Communication Support
for Adaptive
Computation®

Ali Pinar’' and Bruce Hendrickson'

1 Introduction

In this work we address two problems associated with redistributing data amongst
processors. The first problem is that of determining the inter—processor communi-
cation pattern necessary to perform a calculation like matrix vector multiplication.
Consider the situation when a calculation is first described or when it is reparti-
tioned after dynamic load balancing. Processors do not know what communication
operations to perform to enable the matrix—vector multiplication to proceed. As-
suming the matrix is partitioned by rows, looking at its own domain allows each
processor can determine what it wants to receive, but it does not know which pro-
cessor owns these desired data. We propose a distributed directory algorithm to
efficiently determine the communication pattern (i.e., what a processor needs to
receive from and send to every other processor). Our experiments show that the
proposed algorithm performs efficiently on large numbers of processors.

The second problem is that of actually migrating data in the case of limited
memory. Although a number of algorithms and software tools have been developed
to repartition the work amongst processors, the mechanics of actually moving large
amounts of data has received much less attention. If sufficient memory is available,
each processor can allocate space for its incoming data, post asynchronous receives,
and then send its outgoing data. Memory for outgoing data can be deallocated only

*This work was funded by the Applied Mathematical Sciences program, U.S. Department of
Energy, Office of Energy Research and performed at Sandia, a multiprogram laboratory operated
by Sandia Corporation, a Lockheed-Martin Company, for the U.S. DOE under contract number
DE-AC-94AL85000.

TDepartment of Computer Science, University of Illinois, Urbana, IL. 61801-2589, e-mail:
alipinar@cse.uiuc.edu

tParallel Computing Sciences Department,Sandia National Laboratories, Albuquerque, NM
87185 1110, e-mail: bah@cs.sandia.gov

after the send is complete. This requires each processor to simultaneously have
space for both its outgoing and its incoming data, which is not always possible.
To overcome this problem, instead of sending all the data at once, we can send in
phases. In each phase only a fraction of the data is migrated, so less memory is
required to receive messages. After each phase, processors can free up the memory of
the data they have sent. That memory is now available for the next communication
phase. We discuss efficient algorithms to exchange messages in minimum number of
phases. We also discuss practical issues about implementation of these algorithms
to exchange data under memory constraints.

2 Determining Communication Patterns

This section considers the problem of determining the communication pattern after
each processor is assigned a portion of a problem. We assume that each processor
can determine what data it needs to receive, but does not know which processor
owns that data. This problem can arise in various applications. As a concrete
example we will consider the very important case of matrix—vector multiplication,
where the matrix is partitioned by rows. To perform matrix—vector multiplication
a processor can examine its rows, find all the columns for which it has a nonzero
and thus identify the components of the vector that it needs. But it does not know
which processors own these components. To perform the communication, each
processor has to know what it will receive from and what it will send to every other
processor. The purpose of this work is to design efficient algorithms to determine
this communication pattern.

A solution to this problem is useful for two reasons. First, the alternative
is to have the partitioner (or some other code) determine this information and to
have it included in the problem description. This alternative burdens the routines
which set up the problem and adds additional complexity to software interfaces.
By providing an efficient parallel solution to this problem, we simplify the use
of parallel computers. Second, dynamic load balancing redistributes tasks amongst
processors, and so changes the communication pattern. Although the repartitioning
tool could carry some data along with it which facilitates the determination of the
new pattern, a good solution to the general problem will obviate the partitioner of
this responsibility.

A simple solution to the problem of determining the communication pattern
is to have each processor exchange messages with all others. For instance, each
processor can create a list of the items it needs and the processors can pass these
lists around a ring. When a processor receives a list it checks to see if it owns
the requested items. Unfortunately, this all-to—all communication will be slow
and not scalable. It is possible to employ higher-dimensional variants of the ring
algorithm like a 2D-torus algorithm where we first run the ring algorithm on subsets
of processors to aggregate lists, and then exchange aggregated lists with the other
processors. But these variants still perform all-to—all communication, only in a
somewhat more efficient way. They also require more memory on each processor.
In this work, we propose the distributed directory algorithm, which is a rendezvous

algorithm, which avoids excessive communication while still requiring only a small
amount of memory.

2.1 Solution Methods

In this section we will discuss the ring algorithm, its extensions to higher dimensions,
and the directory algorithm we are proposing.

The ring algorithm circulates queries among processors in a ring fashion. At

each step i, a processor p
(1) receives a list from processor p — 1
(2) processes the list to determine what it has to send to p — i
(3) sends the remainder of this list to processor p + 1.
For P processors, after P —1 steps, every processor will have seen every other query,
and complete sending information what each processor has to send to every other
processor will be generated. We also need to generate receiving information
as well, which is easy to generate given the sending information. This algorithm
requires each processor to have memory to store two lists at a time.

To decrease the number of steps, we can use higher-dimensional variants of the
ring algorithm. For instance, in 2D-torus algorithm, we can think of the processors
as being assigned to a 2D grid (even if the actual network topology is different).
We can run the ring algorithm on each row of the grid, aggregating lists. These
larger lists are then circulated via a ring algorithm in each column of the grid. This
requires two ring algorithms of /P — 1 steps, however the lengths of queries in
the second step can be v/P times larger, since it is a collection of queries from all
processors in a row. We can further increase the dimensions, and go all way up to
hypercube or even all-to-all-communication in one step to further trade increased
message size for fewer number of steps. In a k-dimensional torus algorithm each
processor,

(1) Uses the ring algorithm to aggregate lists from processors that have the same k
dimension as itself.

(2) Process these lists to generate sending information.

(3) Make a recursive call by replacing dimensions as k — 1 and replacing its own list
with the collective list.

In general, a k-dimensional torus algorithm requires k ring operations, where each
ring has PY* processors, so the total number of steps is kP/*. Unfortunately,
the final steps involve an aggregation of P(*~1/* individual lists. Going to higher
dimensions increases not only the memory requirement, but also sizes of messages
being transferred as well.

To avoid moving excessive volumes of data, we propose using a distributed
directory, which is a rendezvous algorithm. In this algorithm each processor will be
responsible for maintaining directory information for a subset of the components.
The algorithm is presented in Figure 1.

The algorithm assumes that each item has some unique identifier associated
with it which can be used to determine a directory processor which will be informed
about the item. This directory processor is the meeting place where the owner and
the requesters can rendezvous. Throughout the algorithm, processors work both

Directory Creation:
As a client:
Identify directory owner for all my items which might be queried.
Submit these items to the directory.
As a directory:
Receive Submissions;
Build a hash table of submitted lists.

Query Resolution:

As a client:
Identify directory owner of items I need.
Submit requests to the directory.

As a directory:
Receive queries.
Check hash table to determine owners of requested items.
Inform requesters of the results.

As a client:
Receive query results.

Figure 1. The Distributed Directory Algorithm

as clients, who have queries to be resolved, and directory servers that answer the
queries.

The algorithm begins by creating a distributed data structure for answering
queries. The directory is distributed across the same set of processors as those
that want to figure out the communication pattern. First, each processor identifies
its items that might be queried by another processor. For each such item, it de-
termines which directory processor should own it via some kind of hash function.
After sending its data to directory processors, each processor works as part of the
directory, collecting submitted lists and organizing them into a data structure to
answer queries.

With this directory, query resolution is straightforward. Each processor iden-
tifies the items it needs to know the owner of. For each such item, it determines
the directory processor which owns it via the same hash function used to create the
directory. As a directory processor, it then receives queries, and looks up the owner
of the requested data, and returns the answer to the requester.

One of the critical issues for performance is to limit the size of the directory.
We want to maintain the directory for only those items that will be queried. For
symmetric matrices (or symmetric communication in general) rows that need to be
queried are those rows that require communication for themselves (equivalently, the
boundary vertices on the graph of the matrix). Thus, only items that will actually
be queried need be placed in the directory.

If communication is not symmetric, it is not possible to determine the minimal
set of items that need to be submitted to the directory. An easy solution would

require processors to submit their entire domain to the directory. However, typically
only a very small portion of a processor’s domain will be queried, so submitting the
whole domain will be inefficient. Notice that the ring algorithm and its variants
do not suffer from this problem, and they can be adopted without modifications.
However, in practice unsymmetric matrices often have a lot of symmetry in them.
We can exploit this observation to reduce the size of the problem by first using the
directory algorithm. The directory algorithm will resolve queries associated with the
symmetric matrix structure communication. We can use a ring—variant algorithm
to resolve any remaining queries (i.e., items with unsymmetric communication). As
the experiments in the next section reveal, the time to run the directory algorithm
is much smaller than all ring variants. So we can afford a preprocessing step that
reduces the problem size to improve the efficiency of the ring algorithm.

2.2 Experimental Results

We have tested our algorithms for determining communication pattern for the ocean
matrix, a symmetric matrix of dimension 143,437 with 962,623 nonzeros. We ran
our experiments on the ASCI Red parallel computer at Sandia National Labs. Our
results are presented in Fig. 2 for 4, 16, 64, 256 and 1024 processors. The matrix was
partitioned using the multilevel algorithm in Chaco. For these experiments the items
(matrix rows) had a global numbering which we used as the identifier. For a hash
function, we simply assigned the first N/P items to the first directory processor.
The number of the rows of the matrix contains some implicit locality structure
which this hash function exploits. Thus, a processor probably only communicates
with a subset of directory processors. A random hash function might improve load
balance in the directory, but it would likely increase the number of messages involved
in constructing and querying the directory.

160 T

‘directory’ <—
'fing’ —+--
'2d-torus’ -B-- 4
3d-torus’ x|
"4d-torus’ -4~

140
120 |- P
100 |- 4

80

Time in miliseconds

8
L s Al
60 / A

40+

»

20

100
Number of processors

Figure 2. Performance of Different Algorithms

As expected, the directory algorithm scales well with increased number of
processors whereas performance of the ring algorithm deteriorates. The 2D algo-

rithm performs better than the 1D ring, but still is not scalable. Further increasing
the dimensions of the ring algorithm slightly improves performance, but the gain
that can be achieved by increasing number of processors is limited, as proved by
the similarity between the performances of the 3D and 4D versions for 256 and
1024 processors. Recall that these ring variants also require more space than the
distributed directory.

3 Communication with Memory Constraints

Although a number of algorithms and software tools have been developed to repar-
tition work among processors (see, for example, [1, 3] and references therein), the
mechanics of actually moving large amounts of data has received much less atten-
tion. If sufficient memory is available, the simplest way to transmit the data is quite
effective. Each processor can execute the following steps.

(1) Allocate space for my incoming data

(2) Post an asynchronous receive for my incoming data

(3) Barrier

(4) Send all my outgoing data

(5) Free up space consumed by my outgoing data

(6) Wait for all my incoming data to arrive

The barrier in step (3) ensures that no messages arrive until the processor is ready
to receive them, so no buffering is needed.

This protocol requires a processor to have sufficient memory to simultaneously
hold both the outgoing and the incoming data since incoming messages can arrive
before outgoing data is freed. An alternative way to view this issue is that for
a period of time the data being transferred consumes space on both the sending
and receiving processors. A protocol that alleviates this problem is desirable for
three reasons. First, since many scientific calculations are memory limited, reserv-
ing space for this communication operation limits the size of the calculations which
can be performed. Second, the amount of memory required by this protocol is un-
predictable, so setting aside a conservative amount of space is likely to be wasteful.
And third, a general purpose tool for dynamic load balancing should be robust in
the presence of limited memory. It was the construction of just such a tool which
inspired our interest in this problem [2].

To address these problems, we propose a simple modification to the above
scheme. Instead of sending all of the data at once, we will send it in phases. After
each phase, processors can free up the memory of the data they have sent. That
memory is now available for the next communication phase. Since each phase can
be expensive, it is important to limit the total number of phases.

We have studied the combinatorial aspects of this problem in our earlier
work [4]. We proved that the problem of finding a minimum-phase schedule is NP-
Complete, and presented efficient algorithms with tight bounds on performance.
First, we will briefly explain our solution techniques below. Then, we will address
more practical aspects of this problem.

3.1 Combinatorial Techniques for Minimum-phase Remapping

We have proposed two algorithms. The first algorithm depends on continuous relax-
ation, which relaxes the constraint that the amount of data transferred in a phase
must be an integer. The second algorithm depends on parking, which tries to uti-
lize memory that would otherwise be wasted. Both algorithms have tight bounds
on their performance. Let T be the total volume of data to be moved, and M be
the total available memory in the parallel machine. Note that M does not change
between phases, even though its distribution might change. The minimum number

T

of phases is [17]. We will use this lower bound to give bounds on the performances

of our algorithms.

Continuous Relaxation

The approximation algorithm to be described in this section relaxes integral con-
straints on the volume of data transfers to allow continuous values. Naturally, the
volume of transfer between two processors in a phase must be an integer. But in-
teger solutions near the continuous ones can be used as heuristics. Note that the
unit of data transfer is only a byte, whereas the volume of data being transferred
is often in the order of megabytes. So, conversion from a continuous solution to
an integer solution will often be a small perturbation. However, bad cases for this
heuristic exist as discussed in [4].

The essence of the algorithm is to divide each message into L = [%1 equal
pieces, and send one piece at each phase. Clearly, such a schedule does not nec-
essarily satisfy memory constraints. To make this idea work, we use pre and
post—processing phases to ensure feasibility. In the pre-processing phase, receive
assignments are redistributed to equalize the volumes of incoming and outgoing
data on each processor. This ensures that each processor will have enough space
for the next phase to receive, because the volume it needs is exactly equal to how
much it ships out at the current phase. Each processor also needs to have enough
space to receive for the first phase. For this purpose we reassign equal amounts of
send and receive assignments to open up enough space at each processor for the
first phase. The two steps can be merged into one phase, since we are only trying
to balance numbers, thus send and receive operations can cancel each other. In the
next L phases, we transfer 1/L-th of each data transfer at each phase. We also need
a post-processing phase to make up for the reassigned receives in the first phase.
Altogether this algorithm gives a solution with [%1 + 2 phases for the continuous
approximation to the problem. A more detailed description and analysis of this
algorithm can be found in [4].

Greedy Algorithms

We will describe the basics of a family of efficient algorithms that provide solutions
in which the number of phases is at most 1.5 times that of an optimal solution.
The algorithm is motivated by some simple observations. As discussed above, the
minimum number of phases in a solution is [£]. This bound can only be achieved
if available memory is used to receive messages at each phase. So free memory is

wasted if it resides on a processor that has no data to receive. Our algorithm works
by redistributing free memory to processors that can use it. Equivalently, data is
parked on a processor with free memory it can’t use, thereby freeing up memory on
processors which can use it. We will only park data that needs to be transferred
eventually.

Parking aims to utilize memory that would otherwise be wasted. Consider a
processor that received all its data and still has available memory. This memory
cannot be utilized in subsequent phases, decreasing the total memory which is us-
able for communication, thus potentially increasing the number of phases. Instead,
another processor can temporarily move some of its data to this processor to free
up space for messages. An example is illustrated in Fig. 3. In this simple example,
the top two processors want to exchange 100 units of data, but each has only one
unit of available memory. A simplistic approach will require 100 phases. However,
the third processor has 100 units of free memory. By parking data on this third pro-
cessor (i.e. transferring free memory to another processor), the number of phases
can be reduced to three.

© O O 0
S o0t
< O ‘*Q o 0

Phase 0 Phase 1 Phase 2

Time
Figure 3. Example of the utility of parking.

In our algorithm, we merely store data in a parking space, and then forward
it to its correct destination, when the destination processor has available memory.
Note that it is inconsequential which processor owns the parked data. In other
words, parking spaces are indistinguishable. What potentially effects performance
is which processors shunt their data to parking space.

Below, we describe an algorithm that obtains a solution with at most 1.5
times the optimal number of phases. The algorithm is quite generic and allows for
a number of possible enhancements.

Basics of a greedy %—approximation algorithm:

e A processor receives as much data as it can in each phase (i.e., if a processor
has available memory at the end of a phase then this processor does not have
any more data to receive).

e If the transfer request cannot be completed in the next phase, then park as
much data as possible (i.e, park the minimum of the total parkable data and
the total available parking space).

The second condition in this algorithm guarantees that each parking operation
is followed by a direct transfer from the sender to receiver. This means at most
half of the data being transferred can go through parking, thus total volume of data
transfer cannot exceed % Also note that this algorithm uses all available memory
in all phases with the exception of last two phases. These two observations imply an
upper bound of % + 1 phases, where the +1 term is due to not using all available
memory in the last two phases. A formal proof of this argument can be found in [4].

Note that many details about the algorithm are unspecified: If I have more
incoming data than free memory, which messages should I receive in the current
phase? If several processors want to park data, but limited parking spaces are
available, which should succeed? Intelligent answers to these questions could be used
to devise algorithms with better practical (or perhaps theoretical) performance.

3.2 Practical Considerations

Our theoretical work concentrated on the total volume of available memory, ignor-
ing how the available memory, and data to be sent reside in the memory. Our
theoretical model can be applied directly if the available memory and the data to
be sent are stored in a contiguous block of memory. In this case, all our results are
exactly applicable without any caveats. First, we don’t need to construct messages
separately, because they are already in a contiguous block of memory, and ready to
be sent. Second, since the available memory is contiguous, we can chunk it up into
pieces as we like. If this was not true (memory was available in discontinuous blocks
of memory), we might have to receive messages in smaller pieces. However, even if
data and memory are contiguous to start a phase, at the end of a phase the some
data will have been freed, so the available memory will no longer be contiguous.
We can address this compacting the messages, shifting to have a continuous block
of available memory. Proceeding this way, we will replace the data being sent by
the data being received using the same block of memory.

In practice, outgoing messages and available memory are rarely available in a
contiguous block, and organizing data for this purpose might be a challenging prob-
lem by itself. However, if data structures are designed to store data on a contiguous
array, then a simple in-place permutation of the data is sufficient to achieve the de-
sired arrangement of the data. As will be discussed below, this organization enables
a more efficient and more aggressive operation while processors are exchanging their
data.

An arbitrary data structure will bring its burdens. First, we will have to
buffer messages to be sent (and received). This will decrease efficiency, since we are
already short of memory. Second, available memory is likely to be scattered as small
blocks in the memory. This will force the use of smaller messages, and available
memory in subsequent phases will be unpredictable (pieces might be too small to
be utilized), disabling the use of algorithms like continuous relaxation that rely on
pre-scheduling the messages. In Fig. 4 we sketch an algorithm which is robust under
these challenges. In this algorithm, the neighbor set of a processor refers to those
processors it wishes to exchange data with.

Notice that in Fig. 4 parking is not included. Parking by its definition requires

10

While data exchange is not complete do
Determine my send buffer size and my priority
Exchange buffer size and priority information with neighbors
While there is available memory and data to receive do
Choose a sender s depending on its priority
x + min(buffer size of s, remaining volume to be received from s)
Try to allocate up to x units of memory
Let y be the volume of memory allocated
Post asynchronous receive
Inform s that it can send y units.
for each sending assignment received
Construct message on the send buffer and send.
Free up the memory for data sent.

Figure 4. Template of a robust algorithm for memory-constrained inter-
processor communication

a global operation among all processors, because any processor can park to any
other processor, whereas data exchanges are localized, since each processor is likely
to communicate with only its neighbors. Without parking, processors can exchange
messages without any synchronization, but when we include parking, we have to
use a global operation at each phase which slows down the overall process. Besides,
in our experiments only a very small percentage of data is being parked, and the
gain to due fewer number of phases is usually not worth the cost due to global
operations in each phase. However, it is important to keep parking as a safeguard
against cases where memory constraints are extremely tight.

4 Conclusion

We addressed two problems associated with redistributing data among processors.
The first problem is that of determining the inter-processor communication pattern
when each processor knows which components it wants to receive, but does not
know which processor owns them. In a simple solution to this problem, proces-
sors will exchange messages in a ring fashion, however this will require all-to-all
communication and will be unscalable. We described a rendezvous algorithm for
an efficient solution for this problem, and our experiments verified its effectiveness.
The second problem is that of actually migrating data in the case of limited mem-
ory. A processor can deallocate memory for outgoing data only after its send is
complete. This requires each processor to have sufficient space both for its outgo-
ing and incoming data, which is not always possible. We proposed a protocol to
alleviate this problem and discussed implementation details.

Both of these problems arise from our collaborative efforts to build general

11

purpose libraries to support complicated parallel applications. Both of the features
described here are now being added into Zoltan, a public-domain dynamic load
balancing tool [2]. Our distributed directory algorithm is also being added to the
Aztec linear solver package [5].

Acknowledgements

We are indebted to Mike Heroux for introducing us to the problem of determining
communication patterns.

Bibliography

[1]

[2]

G. CYBENKO, Dynamic load balancing for distributed memory multiprocessors,
J. Parallel Distrib. Comput., 7 (1989), pp. 279 301.

K. D. DEVINE, B. A. HENDRICKSON, E. G. BomaN, M. M. ST.JOHN, AND
C. VAUGHAN, Zoltan: A dynamic load-balancing library for parallel applica-
tions — user’s guide, Tech. Rep. SAND99-1377, Sandia National Laboratories,
Albuquerque, NM, 1999. http://www.cs.sandia.gov/Zoltan/.

B. HENDRICKSON AND K. DEVINE, Dynamic load balancing in computational
mechanics, Comp. Meth. Appl. Mech. Eng., 184:2 4 (2000), pp. 485 500. In-
vited paper.

A. PINAR AND B. HENDRICKSON, Interprocessor communication with memory
constraints, Proc. of ACM Symp. Parallel Algorithms and Architectures, 2000.

R. S. TuMINARO, M. HEROUX, S. A. HUTCHINSON, AND J. N. SHADID,
Official Aztec user’s guide: Version 2.1, Tech. Rep. SAND99-8801, Sandia
National Labs, 1999. http://www.cs.sandia.gov/CRF /aztecl.html.

