A NEW PARALLEL ALGORITHM
FOR CONTACT DETECTION IN FINITE ELEMENT METHODS"

Bruce Hendrickson' Steve Plimpton

Steve Attaway Courtenay Vaughan

David Gardner

Abstract

In finite—element, transient dynamics simulations,
physical objects are typically modeled as Lagrangian
meshes because the meshes can move and deform with
the objects as they undergo stress. In many simula-
tions, such as computations of impacts or explosions,
portions of the deforming mesh come in contact with
each other as the simulation progresses. These con-
tacts must be detected and the forces they impart to
the mesh must be computed at each timestep to ac-
curately capture the physics of interest. While the
finite-element portion of these computations is read-
ily parallelized, the contact detection problem is diffi-
cult to implement efficiently on parallel computers and
has been a bottleneck to achieving high performance
on large parallel machines. In this paper we describe
a new parallel algorithm for detecting contacts. Our
approach differs from previous work in that we use
two different parallel decompositions, a static one for
the finite element analysis and dynamic one for con-
tact detection. We present results for this algorithm
in a parallel version of the transient dynamics code
PRONTO-3D running on a large Intel Paragon.

1 Introduction

Transient dynamics models are often formulated as
finite element simulations on Lagrangian meshes. Un-
like Eulerian meshes which remain geometrically fixed
as the simulation proceeds, Lagrangian meshes can
be easily fitted to complex objects and can deform
as objects change shape during a simulation. Pro-
totypical phenomena that are modeled in this way
include car crashes, and metal forming and cutting
for manufacturing processes. Commonly—used com-
mercial codes that simulate these effects include LS—

DYNA3D, ABACUS, and Pam-Crash. PRONTO-3D

*To appear in Proc. High Performance Computing '96
tSandia National Labs, Albuquerque, NM 87185-1110.
Email: [bah,sjplimp,swattaw,ctvaugh,drgardn]@cs.sandia.gov.

is a DOE code of similar scope that was developed at
Sandia [11].

A complicated process such as a collision or explo-
sion involving numerous complex objects requires a
large number of mesh elements to model accurately.
The underlying physics of the stress-strain relations
for a variety of interacting materials must also be in-
cluded in the model. Running such a simulation for
thousands or millions of timesteps can be very compu-
tationally intensive, and so is a natural candidate for
the power of parallel computers.

The finite-element (FE) portion of the computation
within a single timestep can be parallelized straight-
forwardly. In an explicit timestepping scheme, each
mesh element interacts only with the neighboring ele-
ments it 18 connected to in the FE mesh topology. If
each processor is assigned a small cluster of elements
then the only interprocessor communication will be
the exchange of information on the cluster boundary
with a handful of neighboring processors. A variety of
algorithms and tools have been developed that opti-
mize this assignment task. For PRONTO-3D we use a
software package called Chaco [4] which partitions the
FE mesh so that each processor has an equal number
of elements and interprocessor communication is mini-
mized. In practice, the resulting FE computations are
highly load—balanced and scale efficiently (over 90%)
when large meshes are mapped to thousands of pro-
cessors. The chief reason for the scalability is that the
communication required by the FE computation is lo-
cal in nature.

It is important to note that because the mesh con-
nectivity does not change during the simulation (with
a few minor exceptions), a static decomposition of the
elements is sufficient to insure good performance. To
achieve the best possible decomposition, we partition
the FE mesh as a pre—processing step before the tran-
sient dynamics simulation is run. Similar FE paral-
lelization strategies have been used in other transient
dynamics codes [6, 8, 9, 10].

In most simulations there 1s a second major compu-
tation which must be performed each timestep. This
is the detection of contacts between unconnected ele-

and Cray T3D. An important aspect of our approach
is that we use a different decomposition for contact
detection than we use for the finite element calcula-
tion. This allows us to optimize each portion of the
code independently. For contact detection we use a
dynamic technique known as recursive coordinate bi-
section (RCB) to generate the decomposition anew at
each timestep. We find several advantages to this ap-
proach. First, and foremost, since each processor ends
up with the same number of contact nodes and sur-
faces, we can achieve nearly perfect load balance in
the on—processor contact detection calculation. Sec-
ond, the cost of performing an RCB decomposition is
minimal if it begins with a nearly-balanced starting
point. We use the result from the previous timestep,
which will always be close to the correct decomposition
for the current timestep. Third, the local and global
communication patterns we use in our algorithm are
straightforward to implement and do not require any
complicated analysis of the simulation geometry. The
price we pay for these advantages is that we must com-
municate information between the FE and contact de-
compositions at every timestep. Our results indicate
that the advantage of achieving load balance greatly
outweighs the cost of maintaining two decompositions.

We have recently become aware of independent
work [6] which has some similarity to our approach.
Like our technique, this approach uses a different de-
composition for the contact detection than for the fi-
nite element analysis. In their method, they decom-
pose the contact surfaces and nodes by overlaying a
regular, coarse 3—D grid on the entire simulation do-
main. The coarse grid is then divided along one dimen-
sion into slices and each processor is responsible for
contact detection within a slice. While this approach
1s likely to perform better than a static decomposition,
the implementation described in [6] suffered from load
imbalance and did not scale to large numbers of pro-
Cessors.

In the next section we provide some background ma-
terial that will help explain our algorithm in §3. This
is followed in §4 by some performance results from sim-
ulations using PRONTO-3D.

2 Background

Our contact algorithm involves a number of un-
structured communication steps. In these operations,
each processor has some information it wants to share
with a handful of other processors. Although a given
processor knows how much information it will send and
to whom, it doesn’t know how much it will receive and
from whom. Before the communication can be per-

formed efficiently, each processor needs to know about
the messages it will receive. We accomplish this with
the approach sketched in Fig. 2.

Form vector of 0/1 denoting who T send to
Fold vector over all P processors
nrecvs = vector(q)
For each processor I have data for,

send message containing size of the data
Receive nrecvs messages with sizes coming to me
Allocate space & post asynchronous receives
Synchronize
Send all my data
Wait until I receive my data

.

e
NN AN

SN TN N TN N
O o0 =~ O Ot
N e NN

Figure 2: Parallel algorithm for unstructured com-
munication for processor g.

In steps (1-3) each processor learns how many other
processors want to send it data. In step (1) each of the
P processors initializes a P-length vector with zeroes
and stores a 1 in each location corresponding to a pro-
cessor it needs to send data to. The fold operation
[2] in step (2) communicates this vector in an optimal
way; processor ¢ ends up with the sum across all pro-
cessors of only location ¢, which is the total number
of messages it will receive. In step (4) each processor
sends a short message to the processors it has data for,
indicating how much data they should expect. These
short messages are received in step (5). With this in-
formation, a processor can now allocate the appropri-
ate amount of space for all the incoming data, and post
receive calls which tell the operating system where to
put the data once it arrives. After a synchronization
in step (7), each processor can now send its data. The
processor can proceed once it has received all its data.

The recursive coordinate bisectioning (RCB) algo-
rithm we use was first proposed as a static technique
for partitioning unstructured meshes [1]. Although for
static partitioning it has been eclipsed by better ap-
proaches, RCB has a number of attractive properties
as a dynamic partitioning scheme which have been ex-
ploited by Jones and Plassmann [7]. The subdomains
produced by RCB are geometrically compact and well—
shaped. The algorithm can also be parallelized in a
fairly inexpensive manner. And it has the attractive
property that small changes in the geometry induce
only small changes in the partitions. Most partition-
ing algorithms do not exhibit this behavior.

The collection of points we want to divide equally
among P processors is the combined set of N contact
surfaces and nodes as shown in Fig. 3 for a 2-d ex-
ample. For this operation we treat each surface as a

10

CPU Time (seconds per timestep)
=
(=}
T

10°
4 8 16 32 64 128 256 512 1024 1824

Number of Processors

Figure 7: Average CPU time per timestep to crush
a container with 7152 finite elements on the Intel
Paragon. The dotted line denotes perfect speed—up.

Fig. 8 shows performance on a scalable version of the
crush simulation where the container and surface are
meshed more finely as more processors are used. On
one processor a 187b—element model was run. Each
time the processor count was doubled, the number of
finite elements was also doubled by halving the mesh
spacing in a particular dimension. Thus all the data
points are for simulations with 1875 elements per pro-
cessor; the largest problem is 480,000 elements on 256
processors.

4.0

351

301

251

CPU Time (seconds/timestep)

2.0 I I I I I I I I I
1 2 4 8 16 32 64 128 256

Number of Processors

Figure 8: Average CPU time per timestep on the
Intel Paragon to crush a container meshed at varying
resolutions. The mesh size is 1875 finite elements per
processor at every data point.

In contrast to the previous graph, we now see ex-
cellent scalability. A breakdown of the timings shows
that the performance of the contact detection portion
of the code is now scaling as well or better than the
FE computation, which was our original goal with this
work. In fact, since linear speed—up would be a hori-

zontal line on this plot, we see apparent super—linear
speed-up for some of the data points! This is due to
the fact that we are really not exactly doubling the
computational work each time we double the number
of finite elements. First, the mesh refinement scheme
we used does not keep the surface—to—volume ratio of
the meshed objects constant, so that the contact algo-
rithm may have less (or more) work to do relative to
the FE computation for one mesh size versus another.
Second, the timestep size is reduced as the mesh is re-
fined. This actually reduces the work done in any one
timestep by the serial contact search portion of the
contact algorithm (step (6) in Fig. 5), since contact
surfaces and nodes are not moving as far in a single
timestep. More generally, the number of actual con-
tacts that occur in any given timestep will not exactly
double just because the number of finite elements is

doubled.

5 Conclusions

The chief advantages of the parallel contact detec-
tion algorithm we have proposed are as follows:

(1) The contact surfaces and nodes are nearly perfectly
spread across processors, ensuring that the contact de-
tection is load—balanced.

(2) The RCB decomposition technique takes advan-
tage of the fact that the partitioning does not change
dramatically from one timestep to the next.

(3) The parallel code can use the same single-processor
routine used in the original serial code to perform the
actual work of contact detection.

The chief disadvantage of our method is that we
must communicate data back—and—forth between the
FE and RCB decompositions each timestep. In prac-
tice we observed this to be a very minor cost. Almost
all of the time in the parallel contact detection was
spent performing the RCB decomposition and in the
on—processor contact detection effort. There is also a
memory cost in our method for the contact surface and
node data to be duplicated by the processors that store
it in the RCB decomposition. This has not been a ma-
jor bottleneck for us because the duplication is only for
surface elements and because we are typically compu-
tationally bound, not memory bound, in the problems

that we run with PRONTO-3D.

Acknowledgements

We benefited from helpful discussions about the
parallel contact algorithm with David Greenberg and
Rob Leland. Martin Heinstein provided insight

into the sequential contact detection algorithm in

PRONTO-3D.

References

(1]

[6]

M. J. BERGER AND S. H. BoKHARI, A partition-
g strategy for nonuniform problems on multi-
processors, IEEE Trans. Computers, C-36 (1987),
pp. 570-580.

G. C. Fox, M. A. JounsoN, G. A. LYZENGA,
S. W. Orro, J. K. SaLMON, AND D. W.
WALKER, Solving Problems on Concurrent Pro-
cessors: Volume 1, Prentice Hall, Englewood

Cliffs, NJ, 1988.

M. W. HEeINSTEIN, S. W. ArTaway, F. J.
MELLO, AND J. W. SWEGLE, A general-purpose
contact detection algorithm for nonlinear struc-
tural analysis codes, Tech. Rep. SAND92-2141,
Sandia National Laboratories, Albuquerque, NM,
1993.

B. HENDRICKSON AND R. LELAND, The Chaco
user’s guitde: Version 2.0, Tech. Rep. SAND94-
2692, Sandia National Labs, Albuquerque, NM,
June 1995.

B. HENDRICKSON, S. PLIMPTON, S. ATTAWAY,
C. VAUGHAN, AND D. GARDNER, A new algo-
rithm for parallelizing the detection of contacts in
finite element simulations. In preparation.

C. G. Hoover, A. J. DEGrootr, J. D.
MaArLTBY, AND R. D. PROCASSINI, Paradyn:
Dyna3d for massively parallel computers, October
1995. Presentation at Tri-Laboratory Engineer-
ing Conference on Computational Modeling.

M. JoNEs AND P. PrLassMaN, Computational re-
sults for parallel unstructured mesh computations,
Computing Systems in Engineering, 5 (1994),
pp- 297-309.

G. LonsDALE, J. CLINCKEMAILLIE, S. VLA-
CHOUTSIS, AND J. DuBoi1s, Communication re-
quirements in parallel crashworthiness stmulation,
in Proc. HPCN’94, Lecture Notes in Computer
Science 796, Springer, 1994, pp. 55-61.

G. LonspaLe, B. ELsNER, J. CLINCKE-
MAILLIE, S. VLACHOUTSIS, F. DE BRUYNE,
AND M. HOLZNER, FEzperiences with industrial
crashworthiness simulation using the portable,

message-passing PAM-CRASH code, in Proc.

HPCN’95, Lecture Notes in Computer Science
919, Springer, 1995, pp. 856-862.

J. G. MALONE AND N. L. JoHNSON, A parallel
finite element contact/impact algorithm for non-
linear explicit transient analysis: Part IT — parallel
tmplementation, Intl. J. Num. Methods Eng., 37
(1994), pp. 591-603.

L. M. TayrLor AND D. P. FLANAGAN, Update of
PRONTO-2D and PRONTO-3D transient solid
dynamics program, Tech. Rep. SAND90-0102,
Sandia National Laboratories, Albuquerque, NM,
1990.

