as preprocessing sharp boundary
features.
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Fig. 1. Two random CDTs with the same radius and domain.

Fig. 2. Top, a non-convex fracture domain with a hole. Bottom, a seismic domain;
our implementation succeeded despite the user selecting a coarser mesh size than
the theory requires.

2. Algorithm

– Preprocess sharp boundary features.
– Protect the boundary of the domain with random disks.
– Sample the interior of the domain, until the set of disks is

maximal.
– Triangulate the sample points.
For clarity, we describe sampling before protecting. We analyze
the algorithm in Section 3; then give implementation details for
triangulating serially (Section 4) and on the GPU (Section 5).

2.1. Maximal Poisson sampling

Maximal Poisson-disk sampling selects randompoints {xi} = X ,
from a domain, D . The disk of radius r for each point contains no
other points. xi is chosen fromDi−1, the remaining disk-free area of
D , without preference: the probability P of selecting a point from
a subregion Ω is proportional to Ω ’s area. The maximal condition
means that the points’ disks cover the whole domain and no more
points can be sampled.

Bias-free: ∀Ω ⊂ Di−1 : P (xi ∈ Ω) =
Area(Ω)

Area(Di−1)
(1a)

Empty disk: ∀xi, xj ∈ X, i ≠ j : ‖xi − xj‖ ≥ r (1b)

Maximal: ∀p ∈ D, ∃xi ∈ X : ‖p − xi‖ < r. (1c)
In recent work [25], we have shown how to efficiently produce
a sampling satisfying all three criteria. The main datastructure is
a background uniform cell (square) decomposition to keep track
of the remaining uncovered area of the domain. The diagonal of a
square is r , so it can contain at most one dart.

We have two phases. In the first phase, darts (vertices, disk
centers) are thrown into empty cells. If a newdart violates (1b), it is
rejected. We only need to check a constant number of nearby cells.
After a linear number of dart throws, the remaining uncovered
area is expected to be small, and we switch. In the second phase,
the main innovation is to build a polygonal approximation to the
disk-free voids within cells. We weight each polygonal void by its
area. We randomly throw darts based on these weights, which is
the only non-linear step. Careful attention to placing or rejecting
darts within the polygonal approximations leads to an unbiased
sampling. Efficiency arises fromcareful handling ofwhen to update
and recalculate weights. The expected run-time is O(n log n); the
log n dependence is very mild. The memory is deterministic O(n).
The number of cells |C| = Θ(n).

For this paper we treat that algorithm as a black-box that
produces both the sample points and the cells containing them.We
also rely on the ability of the black-box to accept some prescribed
sample points on the domain boundary, and then generate the rest
of the points needed to achieve a maximal distribution.

2.2. Preprocess sharp features

We assume sharp vertices have been protected by preprocess-
ing using one of themethods from the introduction.Whether a ver-
tex is too close to a non-containing edge andmust be preprocessed,
i.e. is sharp, depends on r . After preprocessing, what we require is
that r is smaller than any input edge; and r is small enough that
whenweprotect the domain boundary the disks for one input edge
will not intersect another input edge, except perhaps for the disk
centered at the common vertex of the edges.

2.3. Protecting the domain boundary

Pure maximal Poisson sampling [25] may introduce vertices
arbitrarily close to the domain boundary. This poses no problems
for maximal Poisson sampling per se, but would result in triangles
with unbounded small and large angles. To prevent this, we protect
the domain boundary by introducing sample points exactly on the
boundary, or at least somedistance from the boundary. The disks of
these samples cover a neighborhood of the boundary, preventing
the introduction of points that could create triangles with bad
angles. The price is introducing a sample bias near the boundary.

We follow the simple but effective methods of Chew [3]. The
main idea is to place a single dart at each vertex, and then protect
edges by maximally placing random darts along them.

It is easy to space disks between r and 2r apart. However, disks
between

√
3r and 2r apart do not overlap enough to protect the

boundary. We have two solutions: close-disks and interior-disks.

2.3.1. Protecting with close-disks
It is also easy to space boundary disks between

√
3r/2 and

√
3r apart. This results in some boundary r-disks containing each

other’s centers, and an angle lower bound of arcsin
√
3/4 ≈

25.6° instead of 30°. The quality and timing results given for the
implementation are for this strategy.

2.3.2. Protecting with interior-disks
See Fig. 3(a). We may preserve the property that r-disks do

not contain each other’s centers and obtain a 30° angle bound by
following the approach of Chew [3]: protect long (>

√
3r) edges



M.S. Ebeida et al. / Computer-Aided Design 43 (2011) 1506–1515 1509
(a) Interior-disk. (b) Central Angle Theorem.

Fig. 3. (a) A dark-blue random disk covering the interior intersection point of the blue circles covers the forbidden red region. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
by introducing a disk centered in the interior. Let a and b be
consecutive samples on a boundary edge, and Ca and Cb their r-
radius disks. Consider a circle with chord ab. The Central Angle
Theorem, Fig. 3(b), says the chord subtends the same angle for any
point on the arc of the circle on one side of ab. The angle only
depends on the circle radius. Any point inside the circle makes
an even larger angle with ab. After protecting the boundary, only
interior points are added;wewill generate a covering triangulation
of the protected boundary. The angle that a constraint edge makes
with a visible point is a lower bound on themaximum angle in any
covering triangulation, regardless of additional points or choice of
triangulation edges [1]. So we cannot place any samples inside the
120° circle for ab, C120°. Part of C120° is already covered by Ca and
Cb, and we seek to cover the remainder with an interior disk.

A natural choice is centering a disk at the midpoint of the arcÙab of C120°; instead of C120° Chew uses the circle of points making
90° angles with ab. We actually have a lot more freedom than this;
see Fig. 3(a). Circles Ca and Cb intersect exactly once on the domain-
interior side of ab. We show in Section 3.3 that it is sufficient to
place a disk anywhere covering that intersection point, as long as
the disk center is outside Ca, Cb and C120°. Such a disk covers the
remaining forbidden region inside C120°. Random disk placement
reduces the bias, and improves fracture mechanics simulations by
varying the angle between boundary and interior edges.

2.4. Triangulate

Our cell structure enables a local, simple, and fast algorithm
for constructing the constrained Delaunay triangulation, CDT. We
shall see in Section 3 that the length of CDT edges are bounded
by 2r . This ensures that for any point, the other points of its star
are all in nearby cells. The number of nearby cells is constant, so
the number of sample points they contain are bounded by that
constant. Thus,wemay construct the star of every point in constant
time, using any of the standard constrained Delaunay algorithms,
in linear total time.

While divide and conquer is known to be the fastest serial
algorithm, for effective parallelism we use an algorithm based on
the locality of points. Radial sorting is particularly efficient on
GPUs. Our square background grid helpswith efficiency. Details are
given starting in Section 4.

3. Analysis of the algorithm

3.1. Angle bounds

Here we show that the algorithm produces triangle angles
between 30° and 120°, or 25.6° and 124.4°. The results are nearly
the same as Chew [3] but the proofs, i.e. the reasons the results
hold, are reversed. We ignore triangles containing the vertex
common to two input edges or other sharp vertices, as their quality
depends on the details of the preprocessing step.
Definition exterior–interior–center. A CDT T = △v1v2v3 with
circumcenter c is an exterior–center triangle iff v1c crosses v2v3 and
a constraint edge ab, and is an interior–center triangle otherwise. C
is the circumcircle and R the circumradius.

Lemma 1. Interior–center triangles have R ≤ r.

Proof. c ∈ D so c is covered by radius-r Poisson disks. {vi} are its
closest visible points. �

Lemma 2. Exterior–center triangles have R ≤ r (close-disks) or R ≤

2r/
√
3 (interior-disks).

Proof. No constraint edge can cross an edge of T . No constraint
edge vertex can be in C and visible to v1. Hence ∃ constraint edge
ab crossing arc v̄2v3 twice and crossing v1c , with ab ∩ C visible
to v1. By the Central Angle Theorem, ̸ acb = 2(180° − ̸ av1b).
̸ av1b ≤ 120° by construction, hence ̸ acb ≥ 120°, and R =

|v1c| ≤ |ab| cot 60°. �

Lemma 3. CDT edges e have length r ≤ |e| ≤ 2r (interior-disks) or
√
3r/2 ≤ |e| ≤ 2r (close-disks).

Proof. No visible sample points are closer than r or
√
3r/2 to each

other. For an interior–center triangle, edge lengths are at most the
circumcircle diameter. For an exterior–center triangle, v2v3 is its
longest edge and |v2v3| ≤ |ab|. �

These lemmas are nearly the same as the conclusion of
Chew’s [3, Theorem 1], although the construction leading to the
proof of the circumcircle radius condition is different: Chew’s
algorithm inserts the centers of large circles leading to a tight
packing of points, while we insert tightly-packed points leading to
no large circles.

Chew’s corollary to his Theorem 1 follows for the interior-disks
strategy.

Corollary 4 (Chew’s Corollary). (1) CDT angles are between 30° and
120°. (2) |e| ≤ 2r.

Corollary 5 (Close-Disk Angles). For the close-disks strategy CDT
angles are between arcsin

√
3/4 > 25.6° and 150°−arcsin

√
3/4 <

124.4°.
Figs. 3(b) and 4 outline the proofs and show that the angle and

edge length bounds are tight. Recall we exclude the analysis of
triangleswith two constraint edges. For interior-disks, the smallest
circumradius occurs for a triangle with edge lengths r–r–r: R ≥

r/
√
3; for close-disks r–r–

√
3r/2 gives R ≥ 2r/

√
13.

Strategy Angle Edge length Circumradius
Min Max Min Max Min Max

Interior-disks 30° 120° r 2r 0.577r 1.155r
Close-disks 25.4° 124.4° 0.866r 2r 0.555r r
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(a) Interior △. (b) Min-angle on bdy. (c) Max-R on bdy.

Fig. 4. (a) Extreme cases for interior triangles. (b) Boundary △vab with |ab| =
√
3r/2, |bv| = r , and R = r: ̸ v = γ = arcsin

√
3/4; α = ̸ a = 30°;

β = ̸ b = 150° − arcsin
√
3/4 < 124.4°. (c) Boundary △vabwith |ab| = 2r , ̸ v = 120° and R = 2r/

√
3.
Fig. 5. Any disk Cx covering the interior intersection point n = Ca ∩Cb protects the
boundary, as long as x is outside Ca , Cb and the 120° circle of ab. Angles and distances
show that x is closer to q and t than n, so Cx covers forbidden region F = △ntq.

3.2. Triangulations and maximal samplings

We observe the near-equivalence of maximal disk samplings
and good triangulations. An epsilon-net is a point set satisfying
(1c); see [35] for a full definition.

Lemma 6. The vertices of any triangulation with bounded circumcir-
cle radii ≤ r forms an epsilon-net for circles with ϵ = r, regardless of
Delaunay property, angle bounds or smallest edge length.

Proof. If the triangulation is Delaunay, then this follows from
Delaunay–Voronoi duality: Delaunay circle centers are the vertices
of convex Voronoi cells. But the Delaunay property is not required,
as the Voronoi diagram for a single triangle shows that every point
p inside △xyz is within distance r of one of its vertices. �

Remark 7. If additionally all vertices are at least r from each other,
then the vertices are a maximal sampling with radius r satisfying
properties (1b) and (1c).

A Delaunay triangulationwith all edge lengths at least r has this
property, because the nearest neighbor graph is a subgraph of the
DT edge graph. In particular, the points of Chew’s algorithm (and
variants) are a maximal sampling.

3.3. Geometry of protecting the boundary

Here we prove that we have a lot of freedom in placing
interior-disks protecting the boundary. Let a and b be consecutive
boundary-edge samples, and label the construction as in Fig. 5. Let
n be the interior point of intersection between Ca and Cb. Let region
F be the points in the domain outside Ca and Cb making angles 120°
or greater with ab. ̸ anb = α > 120° because we only protect
‘‘long’’ edges, those with |ab| >

√
3r .
Theorem 8. Any r-disk Cx covering n covers all of F .

Proof. Let point q = Cb ∩ C120° and point t = Ca ∩ C120° on the
interior side of ab.WLOG assume x is closer to a than b, hence closer
to t than q. The lemmas that follow prove that x is also closer to q
than n. The ideas are that x lies above

−→
bt , which in turn lies above

the perpendicular bisector of nq. (‘‘Above’’ means on the opposite
side of the line as a.) So all the vertices n, q, and t of F lie inside Cx.
One side of F is non-convex, but Cx intersects C120° once betweenÙqb and once between Ûta, and circles intersect at most twice, so all
of F lies inside Cx. �

We first show
−→
bt lies above ⊥ nq.

Lemma 9. ϵ ≥ β + γ /2.

Proof. Here α = ̸ anb, β = ̸ nba = ̸ nab, γ = ̸ tan = ̸ qbn, and
ϵ = ̸ abt = ̸ baq.

Since △anb is isosceles β = 90° − α/2. Since △atb is a triangle
and ̸ atb = 120°, β +γ = 60°− ϵ. Linearly combining these gives
β + γ /2 = 75° − α/4 − ϵ/2. So β + γ /2 ≤ ϵ is equivalent to
50°−α/6 ≤ ϵ. Since 120° ≤ α ≤ 180° and 0° ≤ ϵ ≤ 90°, we may
take the sines of each side. It remains to check sin(50° − α/6) ≤

sin ϵ.
By the law of sines over △tab, sin ϵ = r sin(120°)/d, where

d = |ab|. Considering right triangle △nma, we have sin(α/2) =

d/2r . So sin ϵ = sin(120°)/(2 sin(α/2)). Our check reduces to
sin(50° − α/6) ≤ sin(120°)/(2 sin(α/2)).

Let h(α) = sin(α/2) sin(50° − α/6). Our check is h(α) ≤

sin(120°)/2. Equality holds at α = 120°. We now show that
h′

≤ 0 for our range of α. h′
= cos(α/2) sin(50° − α/6)/2 −

sin(α/2) cos(50° − α/6)/6. So h′
≤ 0 ⇐⇒ tan(50° − α/6) ≤

tan(α/2)/3. For α ∈ [120°, 180°], the right hand side is decreasing
in α and the left hand side increasing. �

Corollary 10. Any point x above
−→
bt is closer to q than n.

We now show that x lies above
−→
bt . Partition space by the

perpendicular to ab through t: halfspace Tb contains b and a ∈ Ta.
Points in Tb below the ray are inside C120°. The next lemma shows
that points in Ta below the ray are either inside Ca or too far from n.

Lemma 11. |ts| = r, where {t, s} =
−→
bt ∩ Ca.

Proof. Label the construction as in Fig. 5. Let T = |bt| and S = |ts|.
Recall that |ab| = d and Ca has radius r . By the power-of-a-point
theorem, (T + S)T = (d + r)(d − r), so S = (d2 − r2)/T − T . By
the law of cosines for △abt , d2 = T 2

+ r2 + Tr. Combining these
gives S = r. �

Corollary 12. Any point x within r of n is above
−→
bt .

4. Local CDT

Our CDT algorithm iterates over each point p of the maximal
Poisson distribution, constructing its star, i.e. the triangles
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Fig. 6. Constructing the local CDT for p. (a) Points sharing an edge with p must lie within a 7 × 7 template. Cells are ordered in a spiral according to the blue curve. Points
are numbered by the order they are considered in Step i. (b–d) Alternative configurations after removing points of P based on boundary constraints, and Delaunay circles.
Letters indicate the order of points in P . (b) No constraints. (c) A nearby boundary. (d) p lies on the boundary.
containing it. Define the CDT-star as the triangles containing p in
a true constrained Delaunay triangulation of the entire point set;
we ensure our constructed star is a CDT-star. Our background grid
and GPU considerations encourage a sorted-angle approach. Points
in nearby cells are our candidates Q for the star. They are inserted
into P , the vertices of the star in clockwise order around p.

Our algorithm takes three passes. In the first pass points from
Q are added to P . After this pass P contains all the CDT-star
vertices, but may also contain some extra vertices. In the second
pass these extra vertices are removed based on constraints or prior
points’ stars. In the third pass extra vertices are removed based on
the Delaunay principle. Adding and removing vertices are implicit
edge flips converting a star triangulation to a constrainedDelaunay
triangulation.

4.1. Serial CDT algorithm details

We provide these details for others wishing to reproduce or
improve our results. ConstrainedDelaunay edges have length≤ 2r ,
so only points within 2r of p are relevant to p’s CDT-star. (We shall
see below that a visibility-blocking constraint edge will have at
least one vertex within 2r as well.) These points lie within a 7 × 7
template of squares (with corners removed), centered at the cell
of p. In the first pass we gather and sort these points q by angle
around p. To avoid any expensive square-roots, we use the slope of
pq as a surrogate for the angle. The geometric centers of the cells of
the template have a fixed sorted-order around, and distance to, the
center cell. This defines a spiral ordering to the cells, which speeds
sorting the sample points and other checks.
Terminology. An edge that is known to exist in the CDT-star, either
by constraints or by a prior star calculation, is a validated edge. An
edge that is known to not exist, by a prior star calculation, is an
invalidated edge. An edge that may exist is a candidate edge, and is
neither validated (constrained) nor invalidated.We often loop over
the points of P , sometimes circularly; let p0 be the current point,
p− the prior point and p+ the next point in P .

(i) PopulateP with points ofQ sorted by angle around p. Visit the
cells of the spiral in order; see Fig. 6(a). When a cell contains
a point qi,
(a) If |pqi| > 2r , discard qi.
(b) Find the quadrant containing qi. Insert qi into the

quadrant’s list of points, sorted by the slope of −→pqi. If two
rays have identical slope, e.g. both of them lie on an input
edge, discard the point farther from p.

(c) If qi contains a constrained edge, ensure its other vertex
a is added to a quadrant, even if a is farther than 2r from
p. (This edge may be used in Step iia, and is needed for
correctness in Section 4.2.)
Concatenate the quadrants’ sorted lists to form P .

(ii) Remove vertices of P based on (in)validated edges. Consider
each p0 ∈ P .
(a) If p0pk is validated but p0 and pk are not consecutive in P ,

then remove pj, 0 < j < k, whenever ppj crosses p0pk.
(b) If p0p is invalidated, remove p0. Mark any validated pp0.
(c) Remove domain boundaries in connected components of

the domain intersected with the radius 2r circle centered
at p other than p’s component: if p0 lies on a one-sided
domain boundary, and p is in the exterior, remove p0.
Here the exterior is defined locally by the cone of the two
consecutive boundary edges containing p0.

Checking neighboring stars is relatively expensive because it
involves chasing a lot of edges.

(iii) Remove vertices of P based on geometry. Check Delaunay at
p0.
(a) If p0p is a candidate edge and p0 is located outside

the circumcircle of △p−p+p, remove p0 and recheck p−.
(Incircle test, edge flip.)
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(a) Case 1. (b) Case 2.

Fig. 7. Illustrations for the proof of Lemma 15.
When p0 is removedwemust recursively recheck the prior
point p−. In the natural iterationwewill check the subsequent
point p+. This corresponds to a chain of edge flips in the
incremental Delaunay algorithm. We must keep checking
until all consecutive triples of points have been checked and
none removed.

The star of p are validated edgeswhen subsequently running the
local CDT algorithm for nearby points. This breaks ties consistently
for four or more cocircular points. Any other potential edge with p
is invalidated.

4.1.1. Implementation performance details
A quadrant is defined by the two straight lines with slope ±1

passing through p. Let δx be the x-coordinate of q − p taken
as vectors; δy is analogous. In Step i finding the quadrant takes
only two subtractions, two absolute values, and two comparisons.
Depending on the quadrant, we use δx/δy or its reciprocal as the
slope, and sort ascending or descending. Computing slope requires
only one division. The number of points in a quadrant is small,
so maintaining sorted order is fast. It might be possible to further
optimize Step i. For example, the cells could be re-ordered so that
the next point is more likely to be at the end of a sorted list. But as
described the run-time of the first pass is already smaller than the
other passes. For GPUs, sorting by angle is a fast primitive, so we
use that instead of the quadrants and slopes.

In Step ii we check the N neighbors of p0 for validated edges.
This check dominates the run time. (N ≤ 14 from the minimum
angle in the CDT.) For the run-time of Step iii, we bound the
number of Delaunay checks. There are |P | < 45 initial triples
of consecutive points. Every point that is removed generates two
new triples thatmust be checked. So there are atmost 3|P | checks.
Together these two steps take O(N|P |) time.

For Delaunay circle checks, we use Shewchuk’s [36] ‘‘incir-
cle’’ primitive. For determining when edges cross, instead of
Shewchuk’s ‘‘orientation’’ primitive we use our own based on tri-
angle area because the known sorted order allows us a small short-
cut.Weuse a fixed-length array forP . Tominimizememorymove-
ment, instead of actually removing points from the array, wemark
them as ‘‘removed’’ using an ancillary array.

4.2. Correctness

The main arguments behind the correctness of our CDT
algorithm are that the constructed star is a CDT of the retained
points, and no discarded point is in p’s CDT-star (the star of p in
a true CDT).

Theorem 13. On termination, P are the vertices of the star of p in a
CDT of the entire domain.

Proof. By Lemma 14 we start with a superset of the CDT-star of p.
Lemma 15 shows that removed vertices are not in the CDT-star of
p. Lemma 16 shows that the algorithm produces the CDT of the
remaining vertices and constrained edges. This CDT is a proper
subset of the CDT of the entire domain by the Delaunay principle,
and by observing all relevant constraints. �

Lemma 14. After Step i, P contains all the vertices of the CDT-star of
p, plus perhaps some extra vertices.

Proof. Trivial. By Corollary 4, CDT edge lengths are at most 2r , so
only points inside the template are in the CDT-star of p. �

Lemma 15. Removed vertices are not in p’s CDT-star.

Proof. Any p0 discarded by constraints in Step ii is obviously not
in the CDT. It remains to consider discarding p0 based on geometric
criteria in Step iii. p0 is discarded iff pp0 is not in the Delaunay
triangulation of p−, p0, p+ and p, and pp0 is not validated. The only
way pp0 could be in a CDT but not a DT is if some constraint edge
passes through △pp−p+. WLOG we must consider two cases, the
possibility of a constraint edge ab crossing (1) pp− and (2) p−p+

but not pp−.
Case 1: Consider the 2r-circle centered at p, 2Cp. If a or b is in 2Cp,
then Step ii would have removed p− before Step iii. Otherwise,
show next that angle and edge length bounds imply the existence
of some other vertex in 2Cp with constraint edges that would have
removed p−.

See Fig. 7 and Mitchell [1]. Let ab be the closest constraint edge
to p− crossing pp− with no vertex in 2Cp. Let a′ and b′ be the
intersection of abwith 2Cp, and p′

−
the intersection of−→pp− with 2Cp.

By the Central Angle Theorem, ̸ a′pb′
= 2α and ̸ a′p′

−
b′

=

180° − α. α = arcsin(|a′b′|/(4r)) < arcsin(|ab|/(4r)). By
Corollary 4 |ab| < 2r , so ̸ a′p′

−
b′ exceeds 120°. (Regardless of using

the close-disks or interior-disks strategy.)
Let v be the vertex in △p−a′b′ closest to a′b′; perhaps v =

p−. Consider the CDT of the convex hull of the input domain,
which is a proper superset of the CDT of the domain. In this larger
triangulation, consider the triangle U containing v and a subset of
−→
vp; perhaps U = △avb. U has angle at v in excess of 120°, and
so must be exterior to the domain. Since ab was chosen to be the
closest constraint edge, no constraint edge crosses−→

vp inside△avb.
So v is on the boundary of the domain, and its constrained domain-
boundary edges would have removed p− in Step ii.
Case 2: The remaining case is ab crosses p−p+ but no constraint
edge crosses pp− or pp+. One of a or b lies inside △pp−p+. If ab
crosses pp0 then pp0 is not in the CDT; otherwise WLOG a is the
closest point visible to all of pp0, and a lies inside △pp−p0. The
Delaunay check showed that the circumcircle of△pp−p0 contained
p+, hence the circumcircle of △pap0 also contains p+. Since no
constraint edge crosses pp+ or pp0, let c be the vertex in △pp+p0
closest to and visible to pp0; c might be p+. Then a, c, p0, and p are
mutually visible, and the circumcircle of △pap0 contains c , which
invalidates pp0. �
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Lemma 16 (Clean-Up is Flipping). After Step iii, P defines the CDT
of the vertices of P ∪ p and any constraints.

Proof. Constraints: All constraint edges between p and p0 are
respected due to Step iib. All constraint edges between p0 and some
other vertex are respected due to Step iia. At the start of Step iii all
points ofP are visible to p. Also, consecutive points ofP are visible
to each other: no constraint edge blocks them because any such
edge either has vertices that would make them non-consecutive,
or remove one of them in Step ii. Visibility between consecutive
points is invariant during Step iii because any p0 with a constraint
edge crossing p−p+ is inside △pp−p+ and will not be removed by
a Delaunay check.
Delaunay: Delaunay’s theorem states that satisfying the empty-
circle property between pairs of triangles sharing an edge is
equivalent to satisfying the empty circle property globally. Based
on this, a standard Delaunay algorithm is to take any triangulation
and then flip edges to satisfy the local Delaunay criteria, recursively
checking the new adjacent triangle pairs.

Removing vertex p0 from the star corresponds to flipping pp0
with p−p+. Our algorithm flips recursively through the star by
iteration and backtracking on index j of p0. The only difference
between our algorithm and the standard flip algorithm is that we
discard p0. This is acceptable because we are only constructing
the star of p, and a property of the standard algorithm is that if
a flip removes an edge, there is a witness that the removed edge is
non-Delaunay, so no subsequent flip will every re-introduce that
edge. �

5. GPU implementation

We implemented a GPU version of the CDT algorithm, and
also our black-box that generates the random points [25]. We
ran it on points in a square domain, which is typical for fracture
simulations. The localization provided by grid cells is central to our
parallelization.

The CDT for p depends on three layers of cells, a 7 × 7 grid
(with corners removed) centered at the cell of p. However, when
generating the CDT we only change the datastructures associated
with the center cell. We may simultaneously work on two 7 ×

7 grids as long as they do not contain each others’ center cell.
Active cell centers are offset from one another by multiples of 4
in x and y indices; there are no race conditions between threads.
Each thread begins with a 4 × 4 grid of center cells. We use
global synchronization after each update; the cost is equivalent
to a kernel relaunch, and has minimal overhead. There are sixteen
stages, so that every cell (every p) is the center of a 7 × 7 grid in
one stage. Since each thread can nowbe considered independently,
each thread can imitate the serial algorithm; see Section 4.

Load balancing is achieved by having many more threads than
processors, at least for the domains and mesh sizes of interest. The
amount of work a given thread does at each stage varies widely;
e.g. threads with empty cells return immediately. However, each
processor works onmany threads between global synchronization
stages. In particular, there are enough memory requests to keep
the DRAM controllers busy. We also considered atomics, but that
approach appeared more complicated, and may perform worse.

Recall we use an alternative to Step i because GPUs are very
fast at calculating angles due to their specialized hardware for
transcendental functions. We dispense with quadrants and build
one list directly. We gather the points from the 7 × 7 grid with
distance to p ≤ 2r and add them to P . We visit the cells in the
angular order of their center point; this results in points being in
nearly-sorted order. (This is different than the spiral order.) Then
we run a local insertion sort. The nearly-sorted order reduces data
Fig. 8. The data points are for runs at different resolutions r . For a given resolution,
we plot Triangle’s maximum and minimum times. Our serial CDT is competitive
with Triangle’s median times. Our GPU CDT is about a 2× speedup over our serial
CDT; the GPU memory bandwidth is 6.7× the CPU’s. Our serial and GPU CDT
implementations show near-linear performance. Our method and implementation
for generating maximal Poisson samplings (MPS) is competitive with the best for
MPS; theMPS family ofmethods is slower than Delaunay refinement for generating
points.

Fig. 9. CPU memory use while generating a 8271,560 point mesh.

movement. If two points have the same angle, we remove the one
farther from p.

The result is the same as the serial version, except that we did
not collect constraint edges if one of its vertices is farther than 2r
from p. We gather and sort any far constraint edges on the fly in
Step ii. This reduces total memory access because edges are only
considered once, in Step ii and not in Step i. The remaining GPU
and serial steps are the same.

6. Implementation Performance

6.1. Run-time and memory

The serial implementation was tested on a laptop.1 We
ran the code over four typical fracture mechanics domains:
roughly-square surface patches, some non-convex, with various
combinations of holes and two-sided interior boundary edges.
These differences had little effect on the run-time, memory, or
mesh quality. As illustrated in Fig. 8, we generated 100,000 random
points/s and triangulated 370,000 points/s. The sampling density
had little effect: both algorithms show a near-linear complexity in
the number of mesh points, with only a very slight rise.

Fig. 9 demonstrates serial memory usage. The phases of
sampling and triangulating are visible. Phase II consumes more
memory than Phase I, because the geometric voids are more com-
plicated than simple squares. However, the difference between

1 2010 vintage. Intel r⃝ CoreTM i7-620 M at 2.67 GHz, 4 MB cache; 4 GB RAM; 64-
bit Windows 7 OS.



1514 M.S. Ebeida et al. / Computer-Aided Design 43 (2011) 1506–1515
Fig. 10. Observed angles and edge lengths for a 1E6-point triangulation of the square. The angle histogram uses 2.5° bins. The edge-length histogram uses 1/30 width bins.
Fig. 11. Example distributions for the square, by number of points, n. About 4
√
n of the points are on the boundary. One sample run each. A boundary edge is a constrained

edge. For any triangle containing a boundary edge, all three of its angles are boundary triangle angles; one of the angles may be at a vertex internal to the domain.
Phase II memory and the memory needed to store the final output
is relatively small.

6.1.1. GPU performance
We ran our GPU CDT algorithm on an NVIDIATM GeForceTM GTX

460 with 336 CUDA Cores and 1 GB GDDR5 RAM. We triangulated
735,000 points/s, about a 2× speedup over the serial code;
see Fig. 8. Since memory bandwidth is the limiting factor, the
theoretical best speedup is about 6.7×. The memory bandwidth is
17.1 GB/s for CPU, and 115 GB/s for GPU; the ratio is 6.7. The laptop
CPU can perform 24.5 GFlops/s in turbo mode, the GPU’s max is
907 GFlops/s; the ratio is 37. Due to GPU memory constraints, the
largest mesh we could produce had about 2 million points.

6.1.2. Comparison to triangle
In serial we typically triangulate 1000,000 points in 2.7 s, plus

10 s to generate the sample points and grid. Our code is written
in C++ and was compiled under Windows. We compiled the C
code for Triangle [34,17] under Linux, but on the same hardware.
Given 1000,000 random points in the unit square, Triangle took
about the same amount of time as our code. Triangle has an
internal reporting mechanism, and it reported between 2.4–3.7 s,
frequently taking 2.7 s. We do not know why the times varied
so much; the times reported by our code did not vary more than
5%. Triangle is faster when it generates its own point cloud; a
local deterministic process vs. our global random one. There are
differences in problem definition; the language, compiler and OS;
scalability; andwhat constitutes difficult input; but this shows that
our serial codes are close. Our GPU code is a 2× speedup over our
serial code.
6.2. Triangulation quality

Poisson sampling leads to Delaunay triangulations with angles
following a particular distribution [37,38]. This distribution is fairly
independent of the number of samples and even the shape of the
domain; see Figs. 10 and 11. Most angles, 80%, lie between 40°
and 80°, which is good for many applications. The edge length
distribution also tends to be invariant; see Fig. 11. The observed
angle and edge extremes are consistent with the theoretical
bounds. Other properties, such as edge-valence, have also been
studied in the spatial statistics literature [39].

Tournois et al.’s Fig. 2 [40] gives a plot of the angles for a typical
Delaunay refinement algorithm, and refinement interleaved with
smoothing. We see in Fig. 10 that the distribution of angles in
our random mesh has roughly the same shape as in Delaunay
refinement. Theirs appears more jagged than ours, although this
may be an artifact of the histogram widths or sample size.

7. Conclusion

In summary, we described a new method for generating a
Conforming Delaunay Triangulation in two dimensions.

– Points are generated randomly, including points on the
boundary. Point locations are unbiased, except near the
boundary.

– Run-times are as good as the Delaunay refinement algorithms
for triangulating, but not for generating points.

– Angles are as good as many Delaunay refinement algorithms.
– Points are generated in O(n) space and E(n log n) time.
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– Points are triangulated in O(n) time and memory.
– The method is naturally parallelizable.

Random meshes can help in situations where mesh structure is
a concern. Random meshes help validate the results of fracture
propagation simulations, and avoid graphics rendering artifacts.
The method works on planar straight-line graphs, including non-
convex domains with internal 2-sided boundaries (cracks) and 1-
sided boundaries (holes).

Empirical results are that the CDT can triangulate 374,000
points/s on a CPU, and 735,000 points/s on a GPU. The speed scales
very well with the problem size. The output quality is largely
invariant to the domain, and unconstrained angles are provably
between 30° and 120°, or 25.6° and 124.4°.

We plan to extend the algorithm to higher dimensions. The
current Poisson-disk sampling procedure is based on a constant
disk radius; if this is relaxed, gradedmeshes that are unbiasedmay
be possible.

Discrete algorithms are notoriously difficult to parallelize
effectively. Their random memory access patterns (e.g. chasing
chains of mesh edges) does not take good advantage of the
hardware memory hierarchy. The GPU memory bandwidth is
about 6.7× the CPU’s; the 2× achieved speedup is a start. We
intend to try exploiting locality in the 7 × 7 grids, perhaps using
shared memory.
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