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Abstract

We examine the coupling of the patterned-interface-reconstruction (PIR) algorithm with the extended finite element method (X-FEM)
for general multi-material problems over structured and unstructured meshes. The coupled method offers the advantages of allowing for
local, element-based reconstructions of the interface, and facilitates the imposition of discrete conservation laws. Of particular note is the
use of an interface representation that is volume-of-fluid based, giving rise to a segmented interface representation that is not continuous
across element boundaries. In conjunction with such a representation, we employ enrichment with the ridge function for treating material
interfaces and an analog to Heaviside enrichment for treating free surfaces. We examine a series of benchmark problems that quantify the
convergence aspects of the coupled method and examine the sensitivity to noise in the interface reconstruction. The fidelity of a remap-
ping strategy is also examined for a moving interface problem.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The extended finite element method (X-FEM) intro-
duced in Moës et al. [12], Dolbow et al. [5], and Daux
et al. [4] was designed to facilitate the simulation of evolv-
ing discontinuities and interfaces without continuous reme-
shing. It does so by building appropriately selected
enrichment functions into a standard finite-element basis
through the partition-of-unity framework [9]. Implicit in
this method is a geometric representation of the feature
of interest, be it a crack surface or phase interface, for
example, that may be independent of the finite element
mesh. Existing approaches include classical and level-set
0045-7825/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.cma.2007.08.010

* Corresponding author.
E-mail address: jdolbow@duke.edu (J. Dolbow).

1 Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of
Energy’s National Security Administration under Contract DE-AC04-
94AL85000.
representations [15]. In this work, we examine the advanta-
ges of employing volume-of-fluid interface representations
in conjunction with the X-FEM.

While originally designed to facilitate the simulation of
crack propagation in brittle materials, the X-FEM has
emerged as an attractive candidate for evolving interface
problems. The method has been applied to simulate stable
[8] and unstable [6,20] phase interface evolution, two-phase
fluid flow [3], and resin-transfer molding [10], just to name
a few. Of course there exist many alternative methods for
all of these problems; however, it does appear that the
accuracy of the X-FEM is superior to many. For example,
in a side-by-side comparison, Vaughan et al. [17] recently
showed the X-FEM to be more accurate than the immersed
interface method for elliptic interface problems.

Most multi-material Eulerian or Arbitrary Lagrangian–
Eulerian methods allow for single elements or cells in the
computational domain to contain volume fractions of var-
ious constituents [1]. These same methods typically employ
volume-of-fluid type interface reconstruction schemes over
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such ‘‘mixed elements’’ in order to improve flux calcula-
tions. It is widely recognized that a drawback to multi-
material finite element methods concerns the smearing of
discontinuities across the interface. Recently, Vitali and
Benson [18] incorporated ideas from the X-FEM into a
multi-material code to improve the contact kinematics in
mixed elements. They employed structured Cartesian
meshes and Youngs’ algorithm to reconstruct the interface.
The spatial convergence of the method and issues associ-
ated with the segmented representation of the interface
were not examined.

In this paper, we employ the second-order patterned-
interface-reconstruction (PIR) algorithm proposed by
Mosso et al. [13] for arbitrary, unstructured meshes. The
PIR method was developed as a second-order accurate suc-
cessor to Youngs’ method [19]. Both Youngs’ method and
PIR are used within volume-of-fluid (VOF) formulations
[2] to accurately partition the volume fluxed (advected)
from multi-material (mixed) donor elements to neighboring
elements. An advantage of the VOF formulation is volume
conservation during the advection step. In particular, the
interface is constructed in such a way that material volumes
are strictly conserved during fluxing. The ‘‘classical’’ level-
set method does not, in general, give rise to volume conser-
vation. In fact, one approach to address this issue is to
couple level sets to volume-of-fluid reconstructions, as in
Sussman [16].

Youngs’ method (developed for Cartesian, structured
grids) uses piecewise linear interfaces to partition mixed-
material elements. Youngs’ algorithm consists of (i) inter-
face normal approximation and (ii) volume conserving
interface positioning. The interface normal is first deter-
mined using volume fraction gradients as calculated from
the immediate mixed-material element neighborhood. The
interface is then positioned, using the normal of step (i)
to conserve donor element volumes. Inaccuracies in the
algorithm’s gradient approximated normal result in an
algorithm that cannot, in general, exactly reproduce a pla-
nar material interface and will not produce a second-order
representation of most curved interfaces.

In Mosso et al. [14], a two-dimensional smoothing algo-
rithm was developed that reproduced linear interfaces in all
orientations and relative element positions. The algorithm
was developed on non-Cartesian, unstructured grids with
arbitrary elements. The method incorporates steps (i) and
(ii) above and includes the concept of stability points to
improve interface normal accuracy. In two-dimensions,
stability points are the midpoints of the reconstructed
interfaces. By locally fitting a plane to the stability points
(i.e. ‘‘smoothing’’ the interface), the interface normal is
improved relative to step (i). By iterating over the normal
improvement and positioning steps, linear interfaces are
reproduced within a few iterations. A drawback to this
algorithm is that it only utilizes two neighboring stability
points chosen from among the larger number of neighbor-
ing stability points. For curved interfaces, the choice of
these neighbors was critical to the iterative improvement
of the local interface normal. The PIR method [13]
employed here uses a larger number of stability points in
its smoothing algorithms, and has been shown to obtain
second-order accuracy on planar and curved interfaces.

Concerning the coupling to the X-FEM, there are many
differences between the current approach to interface repre-
sentation and existing classical or level-set representations.
Classical representations typically represent the interface as
a series of connected segments or facets. With the VOF-
based method proposed herein, by contrast, the interface
is represented by a single plane within each element. This
is also in contrast with level-set representations, where
the interface is usually reconstructed on the basis of nodal
(or vertex) signed distance fields. With linear triangular or
tetrahedral elements, no subdivision of the elements is
required for integration with the VOF representation. Fur-
ther, the element-level volume fractions are easily used to
determine which nodes are selected for enrichment.

This paper is organized as follows. In Section 2, we
provide the governing equation and weak form for simple
one-sided and two-sided problems that will be used to
investigate the coupled method. In Section 3, we describe
the numerical discretization with the coupled X-FEM/
VOF method, including details of the interface reconstruc-
tion algorithm. The fidelity of the coupled method is then
investigated with a series of benchmark interface problems
in Section 4. Finally, we provide a summary and conclud-
ing remarks in the last section.
2. Formulation

In this section, we provide the governing equations and
equivalent weak formulations for two fundamental prob-
lems that will be used to explore the coupled X-FEM/
VOF method.

2.1. One-sided problem

Consider the ‘‘one-sided problem’’ described by an
interface S partitioning the domain R into the disjoint sets
Rþ and R�, as shown in Fig. 1.

We consider a simple, one-sided Poisson problem of the
form

Du ¼ f in R�; ð2:1aÞ
u ¼ ud on @Rd; ð2:1bÞ
$u � no ¼ m on @Rn; ð2:1cÞ
$u � n ¼ g on S; ð2:1dÞ

where D is the standard Laplace operator, and no is the out-
ward unit normal to @Rn, as shown in Fig. 1. We assume
that the boundary @R� is composed of the disjoint sets
of Dirichlet @Rd, Neumann @Rn and interface S parts such
that S [ @Rd [ @Rn ¼ @R�. The above is a simplification
of classical one-sided Stefan problems that arise from
models for a wide range of evolving interface phenomena.



Fig. 1. Notation for the one-sided problem. A domain R partitioned into
regions Rþ and R� by the interface S. The normal n to the interface is
defined such that it points outward from the R� subdomain.
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2.1.1. Standard weak formulation
We write U for the space of admissible bulk fields, and V

for the corresponding space of variations. The weak form
reads: Find u 2 U such that
Z
R�

$w � $u dv ¼
Z
S

wgdaþ
Z
@Rn

wmda ð2:2Þ

for all w 2 V.
2.2. Two-sided problem

In the ‘‘two-sided problem’’ the governing equations of
static equilibrium are enforced in all of the domain R so
that

Div r ¼ 0 in R; ð2:3aÞ
u ¼ ud on @Rd; ð2:3bÞ
rno ¼ t on @Rn; ð2:3cÞ

where r is the stress tensor. The strain � and isotropic elas-
tic material response are given by

� ¼ $su ¼
1

2
$uþ u$ð Þ; ð2:4aÞ

r ¼ Cþ� in Rþ; r ¼ C�� in R�; ð2:4bÞ

and C is the standard isotropic elastic stiffness tensor. On
the interface, continuity of tractions and displacements
are enforced, i.e.

sut ¼ 0 on S; ð2:5aÞ
srnt ¼ 0 on S; ð2:5bÞ

where sÆb is the jump operator.
Fig. 2. Two-dimensional example of a bulk partition of the domain into a
finite element mesh and corresponding partition of the interface into a set
of element planes.
2.2.1. Standard weak formulation
The weak form for (2.3c) is given by: find u 2 U such

that
Z
Rþ

$sw : Cþ : $su dvþ
Z
R�

$sw : C� : $su

¼
Z
@Rn

w � tda ð2:6Þ

for all w 2 V. The above weakly enforces traction continu-
ity across the interface S.
3. Numerical discretization

We consider a quasi-uniform partitionRh of the domain
R into non-overlapping element domains Re with bound-
aries @Re. We assume the volume fractions f þe and f �e of
the positive and negative domains

f þe ¼
measðRe \RþÞ

measðReÞ ; f �e ¼
measðRe \R�Þ

measðReÞ ð3:1Þ

are given for each element. Since we consider only positive
and negative regions, the two quantities are obviously
related by

1 ¼ f þe þ f �e : ð3:2Þ

An element volume fraction in the range 0 < f þe < 1 indi-
cates that the interface is located within the element.
Accordingly, we represent the interface in the element by
a plane that partitions the element domain into portions
that exactly correspond with the volume fractions. The
plane can be associated with an element normal ne. We
note that this plane is not unique, and discuss this interface
reconstruction based on volume fractions in Section 3.3. It
should be clear at this point, however, that the interface
planes will not generally align with element boundaries,
and further may not be contiguous between adjacent ele-
ments. We write Sh for the set of all element interface
planes making up the discrete representation of the inter-
face. For the sake of concreteness, an example of Rh and
Sh is shown in Fig. 2.
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3.1. One-sided problem

We now consider an approximation for the field u and
weight function w of the form

uhðxÞ ¼
X
i2I

N iðxÞui; ð3:3aÞ

whðxÞ ¼
X
i2I

N iðxÞwi; ð3:3bÞ

where Ni are the nodal shape functions, and I denotes the
set of nodes

I ¼ fjj�xj \ R� 6¼ ;g; ð3:4Þ

which have some portion of their supports xj (with closure
�xj) intersecting the domain R�. This is necessary to main-
tain a partition-of-unity over R� which will allow for good
convergence in the error ||uh � u||.

To determine the nodes whose basis functions contrib-
ute to the approximation in the one-sided problem, we take
advantage of the element volume fraction information to
calculate nodal-support volume fractions. For example,
by looping over the set of elements connected to a vertex,
we can easily calculate

f �n ¼
measðxn \ R�Þ

measðxnÞ
; ð3:5Þ

the nodal-support volume fraction (on the negative side) of
node n. We exclude from the set I those nodes whose vol-
ume fractions are below a user-specified tolerance. The ap-
proach is analogous to that used with the extended finite
element method with classical or level-set interface repre-
sentations.2 The one-sided problem has gained interest as
a basic problem to study the X-FEM of late, as two one-
sided problems (with overlapping elements near the inter-
face) is equivalent to enrichment with a Heaviside function.

By substituting (3.3) into a Galerkin approximation to
the weak form (2.2), we arrive at the system of equations

Kd ¼ f; ð3:6Þ

where the stiffness matrix K and forcing vector f are assem-
bled from element vectors, i.e.

K ¼
^

ke; f ¼
^

fe: ð3:7Þ

We note that in the case of linear triangle and tetrahedral
elements, the element stiffness matrices can be obtained
by simply scaling the classical stiffness matrix by the ele-
ment volume fraction f �e . In this case, it is not necessary
to partition any element into ‘‘subelements’’ (as is custom-
ary in the X-FEM) for integration purposes. This greatly
simplifies and expedites the computation of the element
stiffness matrices.
2 For additional insight and details, see Daux et al. [4] and Sukumar
et al. [15].
3.2. Two-sided problem

For the two-sided problem, the field u and weight func-
tions w are approximated as

uhðxÞ ¼
X
i2I

N iðxÞui þ
X
j2J

weðxÞNjðxÞaj; ð3:8aÞ

whðxÞ ¼
X
i2I

N iðxÞwi þ
X
j2J

weðxÞNjðxÞbj; ð3:8bÞ

where aj denotes the additional degrees of freedom for
enrichment, J is the set of nodes

J ¼ fjj�xj \ S 6¼ ;g; ð3:9Þ

and we(x) is the ridge enrichment function proposed by
Moës et al. [11]

weðxÞ ¼
X
i2I

j/e
i jNiðxÞ �

X
i2I

/e
i N iðxÞ

�����
�����: ð3:10Þ

The reconstructed interface is included in the nodal enrich-
ment through /e

i , which are the signed normal distances
from the local intersecting plane to the nodes composing
the element. One can regard /e

i as a level-set representation
of the reconstructed interface that is defined only locally on
element e. We note that, due to the segmented nature of the
interface representation, /e

i will not necessarily be the same
value for the same node in adjacent elements.

3.3. Volume fraction based interface reconstruction

The PIR method employed here involves two key steps:
(i) an approximation to the interface normal in each ele-
ment; and (ii) volume preserving interface repositioning.
Both steps are facilitated by the use of smoothing algo-
rithms. In this section, we summarize the main aspects of
the method. Interested readers are referred to Mosso
et al. [13] for details.

The reconstruction begins by partitioning the set of ele-
ments in the mesh into a list of mixed elements (with multi-
ple materials, and thus at least one interface) and a list of
all single material elements. The first step is to approximate
the interfacial normal in each mixed element, by perform-
ing a gradient calculation. In particular, the unit normal
n to the interface is approximated in each mixed element
using a Dukowicz [7] surface integral formulation as

ne ’
�rf
jrf j ¼

�
H

f ŝdSH
f ŝdS

�� �� ; ð3:11Þ

where f is a discrete volume fraction field, and ŝ is the unit
outward normal to the control volume. Vertex values for
the field f are determined by considering the element vol-
ume fractions of the material in those elements connected
to the vertex, as illustrated in Fig. 3. The integrals in
(3.11) (using constant f) are formed over the surface of each
vertex control volume.

Once the normal is calculated with (3.11), the interface is
positioned in each mixed element using the element volume



Fig. 3. Illustration of volume fraction gradient computation. The algo-
rithm will calculate the gradient in the center element (indicated with
heavy lines). The volume fractions will be averaged for each vertex using
control volumes. The dashed lines indicate the boundary of the control
volume for the top-most vertex. The edges of the control volume connect
element centroids-to-centroids of element edges.

Fig. 5. Sample PIR reconstructed interfaces. Two-dimensional curved
non-spherical test on an unstructured grid (left), and triple point, planar
interfaces on an unstructured grid (right).
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fraction fe. This is repeated for each mixed element in the
mesh, giving rise to an (initial) interface reconstruction.
The PIR method then employs planar and spherical
smoothing algorithms to iteratively improve upon this
reconstruction. Both smoothing algorithms rely on the sta-
bility points.

For the first iteration, only the planar smoothing is
employed because the initial normal given by (3.11) can
be noisy for unstructured grids. Consider a linear interface
passing through a neighborhood of the mesh as shown in
Fig. 4. Even with element volume fractions specified to
match a linear interface, the gradient normals given by
(3.11) will yield reconstructed interfaces in each element
Fig. 4. Illustration of input configuration to planar smoothing using
stability points. The dotted line is the given straight interface, and the solid
lines in each element indicate the initial interfacial segments. The filled
circles are the stability points, located at the centroid of each segment.
that do not align with the exact interface. Stability points
are located at the centroid of each reconstructed interface
as shown in Fig. 4. The stability points represent a good
approximation for the position of the interface if the nor-
mal were more accurately chosen. The planar smoothing
algorithm performs a least-squares fit of a plane to the
appropriate, neighboring stability points about each mixed
element.

The second smoothing method is similar, and is based
on the assumption of a curved interface. It computes a cen-
ter of convergence based upon a circular chord extending
from the element’s stability point to each of the filtered,
neighboring stability points. By repositioning the planar
interface in the mixed element such that the new interface
is orthogonal to the radial extending from the center of
convergence to the element’s new stability point, second-
order accuracy is achieved for curved interfaces.

For each material, both smoothing algorithms are ini-
tially used. To select the smoothing result for each element,
the interface is extended from the home element to its
neighboring interfaces and the volume between the extrap-
olated interface and the interface in the neighboring ele-
ments is computed. The smoothing algorithm that
produced the lowest volumetric ‘‘discrepancy’’ or ‘‘rough-
ness’’ is used in further smoothing iterations for that mate-
rial interface fluxing step. The algorithm is fast and
typically converges in two to four iterations. The robust-
ness of the algorithm has been demonstrated by its perfor-
mance on a series of benchmark tests. Sample PIR
reconstructed interfaces are shown for a curved interface
and triple point, planar interfaces in Fig. 5.
4. Numerical examples

We first consider two-dimensional problems where the
interface is fixed. We consider a scalar one-sided problem
as well as a displacement-based material inclusion problem.
These problems possess analytical solutions, allowing us to
examine convergence and the role of perturbations to the
interface geometry. We then provide results for an artificial
evolving interface problem to illustrate the fidelity of the
remap/reconstruction algorithms.



Fig. 7. Coarse mesh (left) and zoom of interface (right) for one-sided
problem.
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With the one-sided problem, a Neumann condition is
enforced on the interface, and the nodal selection proce-
dures of the X-FEM are employed near the interface. To
a degree, this is analogous to enrichment with the Heavi-
side function. The problem therefore tests the sensitivity
of the accuracy in the flux imposition to the interface geom-
etry. With the two-sided problem, displacement continuity
is enforced on the interface through the use of the ridge
enrichment function. This problem therefore tests the sen-
sitivity of such a constraint to the interface geometry, as
represented by a set of disjoint segments. Finally, the evolv-
ing interface problem couples the X-FEM solution to the
remapping and reconstruction algorithms repeatedly, and
examines the extent to which errors propagate.
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Fig. 8. Numerical approximation uh to the solution u of the one-sided
problem.
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4.1. The stationary one-sided problem

We consider the two-dimensional problem of a circular
void with boundary S ¼ fx : jxj ¼ Rsg embedded in a rect-
angular domain as shown in Fig. 6. We consider the
function

uðrÞ ¼ c1 þ c2 log r; ð4:1Þ

in terms of radial coordinate r, measured from the center of
the circular void. It can be shown that, regardless of the
specified constants c1 and c2, such a function satisfies the
Poisson Eq. (2.1a) with f = 0. Accordingly, we impose a
strict Dirichlet condition on the outer boundary
@Rd ¼ @R� consistent with (4.1), and prescribe the flux
g = �c2/Rs on S.

We consider a sequence of meshes of increasing refine-
ment, and use h to denote the characteristic mesh size.
The coarsest mesh and segmented interface are shown in
Fig. 7. A close-up view of the interface near the void is also
shown in Fig. 7. It can be seen that the interface geometry
is not continuous, and further that it does not conform to
the underlying mesh. In this case, element volume fractions
were initialized according to the exact intersection of the
element with the circular interface, and the interface was
then reconstructed using the PIR algorithm described in
Section 3.3.

Fig. 8 shows the X-FEM/VOF solution over an interme-
diate mesh, and Fig. 9 shows the results of the convergence
Fig. 6. Geometry and notation for one-sided benchmark problem.

h
0.02 0.04 0.06 0.08 0.1 0.12

10-4

10-3

PIR
5º perturb
10º perturb
quadratic

Fig. 9. Convergence in L2 error for the one-sided problem.
study for this problem. Here, we calculate the norm of the
error in L2,



Fig. 11. Coarse structured mesh and zoom near interface for two-sided
problem.
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E ¼

R
ðu� uhÞ2dv

� �1=2

R
u2 dv

� �1=2
: ð4:2Þ

With the interface reconstruction algorithm described in
Section 3.3, we report an optimal rate of convergence.
An examination of the error in the interface geometry re-
veals that it is also second-order. Conversely, if we intro-
duce a random perturbation to the interface geometry,
with each segment perturbed up to 5� or 10�, the conver-
gence is clearly affected as shown in Fig. 9. This is to be ex-
pected, as the perturbation to the interface destroys the
second-order accurate representation for the geometry.
These studies provide testament to the need to employ
accurate interface reconstruction algorithms in conjunction
with the X-FEM.
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Fig. 12. Convergence in energy norm for the two-sided problem. Angles
listed in the legend indicate the degree of random perturbation given to the
interfacial normal. Error bars are indicative of the range of results
obtained using various random seeds in each case.
4.2. The stationary two-sided problem

Convergence behavior of the two-sided problem formu-
lation is examined in the context of a circular inclusion in a
circular matrix as shown in Fig. 10. The inclusion is given a
non-zero initial strain and then allowed to equilibrate with
the surrounding material. The appropriate Dirichlet
boundary conditions are applied so that the computation
can be performed over a single quadrant of the actual
problem.

For this problem, we first examine results using struc-
tured meshes of four-node quadrilateral elements. The
coarsest mesh used for the convergence study is shown in
Fig. 11 with the reconstructed interface superposed. It is
clear from the figure that the interface is discontinuous
and does not conform to the mesh. To treat the void space,
we employ a nodal selection strategy analogous to that
described for the one-sided problem.

Convergence is measured in terms of the energy norm

e ¼
R
R $sðuh � uÞ : C : $sðuh � uÞ

� �1=2

R
R $su : C : $su

� �1=2
: ð4:3Þ

Fig. 12 shows optimal (first order) convergence in the
energy norm when using the interface reconstruction of
Section 3.3. As in the one-sided problem, random pertur-
bations in the interface geometry produce a significant
Fig. 10. Geometry and notation for two-sided benchmark problem.
drop in the rate of convergence. At each resolution and
angle of perturbation, a series of calculations was run with
unique random seeds to produce the distribution shown in
the convergence plot as error bars.

Results using unstructured meshes of quadrilateral ele-
ments compare favorably. We conducted convergence
studies using random perturbations of 5� and 15� to inter-
face segments. The coarsest unstructured mesh is shown in
Fig. 13. Nearly optimal rates of convergence are again
observed when using the PIR algorithm. We report a small
decrease in the rate of convergence and accuracy as com-
pared to the results on the structured mesh, as expected.

4.3. Evolving interface with remapping

We now investigate the ability of the method to handle
evolving interface problems, in which remapping volume
fractions between two meshes is a key step. To effect this,
we again develop approximate solutions to the one-sided
problem with a circular interface. Using the reference mesh
Mr with nodal coordinates xr, we determine the coordi-
nates xd of a deformed meshMd with the simple algorithm

xd
I ¼ xr

I þ Dtðc1 � uInÞ; I ¼ 1; . . . ;N ; ð4:4Þ

where Dt is a prescribed, fixed time step, and uI is the nodal
degree-of-freedom obtained by the X-FEM. As such, this
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Fig. 13. Coarse unstructured mesh (left) and corresponding convergence results (right) for two-sided problem.

Fig. 15. Evolving interface geometry, at equally-spaced time steps on two
subsequently refined meshes.
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represents a coupled X-FEM/PIR evolving interface
problem.

The volume fractions in each element are maintained in
the deformed meshMd. We then clear the volume fractions
in the reference mesh, and remap the volume fractions
from Md to Mr and begin anew. The effect is to evolve
the interface outward. While this evolving-interface prob-
lem does not possess an analytical solution, the results
are nonetheless illustrative.

A simple polyhedral intersection algorithm can be used
to remap the volume fractions by intersecting the end of
cycle position of the elements (donor elements), with the
starting cycle position of the element and the element’s
neighbors (acceptor elements). The simplicity of the inter-
section is due to the convexity of the triangular elements.
If the donor element contains only a single material, the
volume of the polyhedral intersection is accumulated in
the material volume of the intersected acceptor element.
If the donor element were mixed, the polyhedral intersec-
tion would be intersected with the donor element’s recon-
structed interface. The volume of each interface partition
is accumulated in the acceptor element material volumes.
The polyhedral intersection algorithm takes the acceptor
element polygon and intersects it by the planes describing
each of the donor element’s edges.

Fig. 14 shows the results obtained over a coarse mesh.
We show the mesh and interface at equally-spaced time
steps of 5Dt. The coarseness of the mesh is apparent in
Fig. 14. Evolving interface problem: (left) mesh and interface at equally-
spaced time steps; (right) interface segments only.
the results, with results over two subsequent refined meshes
(Fig. 15) being much more smooth. In any case, the radial
symmetry of the front is nicely preserved by the method.
5. Summary and concluding remarks

In this paper, we examined the use of the patterned-
interface-reconstruction (PIR) algorithm in conjunction
with the enrichment/nodal selection strategies of the
extended finite element method (X-FEM). The method
exhibits the advantages of local, element-based interface
representation, in particular the ability to enforce strict vol-
ume conservation. We provided a series of numerical
results for elliptic interface problems to illustrate the accu-
racy of the coupled method. The results clearly indicate
that optimal rates of convergence are attainable with the
coupled method, even though the interface is not strictly
continuous between adjacent elements. The main contribu-
tion of this work over earlier efforts is seen to be the appli-
cability to arbitrary, unstructured meshes, as well as the
investigation of the convergence properties.

There exist a number of interesting extensions to this
work that appear worth pursuing. If a continuous interface
is deemed necessary, this method could certainly be further
coupled to level-set representations to improve volume
conservation, as has been demonstrated in the finite-differ-
ence literature [16]. These concepts might also be applied to
the representation of fracture/failure processes, where
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maintaining strict continuity of the evolving crack front
can be challenging. Finally, we mention the extension to
multi-material problems where triple junctions can easily
occur in elements. Such problems are not easily treated
with level-set representations.
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