
Parallel Algorithms for Dynamically PartitioningUnstructured Grids�Pedro Dinizy Steve Plimptonz Bruce Hendricksonz Robert LelandzAbstractGrid partitioning is the method of choice for decomposing a wide variety of compu-tational problems into naturally parallel pieces. In problems where computational loadon the grid or the grid itself changes as the simulation progresses, the ability to repar-tition dynamically and in parallel is attractive for achieving higher performance. Wedescribe three algorithms suitable for parallel dynamic load{balancing which attemptto partition unstructured grids so that computational load is balanced and commu-nication is minimized. The execution time of the algorithms and the quality of thepartitions they generate are compared to results from serial partitioners for two largegrids. The integration of the algorithms into a parallel particle simulation is also brie
ydiscussed.1 IntroductionConsiderable e�ort has been expended to develop fast, e�ective algorithms that splitunstructured grids into equal{sized partitions so as to minimize communication overheadon parallel machines. The typical approach of performing partitioning as a sequentialpre{processing step may be unsuitable in at least three settings. The �rst is when thegrid is so large that pre{processing on a serial machine is not feasible due to memoryor time constraints. The second is in simulations that use adaptive gridding to adjustthe scale of resolution as the simulation progresses. A classic example is the modeling ofshock propagation where adaptive gridding ensures that the domain is sampled on a �nescale where necessary but more coarsely in other regions and hence overall computationale�ort is reduced. Third, in some problems computational e�ort in each grid cell changesover time. For example, in many codes that advect particles through a grid (PIC,DSMC) large temporal and spatial variations in particle density can induce substantial loadimbalance. In all of these cases repartitioning the grid in parallel as the simulation runscan boost parallel performance. Unfortunately, many of the best sequential partitioningalgorithms are di�cult to parallelize and have not been designed so as to take advantage offrequent reapplication. Furthermore, since the partitioning is now embedded in the parallelsimulation it must be kept economical relative to the total computation.The parallel partitioning algorithms we describe in this paper are constructed fromparallel implementations of two commonly used serial partitioners. The �rst component isthe Inertial method [9] which is fast and straightforwardly parallel, but typically produces�This work was supported by the Applied Mathematical Sciences program, U.S. DOE, O�ce of EnergyResearch, and was performed at Sandia National Labs, operated for the U.S. DOE under contract No.DE-AC04-76DP00789.yDepartment of Computer Science, University of California at Santa Barbara; pedro@cs.ucsb.eduzSandia National Labs; fsjplimp, bahendr, lelandg@cs.sandia.gov.1



2 Diniz et al.partitions of only moderate quality [7]. It is described in Section 2.1. The second componentis a parallel variant of a local greedy heuristic due to Fiduccia and Mattheyses (FM) [3]which is closely related to the the well{known method of Kernighan and Lin [5]. Thisalgorithm greedily improves an existing partition by moving grid points between sets. Themotivation for using FM is that in sequential algorithms it has been observed that combiningthe inertial method with FM usually generates high quality partitions very quickly [7].Unfortunately, a true parallel implementation of FM is known to be P{complete [10], whichmeans a parallel implementation is di�cult in a theoretical sense. Hence we use a moreconvenient but weaker variant which we describe in Section 2.2Our parallel partitioners combine the inertial algorithm with the FM heuristic improve-ment in two ways. First, in an algorithm we call Inertial Interleaved FM (IIFM), the FMimprovements are performed after every cut in the recursive application of Inertial. In thesecond algorithm, the Inertial Colored FM (ICFM), the FM re�nements are postponed untilall Inertial cuts are performed. The IIFM and ICFM algorithms are presented in Sections2.2 and 2.3. Performance results for the parallel partitioning algorithms on an nCUBE 2and an Intel Paragon for two large unstructured grids are presented in Section 3 along witha comparison of the partitioning quality to that produced by serial partitioning algorithms.Finally, in Section 4 we highlight the e�ect of the algorithms in a particle simulation thatis a large user of CPU time on Sandia's parallel supercomputers.2 AlgorithmsWe represent a computation as an undirected, weighted graph in which vertices correspondto computation and edges re
ect data dependencies. Weights can be assigned to verticesor edges to encode heterogeneous computation or communication requirements. Manyscienti�c computing problems including �nite element, �nite di�erence, and particlecalculations can be phrased this way. The goal of partitioning can now be described asdividing the vertices into sets of equal weight in such a way that the weight of edgescrossing between sets is minimized. This problem is known to be NP hard, so we are forcedto rely on heuristics. All of our heuristics rely on a recursive bisection approach.2.1 Parallel InertialThe Inertial method [9] employs a physical analogy in which the grid cells are treated aspoint masses and the grid is cut with a plane orthogonal to the principal inertial axis (theaxis about which there is a minimal moment of inertia) of the mass distribution.At each bisection step the involved processors compute the inertial axis of the assignedsubgraph. Collectively they �nd a point along this axis such that the weights of the graphvertices on both sides are approximately equal. The two vertex sets are then assigned tothe two processor sets.Figure 1(a) illustrates this algorithm for a four processor machine. In the �rst stepall four processors cooperate �nding the inertia axis A1 and the corresponding cut C1.Processors are also split into two sets, e.g. fp0; p1g and fp2; p3g, where pi owns set Si.Processors p0 and p1 send the graph vertices they own on the left side of this cut toprocessors p2 and p3 respectively, who proceed conversely. We say that p0 pairs with p2and p1 pairs with p3. In the next step p0 and p1 �nd the next inertia axis A2a, thecorresponding cut C2a and swap graph nodes on each side of the cut. Simultaneously p2and p3 are �nding inertia axis A2b, cut C2b, and swapping their nodes across their cut.



Parallel Dynamic Partitioning 3
S0

S1

S2

(b)

S3

(a)

A 1

C 2b

A 2b

C 1

C 2a

A 2a

S1

S0

S2

S3Fig. 1. Inertial method example for 4 processors.2.2 Inertial Interleaved FM (IIFM)In this algorithm each graph bisection performed by the parallel Inertial method is followedby FM heuristic re�nement. This FM re�nement greedily improves the bisection by movingvertices between the two partitions so as to minimize a grid metric, e.g. cuts { the number ofedges connecting vertices on each partition. This is achieved by associating with each vertexa migration preference value corresponding to each partition and selecting at each step of theimprovement the vertex with the largest contribution to the metric minimization. Partitionweights can be balanced by always moving vertices from the \lightest" to the \heaviest"partition. This greedy strategy proceeds until no further improvement is possible.Unfortunately, FM is inherently sequential and in a formal sense has been proven di�-cult to parallelize [10]. Our approach di�ers from that in standard serial implementations.We build on an idea described by Hammond [4] and apply FM in a pairwise fashion; thatis, two processors perform FM on the subpieces of the partition they own. When only twoprocessors are involved, FM can be quite e�cient.In our approach many di�erent pairs of processors work simultaneously following eachInertial bisection. The pairing processors construct a sequence of possible vertex exchangesin an e�ort to reduce the number of edges cut by the partition. At each step in thisconstruction, the vertex move with the highest migration preference among those whichwould not a�ect load balance too adversely is identi�ed. The quality of the partition whichwould be observed if the moves speci�ed by the sequence to this point were actually madeis also recorded. When the sequence construction is complete we return and make thespeci�ed moves up through the point where the best partition was observed. This two-phase approach allows counter{productive moves in order to overcome local minima in thecost metric. A halting criterion is imposed on the number of counter{productive moves toterminate expensive and probably unhelpful sequences.In the example above processors p0 and p2 (and also p1 and p3) would pair up after the�rst Inertial cut to improve the quality of their sets, typically by modifying the boundarybetween them slightly. After the second Inertial cut we would observe pairing betweenprocessors p0 and p1 as well as between p2 and p3.2.3 Inertial Colored FM (ICFM)This algorithm is composed of two phases. First the grid is partitioned using the parallelInertial algorithm. Then the partition resulting from the �rst step is improved using the FMheuristic in a pairwise fashion, i.e. all pairs of processors whose partitions share common



4 Diniz et al.edges cooperate to improve the partitions they jointly own.Note that processor pairs whose grid partitions are not contiguous may work concur-rently. To exploit this we construct a quotient graph, G, of the partition obtained in the �rstphase. Each vertex of G corresponds to a partition, and vertices are joined by an edge if thecorresponding partitions have grid vertices joined by an edge. The quotient graph is thenedge{colored so that pairwise FM can be applied to all edges of a color simultaneously. Thecoloring thus determines the scheduling of the pairwise improvement between partitions.In Fig. 1(b) we show the quotient graph corresponding to the partition in Fig. 1(a). Apossible coloring and resulting pairwise scheduling would be f(0; 1); (2; 3)g; f(0; 2)g; f0; 3g.In the current implementation we perform only one sweep through the colors, and use asimple edge coloring heuristic to keep the number of colors small since the general colorminimization problem is NP-complete.3 ResultsWe tested the parallel algorithms described here on a variety of grids and present typicalresults for two of them. The �rst is the WAVE mesh from RIACS 1, a tetrahedral �niteelement grid of a 3D airplane with about 157K vertices and 1M edges. The second is theCVD mesh generated by Hennigan at Sandia, a hexahedral �nite element grid of a 3Dchemical vapor deposition reactor with about 158K vertices and 1.9M edges.In addition to measuring execution time, we also evaluated the quality of thepartitions produced by each method. We used two quality metrics, cuts { the numberof edges connecting vertices in di�erent partitions and hence a measure of the volumeof communication, and startups { the number of partition connections (also the numberof edges in the quotient graph) and hence the number of interprocessor messages. Forcomparison, we also partitioned the two grids with several serial algorithms using Chaco [8],a static load balancing tool. Two of the serial algorithms used were Inertial and Inertialcoupled with FM (Inertial+FM) which are similar to their parallel counterparts; the thirdserial method used was a more sophisticated Multilevel method [6].The parallel algorithms were run on an nCUBE 2 hypercube and on an Intel Paragonlocated at Sandia National Labs. The Chaco runs were performed on an SGI Onyx witha 125 MHz clock. Table 1 presents the results for 64 and 1024 partitions for both gridswhile Fig. 2 plots the parallel run times for the CVD grid for 64 through 1024 partitions.The parallel runs were performed on the same number of processors as partitions, typicalof how they would be run when embedded in an application. Thus a run on 128 processorswill not be twice as fast as one on 64 processors, since more partitions are created.The tables show the ICFM algorithm outperforms the IIFM algorithm both in qualityand partition time, attaining a reduction in cuts of about 10% over pure Inertial but witha slight increase (less than 2%) in startups. For large number of partitions, both IIFM andICFM are an order of magnitude slower than parallel Inertial. Thus for problems where thecost of partitioning is critical, the parallel Inertial method is attractive, while in settingswhere the user is willing to spend more time to get a better partition, the ICFM techniquewould be better.The tables also show that the Inertial+FM algorithm in Chaco is signi�cantly moree�ective than its parallel counterpart { the IIFM. This is due to the pairwise parallelapproach that allows exchanges only between subpieces of the full vertex set. Chaco'sMultilevel FM is the most e�ective method, providing up to a 25% reduction in both grid1Available through anonymous ftp to riacs.edu in the �le /pub/grids/wave.grid



Parallel Dynamic Partitioning 564 partitionsWAVE CVDMethod Time (secs) Cuts Startups Time (secs) Cuts StartupsnCUBE Paragon nCUBE ParagonInertial 7.70 1.14 121081 728 12.8 1.51 324020 674IIFM 34.7 4.48 115827 762 72.2 8.13 317205 678ICFM 14.4 2.23 110899 714 21.3 2.99 310266 680Inertial+FM 41.6 98626 716 51.3 286608 618Multilevel 102.8 96746 732 147.0 240697 5881024 partitionsWAVE CVDMethod Time (secs) Cuts Startups Time (secs) Cuts StartupsnCUBE Paragon nCUBE ParagonInertial 3.92 0.67 347801 15748 4.36 0.71 842547 16978IIFM 100 5.25 331643 15782 158 7.78 773104 17112ICFM 14.9 1.93 315587 15808 17.3 3.36 732548 16998Inertial+FM 96.7 285345 14478 118.0 656183 14892Multilevel 218.4 285330 14472 297.9 650937 14774Table 1Performance results on nCUBE 2 and Paragon multiprocessors.
64 128 256 512 1024

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

Number of Partitions and Processors

C
P

U
 T

im
e 

(s
ec

on
ds

)

Inertial

ICFM

IIFM

Fig. 2. Partition time for the CVD grid on the Paragon.partition metrics considered. However, even on a very fast single processor, it is two ordersof magnitude slower than parallel Inertial and 10 to 50 times slower than ICFM and IIFMrespectively, running on a large parallel machine.4 ApplicationWe tested the parallel load{balancing algorithms in a parallel particle code used at Sandiafor simulating very low{density 
uid 
ows [1]. Because continuum approaches such as theNavier Stokes equations break down in this regime, the code uses Direct Simulation Monte



6 Diniz et al.Carlo (DSMC) techniques [2] to represent the 
uid as a collection of particles. Grids areused in the DSMC computation to locate nearby collision partners. The natural parallelismis to have each processor own a subset of grid cells and the particles in those cells. Thecomputations for particle collisions and moves can then be performed independently byeach processor. Inter{processor communication is performed at each timestep as particlesmove to new cells.Load{imbalance is a serious concern in DSMC simulations because particle densities onthe grid can vary by orders of magnitude both spatially and in time. In the past we have useda static scattered decomposition of cells to processors so that each processor, on average,owns a mix of \costly" and \cheap" cells. However this maximizes the communicationsince a cell's neighbors are not owned by the same processor. The parallel balancers canassign clusters of cells to each processor to minimize communication while still keeping thecomputational load dynamically balanced.Using the parallel balancers in our DSMC code requires two steps. First, a newassignment of cells to processors is computed by the load{balancer using the CPU timelogged in previous timesteps for particle moves and collisions in each grid cell as the cell's\weight". Then all of the appropriate particle and cell data are sent to the new processorswho now own those grid cells. For a prototypical simulation of a nozzle ejecting gas intoa vacuum (17300 grid cells, 1.5 million particles), we found the parallel inertial balancerworked best when run once every 200 timesteps. The total cost of one call to the balancer(balance plus data{send) was about equal to the cost of 2{4 timesteps. Using the pureInertial balancer, the overall run time of a 10000 timestep simulation was reduced from2116 seconds (with a static scattered decomposition) to 1642 seconds on 512 processors ofthe Intel Paragon, a savings of 22%. We are still working to integrate the full IIFM andICFM balancers into the DSMC simulation and will report on their e�cacy at a later time.References[1] T. J. Bartel and S. J .Plimpton, DSMC Simulation of Rare�ed Gas Dynamics on a LargeHypercube Supercomputer, in Proc. AIAA 27th Thermophysics Conference, AIAA 92-2860.[2] G. A. Bird, Molecular Gas Dynamics, Clarendon Press, Oxford (1976).[3] C. M. Fiduccia and R. M. Mattheyses, A linear time heuristic for improving networkpartitions, in Proc. 19th IEEE Design Automation Conference, IEEE, 1982, pp. 175{181.[4] S. Hammond, Mapping unstructured grid computations to massively parallel computers, PhDthesis, Rensselaer Polytechnic Institute, Dept. of Computer Science, Troy, NY, 1992.[5] B. Kernighan and S. Lin, An e�cient heuristic procedure for partitioning graphs, BellSystem Technical Journal, 29 (1970), pp. 291{307.[6] R. Leland and B. Hendrickson, A multilevel algorithm for partitioning graphs, TechnicalReport SAND93-1301, Sandia National Laboratories, Albuquerque, NM 87115, October 1993.[7] ,An empirical study of static load balancing algorithms, in Proc. Scalable High Perfor-mance Computing Conf., Knoxville, TN, June, 1994.[8] , Chaco user's guide - Version 1.0 Technical Report SAND93-2339, Sandia NationalLaboratories, Albuquerque, NM 87115, November 1993.[9] B. Nour-Omid, A. Raefsky, and G. Lyzenga, Solving �nite element equations onconcurrent computers, in Parallel computations and their impact on mechanics, A. K. Noor,ed., American Soc. Mech. Eng., New York, 1986, pp. 209{227.[10] J. Savage and M. Wloka, Parallelism in graph partitioning, J. Par. Dist. Comput., 13(1991), pp. 257{272.


