
A NEW PARALLEL ALGORITHMFOR CONTACT DETECTION IN FINITE ELEMENT METHODS�Bruce Hendricksony Steve Plimpton Steve Attaway Courtenay VaughanDavid GardnerAbstractIn �nite{element, transient dynamics simulations,physical objects are typically modeled as Lagrangianmeshes because the meshes can move and deform withthe objects as they undergo stress. In many simula-tions, such as computations of impacts or explosions,portions of the deforming mesh come in contact witheach other as the simulation progresses. These con-tacts must be detected and the forces they impart tothe mesh must be computed at each timestep to ac-curately capture the physics of interest. While the�nite-element portion of these computations is read-ily parallelized, the contact detection problem is di�-cult to implement e�ciently on parallel computers andhas been a bottleneck to achieving high performanceon large parallel machines. In this paper we describea new parallel algorithm for detecting contacts. Ourapproach di�ers from previous work in that we usetwo di�erent parallel decompositions, a static one forthe �nite element analysis and dynamic one for con-tact detection. We present results for this algorithmin a parallel version of the transient dynamics codePRONTO-3D running on a large Intel Paragon.1 IntroductionTransient dynamics models are often formulated as�nite element simulations on Lagrangian meshes. Un-like Eulerian meshes which remain geometrically �xedas the simulation proceeds, Lagrangian meshes canbe easily �tted to complex objects and can deformas objects change shape during a simulation. Pro-totypical phenomena that are modeled in this wayinclude car crashes, and metal forming and cuttingfor manufacturing processes. Commonly{used com-mercial codes that simulate these e�ects include LS{DYNA3D, ABACUS, and Pam-Crash. PRONTO-3D�To appear in Proc. High Performance Computing '96ySandia National Labs, Albuquerque, NM 87185-1110.Email: [bah,sjplimp,swattaw,ctvaugh,drgardn]@cs.sandia.gov.

is a DOE code of similar scope that was developed atSandia [11].A complicated process such as a collision or explo-sion involving numerous complex objects requires alarge number of mesh elements to model accurately.The underlying physics of the stress-strain relationsfor a variety of interacting materials must also be in-cluded in the model. Running such a simulation forthousands or millions of timesteps can be very compu-tationally intensive, and so is a natural candidate forthe power of parallel computers.The �nite-element (FE) portion of the computationwithin a single timestep can be parallelized straight-forwardly. In an explicit timestepping scheme, eachmesh element interacts only with the neighboring ele-ments it is connected to in the FE mesh topology. Ifeach processor is assigned a small cluster of elementsthen the only interprocessor communication will bethe exchange of information on the cluster boundarywith a handful of neighboring processors. A variety ofalgorithms and tools have been developed that opti-mize this assignment task. For PRONTO-3D we use asoftware package called Chaco [4] which partitions theFE mesh so that each processor has an equal numberof elements and interprocessor communication is mini-mized. In practice, the resulting FE computations arehighly load{balanced and scale e�ciently (over 90%)when large meshes are mapped to thousands of pro-cessors. The chief reason for the scalability is that thecommunication required by the FE computation is lo-cal in nature.It is important to note that because the mesh con-nectivity does not change during the simulation (witha few minor exceptions), a static decomposition of theelements is su�cient to insure good performance. Toachieve the best possible decomposition, we partitionthe FE mesh as a pre{processing step before the tran-sient dynamics simulation is run. Similar FE paral-lelization strategies have been used in other transientdynamics codes [6, 8, 9, 10].In most simulations there is a second major compu-tation which must be performed each timestep. Thisis the detection of contacts between unconnected ele-



ments. For example, in Fig. 1, initial and 5 millisec-ond snapshots are shown of a simulation of a steel rodcolliding with a brick wall. Contacts occur any timea surface element on one brick interpenetrates a sur-face element on another brick. These contacts impartforces to the impacting objects which must be includedin the equations-of-motion for the interpenetrating el-ements. Thus, PRONTO-3D performs the followingcomputations every timestep: (1) detect contacts, (2)compute contact forces, and (3) push-back the contact-ing elements so they no longer interpenetrate. Steps(2) and (3) are actually minor computations since atany one timestep only a small fraction of the elementsare in contact. However, the contact detection in step(1) requires a global search of the simulation domainand can require 30-50% of the overall run time whenPRONTO-3D runs on a vector machine like the CrayY{MP. This is because, in principle, any two surface el-ements anywhere in the simulation domain can come incontact with each other during a given timestep. Thisis true even for surface elements on the same object, aswhen a car fender is crumpled in a collision. E�cientschemes for spatially sorting and searching lists of ele-ments have been devised to speed this computation inthe serial version of PRONTO-3D [3].

Figure 1: Simulation of a steel rod hitting a brickwall.On a parallel machine, contact detection is even

more problematic. First, in contrast to the FE por-tion of the computation, some form of global analysisand communication is now required. This is becausethe FE regions in contact can be owned by any twoprocessors. Second, load{balance is a serious problem.Formally, the task is to �nd all the geometric penetra-tions of a set of contact surfaces (faces of elements) by aset of contact nodes (corner points of elements). Thesecontact surfaces and nodes come from elements that lieon the surface of the meshed object volumes and thuscomprise only a subset of the overall FE mesh. Sincethe FE decomposition described above load{balancesthe entire FE mesh, it will not (in general) assign anequal number of contact surfaces and nodes to eachprocessor. Finally, �nding the one (or more) surfacesthat a node penetrates requires that the processor whoowns the node acquire information about all surfacesthat are geometrically nearby. Even if we devise aglobal communication scheme or new decompositiontechnique that provides this information it must be adynamic or adaptive method instead of static, sincethe set of nearby surfaces changes as the simulationprogresses.Given these di�culties, how can we e�ciently par-allelize the task of contact detection? The most com-monly used approach [8, 9, 10] has been to use a single,static decomposition of the mesh to perform both FEcomputation and contact detection. At each timestep,the FE region owned by a processor is bounded with abox. Global communication is performed to exchangethe bounding box's extent with all processors. Theneach processor sends contact surface and node informa-tion to all processors with overlapping bounding boxesso that contact detection can be performed locally oneach processor. Though simple in concept, this ap-proach is problematic for several reasons. For generalproblems it will not load{balance the contact detec-tion for the reasons given above. This is not as se-vere a problem in [10] because only meshes composedof \shell" elements are considered. Since every ele-ment is on a surface a single decomposition can bal-ance both parts of the computation. However, con-sider what happens in Fig. 1 if one processor ownssurface elements on 2 or more bricks. As those bricks
y apart, the bounding box surrounding the proces-sor's elements becomes arbitrarily large and will over-lap with many other processor's boxes. This will re-quire large amounts of communication and force theprocessor to search a large fraction of the global do-main for its contacts.In this paper we describe a new strategy for con-tact detection which we have implemented in a ver-sion of PRONTO-3D developed for message{passingMIMD parallel computers such as the Intel Paragon



and Cray T3D. An important aspect of our approachis that we use a di�erent decomposition for contactdetection than we use for the �nite element calcula-tion. This allows us to optimize each portion of thecode independently. For contact detection we use adynamic technique known as recursive coordinate bi-section (RCB) to generate the decomposition anew ateach timestep. We �nd several advantages to this ap-proach. First, and foremost, since each processor endsup with the same number of contact nodes and sur-faces, we can achieve nearly perfect load balance inthe on{processor contact detection calculation. Sec-ond, the cost of performing an RCB decomposition isminimal if it begins with a nearly{balanced startingpoint. We use the result from the previous timestep,which will always be close to the correct decompositionfor the current timestep. Third, the local and globalcommunication patterns we use in our algorithm arestraightforward to implement and do not require anycomplicated analysis of the simulation geometry. Theprice we pay for these advantages is that we must com-municate information between the FE and contact de-compositions at every timestep. Our results indicatethat the advantage of achieving load balance greatlyoutweighs the cost of maintaining two decompositions.We have recently become aware of independentwork [6] which has some similarity to our approach.Like our technique, this approach uses a di�erent de-composition for the contact detection than for the �-nite element analysis. In their method, they decom-pose the contact surfaces and nodes by overlaying aregular, coarse 3{D grid on the entire simulation do-main. The coarse grid is then divided along one dimen-sion into slices and each processor is responsible forcontact detection within a slice. While this approachis likely to perform better than a static decomposition,the implementation described in [6] su�ered from loadimbalance and did not scale to large numbers of pro-cessors.In the next section we provide some background ma-terial that will help explain our algorithm in x3. Thisis followed in x4 by some performance results from sim-ulations using PRONTO-3D.2 BackgroundOur contact algorithm involves a number of un-structured communication steps. In these operations,each processor has some information it wants to sharewith a handful of other processors. Although a givenprocessor knows how much information it will send andto whom, it doesn't know how much it will receive andfrom whom. Before the communication can be per-

formed e�ciently, each processor needs to know aboutthe messages it will receive. We accomplish this withthe approach sketched in Fig. 2.(1) Form vector of 0/1 denoting who I send to(2) Fold vector over all P processors(3) nrecvs = vector(q)(4) For each processor I have data for,send message containing size of the data(5) Receive nrecvs messages with sizes coming to me(6) Allocate space & post asynchronous receives(7) Synchronize(8) Send all my data(9) Wait until I receive my dataFigure 2: Parallel algorithm for unstructured com-munication for processor q.In steps (1{3) each processor learns how many otherprocessors want to send it data. In step (1) each of theP processors initializes a P{length vector with zeroesand stores a 1 in each location corresponding to a pro-cessor it needs to send data to. The fold operation[2] in step (2) communicates this vector in an optimalway; processor q ends up with the sum across all pro-cessors of only location q, which is the total numberof messages it will receive. In step (4) each processorsends a short message to the processors it has data for,indicating how much data they should expect. Theseshort messages are received in step (5). With this in-formation, a processor can now allocate the appropri-ate amount of space for all the incoming data, and postreceive calls which tell the operating system where toput the data once it arrives. After a synchronizationin step (7), each processor can now send its data. Theprocessor can proceed once it has received all its data.The recursive coordinate bisectioning (RCB) algo-rithm we use was �rst proposed as a static techniquefor partitioning unstructured meshes [1]. Although forstatic partitioning it has been eclipsed by better ap-proaches, RCB has a number of attractive propertiesas a dynamic partitioning scheme which have been ex-ploited by Jones and Plassmann [7]. The subdomainsproduced by RCB are geometrically compact and well{shaped. The algorithm can also be parallelized in afairly inexpensive manner. And it has the attractiveproperty that small changes in the geometry induceonly small changes in the partitions. Most partition-ing algorithms do not exhibit this behavior.The collection of points we want to divide equallyamong P processors is the combined set of N contactsurfaces and nodes as shown in Fig. 3 for a 2{d ex-ample. For this operation we treat each surface as a



Figure 3: Top: First cut of RCB decomposition. Bot-tom: Final partitioning for 8 processors.single point. Initially each processor owns some subsetof the points which may be scattered anywhere in thedomain. The �rst step is to choose one of the coordi-nate directions, x, y, or z. We choose the direction forwhich the box bounding the points is longest, so thatwhen we cut orthogonal to that direction, the result-ingsub{domains will be as cubic as possible. The nexttask is to position the cut, shown as the dotted line inthe �gure, at a location which puts half the points onone side of the cut, and half on the other. This isequivalent to �nding the median of a distributed set ofvalues in parallel. We do this in an iterative fashion.First we try the midpoint of the box. Each processorcounts the number of points it owns that are on oneside of the cut. Summing this result across processorsdetermines which direction the cut should be movedto improve the median guess. In practice, within afew iterations we �nd a suitable cut that partitionsthe points exactly. Then we divide the processors intotwo groups, one group on each side of the cut. Eachprocessor sends its points that fall on the far side of

the cut to a partner processor in the other group, andlikewise receives a set of points that lie on its side ofthe cut. These steps are outlined in Fig. 4.(1) Choose a coordinate axis (xyz)(2) Position cut so as to partition points equally(3) Send points that lie on far side of cut(4) Receive points that lie on my side of cut(5) RecurseFigure 4: Parallel algorithm for recursive coordinatebisection.After the �rst pass through steps (1{4), we havereduced the partitioning problem to two smaller prob-lems, each of which is to partition N=2 points on P=2processors within a new bounding box. Thus we canrecurse on these steps until we have assigned N=Ppoints to each processor, as shown in Fig. 4 for an8{processor example. The �nal geometric sub{domainowned by each processor is a regular parallelepiped.Note that it is simple to generalize the RCB procedurefor any N and non{power{of{two P by adjusting ourdesired \median" criterion at each stage to insure thecorrect number of points end up on each side of thecut.3 Parallel Contact AlgorithmOur parallel algorithm for contact detection is out-lined in Fig. 5. In step (1), the current position of eachcontact surface and node is communicated by the pro-cessor who owns and updated it in the FE decomposi-tion to the processor who owned that surface or node inthe RCB decomposition of the previous timestep. (Onthe �rst timestep this step is simply skipped.) This in-volves unstructured communication as detailed in theprevious section. The purpose of this step is to givethe RCB decomposition a starting point that is closeto the correctly balanced answer, since the �nite ele-ments do not move far in any one timestep. In step(2) we perform the RCB decomposition as described inthe previous section to rebalance the contact surfacesand nodes based on their current positions.The entire RCB decomposition can be representedas a set of P � 1 cuts, one of which is stored by eachprocessor as the RCB decomposition is carried out. Instep (3) we communicate this cut information so thatevery processor has a copy of the entire set of cuts.This is done via an expand operation [2]. Before con-tact detection is performed, each processor must know



(1) Send contact data to old RCB decomposition(2) Perform parallel RCB to rebalance(3) Share RCB cut info with all processors(4) For all my surfacesIf surface extends beyond my RCB boxDetermine what other processors need it(5) Send overlapping surfaces to nearby processors(6) Find contacts within my RCB box(7) Send contact results to FE ownersFigure 5: A parallel algorithm for contact detection.about all contact surfaces that are near any of its con-tact points. Because we represented a surface as asingle point during the RCB decomposition, some ofthese nearby surfaces will actually be owned by sur-rounding processors. So in step (4), each processordetermines which of its contact surfaces extends be-yond its RCB sub{domain. For those that do, a list ofprocessors who need to know about that surface is cre-ated. This is done using the RCB vector of cuts createdin step (3). The information in this vector enables aprocessor to know the bounds of the RCB sub{domainowned by every other processor. In step (5) the datafor overlapping contact surfaces is communicated tothe appropriate processors.In step (6) each processor can now �nd all the con-tacts that occur in its geometric RCB sub{domain.A nice feature of our algorithm is that this detectionproblem is identical conceptually to the global detec-tion problem we originally formulated, namely to �ndall the contacts between a set of surfaces and nodesbounded by a box. In fact, in our contact algorithmeach processor calls the original serial PRONTO-3Dcontact detection routine to accomplish step (6). Thisenables the code to take advantage of the special sort-ing and searching features the serial routine uses to ef-�ciently �nd contacts. It also means we did not have torecode the complex geometry equations that computeintersections between moving 3{d surfaces and points!Finally, in step (7), information about contacting sur-faces and nodes is communicated back to the proces-sors who own them in the FE decomposition. Thoseprocessors can then perform the appropriate force cal-culations and element push{back.In summary, steps (1), (5), and (7) all involveunstructured communication of the form outlined inFig. 2. Steps (2) and (3) also consist primarily of com-munication. Steps (4) and (6) are solely on{processorcomputation. A fuller explanation of the details of thisalgorithm are given in [5].

4 ResultsFig. 6 shows the results of a PRONTO{3D simula-tion of a steel shipping container being crushed due toan impact with a 
at inclined wall. The front of the�gure is a symmetry plane; actually only one half ofthe container is simulated. As the container crumples,numerous contacts occur between layers of elements onthe folding surface. We have used this problem to testand benchmark our parallel contact algorithm.

Figure 6: Simulation of a crushed shipping containerfrom initial impact to �nal state after 3.2 milliseconds.The �rst set of timing results we present is for a�xed{size problem geometry containing 7152 �nite el-ements. Both the container and wall were meshed 3elements thick, so roughly 2=3 of the elements are on asurface. Since each surface element contributes both asurface and node, there were about 9500 contact sur-faces and nodes in the problem. The average CPUtime per timestep for simulating this problem on var-ious numbers of Intel Paragon processors from 4 to1840 is shown in Fig. 7. Whether in serial or parallel,PRONTO{3D spends virtually all of its time in twoportions of the timestep calculation | FE computa-tion and contact detection. For this problem, both por-tions of the code speed{up adequately on small num-bers of processors, but begin to fall o� when there areonly a few dozen elements per processor.
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Figure 7: Average CPU time per timestep to crusha container with 7152 �nite elements on the IntelParagon. The dotted line denotes perfect speed{up.Fig. 8 shows performance on a scalable version of thecrush simulation where the container and surface aremeshed more �nely as more processors are used. Onone processor a 1875{element model was run. Eachtime the processor count was doubled, the number of�nite elements was also doubled by halving the meshspacing in a particular dimension. Thus all the datapoints are for simulations with 1875 elements per pro-cessor; the largest problem is 480,000 elements on 256processors.
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Figure 8: Average CPU time per timestep on theIntel Paragon to crush a container meshed at varyingresolutions. The mesh size is 1875 �nite elements perprocessor at every data point.In contrast to the previous graph, we now see ex-cellent scalability. A breakdown of the timings showsthat the performance of the contact detection portionof the code is now scaling as well or better than theFE computation, which was our original goal with thiswork. In fact, since linear speed{up would be a hori-

zontal line on this plot, we see apparent super{linearspeed-up for some of the data points! This is due tothe fact that we are really not exactly doubling thecomputational work each time we double the numberof �nite elements. First, the mesh re�nement schemewe used does not keep the surface{to{volume ratio ofthe meshed objects constant, so that the contact algo-rithm may have less (or more) work to do relative tothe FE computation for one mesh size versus another.Second, the timestep size is reduced as the mesh is re-�ned. This actually reduces the work done in any onetimestep by the serial contact search portion of thecontact algorithm (step (6) in Fig. 5), since contactsurfaces and nodes are not moving as far in a singletimestep. More generally, the number of actual con-tacts that occur in any given timestep will not exactlydouble just because the number of �nite elements isdoubled.5 ConclusionsThe chief advantages of the parallel contact detec-tion algorithm we have proposed are as follows:(1) The contact surfaces and nodes are nearly perfectlyspread across processors, ensuring that the contact de-tection is load{balanced.(2) The RCB decomposition technique takes advan-tage of the fact that the partitioning does not changedramatically from one timestep to the next.(3) The parallel code can use the same single{processorroutine used in the original serial code to perform theactual work of contact detection.The chief disadvantage of our method is that wemust communicate data back{and{forth between theFE and RCB decompositions each timestep. In prac-tice we observed this to be a very minor cost. Almostall of the time in the parallel contact detection wasspent performing the RCB decomposition and in theon{processor contact detection e�ort. There is also amemory cost in our method for the contact surface andnode data to be duplicated by the processors that storeit in the RCB decomposition. This has not been a ma-jor bottleneck for us because the duplication is only forsurface elements and because we are typically compu-tationally bound, not memory bound, in the problemsthat we run with PRONTO{3D.AcknowledgementsWe bene�ted from helpful discussions about theparallel contact algorithm with David Greenberg andRob Leland. Martin Heinstein provided insight
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