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Abstract 
 

This report describes the conceptual design of a technology choice model for 

understanding strategies to reduce carbon intensity in the electricity sector.  The report 

considers the major modeling issues affecting technology policy assessment and defines 

an implementable model construct.  Further, the report delineates the basis causal 

structure of such a model and attempts to establish the technical/algorithmic viability of 

pursuing model development along with the associated analyses.  
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Section 1: Overview 
 

This report describes the conceptual design of a technology choice model for 

understanding strategies to reduce carbon intensity in the electricity sector.  The 

methodology and approach are readily extendable to industrial, commercial residential 

and transportation technology choices.  This effort focuses on the electric generation 

sector because this sector most clearly contains the dynamics that potentially confound 

the assessment of low-carbon technology policy.   

 

Several issues motivate this work. The transition to low-carbon energy supplies is a 

dynamic process. Human behavior, market competition, and feedback within the 

economy can produce a dramatic divergence between the desired, optimal path into the 

future and the actual evolution of the path.  

   

Since the 1973 OPEC crisis, economic analyses indicated there would be a rapid change 

toward greater energy efficiency and renewable energy.  But the market response has 

been slow, minimal, and fraught with reversals (Jaffe 1994).  With concerns of both 

peak-oil and climate change (Farrell 2006, Hirsh 2005), the energy transition process has 

again become a focus of energy policy.  Idealized assumptions about markets and human 

behavior are at odds with actual responses (Sutherland 1991, Kahneman 2003, Palmer 

2010). The feedback delays among energy investments, material suppliers, and operating 

production, could produce bottlenecks that prevent the realization of any preconceived 

technology portfolio and lead to a conflicting technology mix with elongated timing and 

market overshoot (Kenny 2010, Kramer 2009).  The investments of the transition will 

transiently and dramatically increase carbon usage while stressing international supply-

chains and possibly stressing the rest of the U.S. economy (Chandler 2009, Hall 2008, 

Kenny 2010).  The interaction among decision makers, support industries, and the rest of 

the economy produce countervailing dynamics neglected in many current analyses 

(Jacobson 2010, Kypreos 2007, Anadarajah 2010, Enkvist 2007).   Further, policy 

options affect how various technologies will compete in the marketplace. Studies 

addressing specific (e.g. wind) or even families (e.g. renewable energy) technologies in 

isolation cannot capture the interactions that may produce results considerably different 

from those of a ceteris paribus approach. As will be noted in the ensuing sections of the 

report, this modeling effort focuses on determining the impact of those issues noted 

above.  

 

The modeling approach of the work treats the ―cost of carbon‖ as a ―control signal‖ to the 

market rather than as an optimized value that minimizes social impacts.  The social cost 

of carbon is based on achieving a desired future with minimized cost using presumably 

understood and directly controllable technology options (Ackerman 2010, DOE 2010a).   

With idealized market assumptions, both ―cap & trade‖  and carbon taxes produce the 

desired results -- with ―cap & and trade‖ providing more options to accommodate 

perceived policy (political) constraints.  However, many researchers now  recognize the 

ability to distort carbon markets in a cap & trade‖ regime, with the resulting volatility 

paralyzing investment decisions (Green 2007, Nordhaus 2009, Reuven 2009, Economist 

2009).  
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Carbon taxes produce stable price signals for long-term investments, whereas carbon 

markets cause volatility emphasizing short-term decisions. Carbon taxes can have a 

largely neutral affect on the economy depending on the method of recycling revenue (for 

example, by reducing income and labor taxes – Barker 1995,1996). More importantly, the 

level of a carbon tax changes the relative cost of using a (low-carbon) technology 

compared to conventional fossil-fuel based technologies. Additionally, the level of tax 

provides the incentive to reduce the carbon footprint of energy production and energy 

usage.  In essence it can play the same role in the technology markets as the federal 

discount (interest) rate plays in the financial markets. Its value lies in its capability of 

controlling and ensuring the achievement of a low-carbon goal (despite uncertainty and 

changing conditions) rather than as a social marker of what the idealized cost to reach a 

carbon goal should be.  Thus, the logic of our model explicitly uses a carbon tax and 

attempts to capture all the consequences it has for technology decisions and technology 

implementation.  

 

The model design described in the subsequent sections is relatively uncomplicated for a 

system dynamics model and it only aspires to a national level detail with an adequate 

portrayal of and number of technologies to address the primary considerations affecting 

technology policy decisions.  The model includes a feedback representation of interacting 

demand, economy, capacity expansion, and capacity use/retirement dynamics.  While it 

does contain some distinct levels (state variables) to capture capital-turnover, most 

phenomena with filtering or delay attributes are represented as simple exponential-delay 

functions.  The model uses generic Qualitative Choice Theory (QCT - McFadden 

1974,1982,1986) algorithms for technology choices, which often incorporate simple 

exponential-forecasting among modeled decision-makers.  As an accounting 

simplification, the model generates instantaneous realizations of secondary carbon-

emission effects of investment decisions via I/O tables (that capture the chain of causality 

across the U.S. and Rest-of-World economies).  The model does include secondary 

industry constraints, economies of scale, and learning curve dynamics.  It has an 

elementary financial structure to capture investment and price dynamics (including 

changes in the cost of capital).  An unpretentious demand and economic sector uses 

elasticities and delays representing consumer decisions and capital turnover, respectively.  

Energy price is endogenous to the model – assuming regulated ratemaking rules for 

electricity and depletion-driven effects for fossil fuels.  The primary control lever is the 

carbon tax, but other policy variables such as R&D are testable via sensitivity-analysis 

scenarios.  

 

While the proposed model simulates the impacts of carbon and technology policy on the 

technology investments and energy costs, the actual determination of appropriate policy 

(under the uncertainty of assumptions and parameters) would use the SNL DAKOTA 

optimization application (Eldridge 2006, Adams 2009) as a shell to the model described 

here. 
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Appendix B contains a much longer list of issues that a realistic model could consider, 

but the description above represents the current thinking on those issues most critical to 

evaluating technology policy.  
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Section 2:  Establishing a Model Design 
 

The sections below consider each of the basic sectoral components within the proposed 

modeling framework.  Before providing an overview of the model, a few underlying 

concepts need elucidation.  A single structure needs to consider multiple technologies, 

affecting multiple economic and environmental pathways.  The impacts may be local to 

the U.S. but may also spill-over to the Rest-of-the-World (ROW), e.g., the impact of 

biofuels subsidies on world food prices.  Conversely, ROW supply chain constraints and 

material constraints, such as on rare-earth minerals, can cause significant changes in 

technology costs and, thereby, dramatically affect the U.S. market dynamics of 

technology implementation.  As such, essentially all variables in the model represent 

arrays, with many connecting-variables being sums across the arrays. For example, 

investment is by technology and load, but the impact on interest rates is a function of the 

total investment. Still, many values are just averages, such as the price of electricity as a 

composite cost over all technology costs.  
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Model Overview

 

 
Figure 1 above shows the overview of the model.  Energy demand drives the need for 

energy supply.  The economy determines the need for energy.  Energy prices affect the 

consumer decisions for process and device energy efficiency.  The efficiency (energy 

intensity per unit of economic output), in combination with the level of economic 

activity, determines the total demand for energy -- here separated into demands for fuel 

Figure 1: Model Overview.  Bold components are expanded in following sections. 
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and electricity.  With this model definition, fuel use includes combined, aggregate 

process heat and transportation service demands for the economy -- which are  influenced 

by the price of oil, coal and natural gas.  Electricity includes electromotive and lighting 

(and some heating) demands and uses many varied sources for generation.    

 

The double bars in the diagram above represent delays. In causal modeling, as practiced 

within the system dynamics (Sterman 2000) and econometric cointegration (Engle 

1987,1971, Granger 1981, Hendry 1993,2000,2001) paradigms, there can be no 

simultaneity among the feedback interactions of a system.  The delays include state-

variables (integrations) that mathematically (and causally) depict the lag between the 

instantiation of information and the acting upon that information. 

 

The model emphases the electricity side of the energy system, but because electricity and 

the economy use other fuels, the model must include a basic representation of fossil fuel 

price dynamics.   Although the model will capture short-term dynamics caused within the 

electric industry, endogenously capturing short-term dynamics for other fuels (i.e. global 

oil markets) is well outside the scope of the current effort (other than through  exogenous 

sensitivity analysis).  Nonetheless, the long-term aspects of resource depletion and 

technological advance do affect electricity decisions and, therefore, warrant inclusion in 

the model.  

 

Because of the construction delays within the electric industry (and the secondary impact 

of pricing on investment due to regulatory requirements), the utility must plan capacity 

expansion based on a necessarily imperfect forecast of future demands (Sterman 1988). 

The new generation choice is based on the understanding of technology characterization, 

particularly risk and costs.  The choices become investments; the investments ultimately 

become added generation capacity to serve load. For many technologies, the act of 

generation involves the use of fossil fuels that then directly produce carbon emissions.   

 

The new facilities also have many indirect effects on emissions.  The production, 

refining, and shipping of fossil fuels themselves produce emissions.  As another example, 

biomass generation can lead to the exploitation of marginal land and increased energy-

intensive fertilizer use.  Additionally, construction requires the use of steel and concrete, 

whose manufacture is energy-intensive.  Labor used for construction also demand fuels, 

and most components at the construction-site require shipment over long distances.  As 

noted in Section 1, it is likely that the more rapid the transition to low-carbon energy 

technology, the larger the transient increase in GHG emissions and energy use to from 

construction and from the industries supporting the construction (Kenny 2010). Faced 

with goal of reducing emissions by 80% over today‘s levels, and given the continuing 

delay in climate legislation, the pressures for and complication of an extreme and rapid 

transition could be large (Galiana 2009). Section 5 presents a detailed view of the 

generation component which includes a construction component. 

 

Building new generation requires new investment funding that must be recouped as fixed 

costs over the life of the facility. The cost of the investments per kilowatt is dependent on 

the technology chosen. The variable fuel costs, if any, depend on the heat-rate and 
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technology choice, as well as possible carbon costs. The sum of the variable and fixed 

costs over all generation determines the electricity price in a regulated environment.   

 

The following sections contain detailed diagrams of the components depicted in Figure 1. 

Except for dispatch and market-share procedures, each item in the diagrams represents a 

single equation and all items together represent all the major equations of the model 

except for minor auxiliary equations and the defining of parameters. 
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Section 3: The Economy and Demand Component 
 

Figure 2 details the economy and demand components of the model. For illustrative 

purposes, a complete example set of equations corresponding to Figure 2 appears in 

Appendix 1.   
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For the purposes of the proposed analysis, the model contains an economy represented as 

a simple one-sector production function. The current design assumes a Cobb-Douglas 

(CD) function, but a Constant Elasticity of Substitution (CES) or some other approach is 

also possible.  The CD output, as the Gross Domestic Product (GDP), is only a function 

of capital, labor, and technological advance. Labor is a constant fraction of the population 

unless exogenously modified for sensitivity testing.  Technological advance in the overall 

economy  is an exogenously specified exponential function of time.    

 

Capital is tautologically defined as the integral of investments and retirements (all 

endogenous to the model).  In this initial conceptualization, investment is the residual of 

consumption (i.e., savings).  As was the approach in early DOE NEMS (NEMS 2009) 

modeling work, the price of energy primarily has its effect on the economy by changing 

consumption directly.  As a one-sector economy, consumption includes that of the 

government, industry, and citizenry.   

 

Figure 2.  Economy and Demand Diagram 
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In its default configuration, the model emphasizes domestic funding rather than 

international funding for two reasons: 1) to endogenously capture any investment edge-

out effects within the domestic economic and the impact on interest rates; 2) the (un-

modeled) international financial markets will possibly be enduring even larger stresses 

for ROW investment needs to make the energy transition and should not be assumed to 

be anymore available than domestic funds. For sensitivity and testing purposes, the model 

readily allows implicit access to international markets by specifying the fraction of 

required financing that could come from international sources.   

 

Relative to GDP impacts, imports and exports are implicitly held proportionally constant 

in this formulation. However, the model does calculate the increased need for imported 

materials in response to domestic energy-supply pressures caused by the transition.   

 

As noted above, the price of energy and the level of economic activity affect the demand 

for energy.  While there is some need for self consistency between the effect of energy on 

total economic consumption and on energy demand, the shifting of consumption patterns, 

warrants the separation of phenomena as shown in Figure 2.     

 

At the economy level, the model simulates energy demand responses using simple price 

and income elasticities, because the focus is on the technology choice process – wherein 

the full qualitative choice detail is relevant. Other modeling efforts have considered the 

detained assessment of industrial, commercial, residential, and transportation responses to 

climate policy using QCT (ICF 2008, AQB 2010) 

 

Several previous studies have considered the impact of energy and climate change on 

economic conditions (Nabors 2002, Backus 2010). 
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Section 4: The Electricity Generation Finance 
Component 
 

New technologies must compete in the marketplace as new generation capacity. Financial 

constraints and accounting rules determine the impact of new electricity generation on the 

price of electricity.  Figure 3 shows the logic of the Electric Finance component of the 

model. 

 

Figure 3. Electricity Generation Finance Diagram 

 

New generation requires not only the financing of the generation construction, but also 

the Transmission and Distribution (T&D) costs for using the new generation. These costs 

and the amount of new capacity, by technology, determine the new investments. As a 

simplification in this modeling framework, the new investments immediately become 

new financial assets. There are many assets in an electric utility‘s accounts.  All are 

subsumed in the ―Net Assets‖ account explicitly used here.  In essence, investments 

increase Net Assets and depreciation decreases it.  The Net Assets reflect the amount of 

debt and equity financing within the asset portfolio.  (The modeled debt to equity ratio is 

a constant, as is the difference between the regulated return on equity and the interest rate 

on debt.) 
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Depreciation, with the effective tax rate (the marginal tax rate corrected for accelerated 

depreciation methods), along with interest payments and allowed returns on equity, 

determines the total amount of fixed cost that the generation must cover.  

 

The Capital Charge Rate (see Appendix D) is the annualization factor used to determine 

the expected cost of the new technologies per unit of generation (Kwh) as shown in 

Figure 6. It has all the same components as the fixed cost, except it is an accounting 

estimate of the long-term average conditions, rather than a refection of actual financial 

conditions.   

 

Variable costs are those associated with each Kwh of generation, primarily fuel costs 

with some variable Operating and Maintenance costs. The model uses a single measure of 

fuel price (tied to changing oil resources) and derives, via a proportionality constant, the 

delivered market price of oil, gas, and coal to the utility sector – as based on 

parameterization using actual historical data.  Operationally, carbon taxes would appear 

as an addition variable cost. For construction, carbon taxes would increase the costs of 

equipment. 

 

The heat rate determines how much fuel is used per Kwh generated. Because the heat rate 

is different for new plants versus old plants, the model needs to separate old from new 

investments (by artificially using a different technology class designations) to make 

marginal and average heat rate adequately consistent. 

 

Each plant also has fixed cost (operating and maintenance—O&M) expenses, and the 

utility itself has general and administrative (G&A) expenses that are also part of the 

electricity price.  

 

A unique aspect of this component is the internal determination of interest rates.  Because 

of the capital-intensity of modern generation technologies, their competitiveness is very 

sensitive to the interest rates (and, consequently, inflation).  If (exogenous) mitigation 

scenarios cause dramatic increase in the demand for investments funds (not shown), or 

the investment in new electric generation dramatically exceeds historical growth rates, 

the model can convert the added funding pressure into increased interest rates. The data 

for this process are limited, but the feedback dynamic is too important to neglect.  If 

policy too strongly promotes investment in capital-intensive technologies, the increase in 

interest rates may edge out other technologies as well as conventional investments in the 

broader economy that affect GDP growth.  

 

Except for the impact of rapid investment growth on interest rates, the equations of this 

component are all uncomplicated and tautological.  
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Section 5: Electricity Generation Component 
 

Figure 4 displays the generation component of the model.  This component focuses on 

the generation capacity and the actual generation of electricity from it.  

 

  

Figure 4: Generation Component Diagram 

 

 

The demand for electricity is not a constant over each day, week, or season.  In utility 

parlance, the demand represents a ―load‖ whose value changes over time. Some load 

(demand) is present constantly and is called the minimum or base load. Some load (such 

as air conditioning) only occurs for a few hours a day and, on the hottest days, leads to 

the need for utilizing nearly all the available capacity. The maximum demand for energy 

is the peak load.   

 

A load duration curve portrays the load over the number of hours for which it exists, for 

example, the base load exists for 8760 hours per year.  Figure 5 depicts an illustrative 

representation of a load duration curve that only contains historically conventional 

generation.  Hydro generation has the lowest variable costs (in the example of Figure 5) 

and runs to match base load. Nuclear power, being the next least-expensive to operate, 

serves the next increments of base load. Coal has some load-following capability and has 
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higher variable costs than nuclear plants, so it fills in the middle portion of the curve. Oil 

and gas generation is expensive, but gas turbines can quickly respond to changes in 

demand to serve the peak load.   

 

Thus, technologies need to be designated by their load-following capability (base, 

intermediate, and peak) and demand needs to be converted to a load duration 

representation. 

 

 

Hours Per Year                                                            8,760

Power

Required

(MW)

Hydro

Nuclear

Coal
Minimum Load

Peak Load

Oil and Gas
Maximum Base Load

Average Load

0  
Figure 5: Illustrative Load Duration Curve 

 

 

The variable costs determine the dispatch. If the generation is energy limited or 

stochastic, the calculations become more complicated. Nonetheless, several variants of 

the dispatch algorithms used in other models (Ford 1983, Backus 1995) would work in 

this model.   

 

Note that climate change can make the load curve even sharper at the top by increasing 

the peak needs for cooling (or heat, due to extreme weather).  Increased peak power with 

possibly reduced base loads, would require added capacity that would be seldom utilized.  

In such situations, the technology serving the peak must have low capital costs.  

 

For most technologies, generation uses fuel. The burning of the fuel currently causes the 

release of GHG emissions. Engineering (such as sequestering) can reduce the emissions 

at the cost of increased heat-rates. Input-output (I/O) tables would capture these 

considerations. Such indirect emission (IDE) tables are readily obtainable from Life-

Cycle Assessment (LCA) studies on generation technologies (Kenny 2010, White & 

Kulcinski 1998).  

 

As noted in the section 2, the forecasted demand determines the need for new capacity 

initiation. After the construction delay, the new capacity becomes part of the overall 
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generation capacity, to be used for generation, but eventually retired.   New capacity 

initiation must consider upcoming retirements. The technologies selected for new 

capacity depend on their market share (discussed in the next section). 

 

New capacity construction demands many materials.  If the demand for specific materials 

grows too quickly, industry can not easily serve the demand and prices rise. The demand 

for materials is captured with a separate (MD) I/O table.  MD I/O information is also 

available in LCA (Kenny 2010, White & Kulcinski 1998, 2000) and through the use of 

economic I/O tables (DOC 2010). The impact of increasing materials demand on price is 

modeled as a secondary market process. The changes in cost then affect the selection the 

technology in the next time period.  The interaction of the secondary industry cost 

multiplier and its effect on capital costs is shown in Figure 6.  

 

As also discussed earlier, the construction process and the use of the new facility can 

have consequences in other parts of the world economy that can lead to increased (or 

decreased) emissions. 

 

As noted previously, the choice of new technology is based on detail QCT assessment 

(Ben-Akiva 1985, also see Appendix C). QCT allows the explicit and consistent 

simulation of competition among all the technology options as a function of not only 

costs, but also perceptions and policy actions. 
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Section 6: Electricity Technology Characterization and 
Choice  
 

The last component evaluates the technical and economic characterization of electricity 

generation technologies, along with determining the market share each technology should 

garner for new investments.  Figure 6 shows the logic of this component.  

 

 
Figure 6: Technology Characterization and Choice Diagram 

 

Goal-oriented R&D efforts can reduce the cost or improve the efficiency (heat rate) of 

new technologies.  Improvement in, for example, biomass-generation ash-handling also 

benefits coal and municipal waste technologies.  These spill-over effects can significantly 

alter the outcome of R&D away from the intended consequence for a new technology.   

 

Additionally, early technologies are often conservatively specified or contain limitations 

not obvious until after adequate operations uncover the problem and the solution.  As 

experience grows, costs and reliability improve.  These phenomena are collectively called 

economics of learning or simply ―the learning curve‘ (NRC 2010). 
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Moreover, technologies depend on specially manufactured items requiring large front-end 

capital investments.  As the demand for the technology grows, the fixed costs of 

development or fabrication are spread across a large number of deliveries.  The large 

market allows for larger, more cost effective, facilities for manufacture that can also 

reduce costs. This phenomenon is called ―economies of scale.‖ Several existing models 

document algorithms and data to simulate these three impacts on costs and efficiency 

noted above (EIA 2009, AQB 2010)  

 

If the demand for the materials that form the facility are in short supply (due possibly to 

excess demand), then the capital costs can increase.  This cost increase is captured in the 

secondary industry cost multiplier that is also a component of Figure 4. The price of fuel, 

the efficiency, and O&M costs affect the total expected costs of producing energy from a 

technology. The estimated impact of capital costs on the expected cost of pricing energy 

depends on the capital charge rates discussed earlier.  The capital charge rate is very 

sensitive to interest rates (and perceived financial risk).  For full capital recovery, the 

capital (investment) costs must be spread over the expected generation over the life of the 

plant. (See Appendix D for an overview of the capital charge rate.) If the technology can 

only serve peak load or can not tolerate many grid distortions, then its availability is low, 

which proportionally increases the capital cost component of the energy delivered from 

that technology. Lastly, under a carbon-policy regime, the direct and, in principle, the 

indirect emissions of GHGs add to the cost of producing energy with the technology.  

 

Regulatory constraints (such as siting limitations) and physical constraints (such as 

changing water availability and wind intensity over the life of the facility due to climate 

change) will further modify the final choice of technologies to serve new load. With an 

estimate of the cost for producing energy with each specific technology, the utility 

(industry) can determine the portfolio of technologies to include in its investments with 

for that year. This sector establishes the market response to change regulatory and 

technology policy.  The impacts of these  ―rule of the game‖ changes on market 

behaviors can be quite complex but the methods to simulate them have been developed in 

other studies. (Nabors 2002, Backus 2005,) 

 

Data on technology costs and characteristics are available form many sources (ICF 2008, 

AQB 2010, EIA 2009).  
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Section 7: Analysis and Model Results 
 

The model described above could determine the (time dependent) portfolio of 

technologies that best balances carbon emission goals with economic impacts.  The 

choice of R&D priorities and direct carbon policy (e.g. carbon taxes) must reflect the 

control process to meet the desired ends and not idealized assessments of optimal prices.  

Uncertainty in costs, technology characterization, fossil resource availability, 

economic/consumer responses, climate itself, and many other phenomena affect the 

robustness of the policy choice. The model can define that sensitivity to determine robust 

policy – or it can simply establish a basis for risk-informed decision-making.   

 

The equations needed to develop the model are publicly available within the 

documentation of other existing energy models. The data to parameterize the model 

appears to be equally available except for data assimilation efforts associated with 

indirect emissions.   
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Appendix A: Example of Sector Equations (Economy 
Sector) 
 

All α, β, λ, and ―k‖ variables are date derived constants, as are response times (time 

constants).  A subscripted ―0‖ is an initial value. All other variables are defined in other 

sectors. 

 

Gross National Product ($/Yr) 

GDP=GDP0*A*(Capital/Capital0)^α * (Labor/Labor0)^β
 

Technological Advance ($/$) 

A=A0*exp(λ*time) 

Labor (Population is exogenous - Persons) 

Labor=k0*Population 

National Productive Capital ($) 

Capital=Integral(Nat_Investment-Retirement)  

Capital Retirement ($/Yr) 

Retirement=Capital/Capital_Lifetime   

National Investment ($/Yr) 

Nat._Investment=GDP-Consumption  

National Consumption ($/Yr) 

Consumption=k1*GDP*PFCM*PECM 

 

Indicated Price-of-Fuel Consumption Multiplier ($/$) 

IPFCM=(PF/PF0)^k2 

Price-of-Fuel Consumption Multiplier ($/$) 

PFCM=Integral)(IPFCM-PFCM)/Price_Response_Time) 

Indicated Price-of-Electricity Consumption Multiplier ($/$) 

IPECM=(PE/PE0)^k3 

Price-of-Electricity Consumption Multiplier ($/$) 

PECM=Integral((IPECM-PECM)/Price_Response_Time) 

 

Indicated Price-of-Fuel Demand Multiplier (BTU/BTU) 

IPFDM=(PF/PF0)^k4 

Price-of-Fuel Demand Multiplier (BTU/BTU) 

PFDM=Integral((PFDM-IPFDM)/Price_Response_Time) 

Indicated Price-of-Electricity Demand Multiplier (BTU/BTU) 

IPEDM=(PE/PE0)^k5 

Price-of-Electricity Demand Multiplier (BTU/BTU) 

PEDM=Integral((IPEDM-PEDM)/ Price_Response_Time) 

Economic Activity Fuel-Demand Multiplier ((BTU/BTU)/($/$)) 

EAFDM=(GDP/GDP0)^k6 

Economic Activity Electricity-Demand Multiplier ((BTU/BTU)/($/$)) 

EAEDM=(GDP/GDP0)^k7 

Demand for Electricity (BTU/Yr) 

DE=DE0*PEDM*EAEDM 
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Demand for Fuel (BTU/Yr) 

DH=DH0*PFDM*EAFDM 

Demand for Fuel (BTU/Yr) 

DF=DH+Generation_Demand_for_Fuel 
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Appendix B: Model Considerations 
 

These notes describe issues the model could include.  The conventional use of Marginal 

Avoidance Cost (MAC) curves for carbon only include direct carbon emissions under an 

assumption of a marginal investment within a static environment (i.e., ceteris paribus). 

This view is very limited and may misguide both policy and R&D priorities (NRC 2010).  

Below are several of the more obvious and some of the more controversial ―corrections‖ 

a model design might consider.  The first section of the main text of this report extracts a 

small subset the issues having the greatest potential impact on analysis conclusions and 

act as the basis for the initial model design.   

 

Because this effort combines economics with engineering, it needs to establish the 

approach that most self-consistently presents an advance over current practice.  The 

discussion below assumes the one-dimensional approach of the McKinsey study (Enkvist 

2007) and notes issues or extensions in the context of that foundation.  The McKinsey-

type effort is a bottom up, technology-by-technology approach.  A parallel top-down 

approach uses econometric-type efforts where technology choice and characterization is 

treated largely as a fluid, continuous, aggregate process (e.g. MIT‘s EPPA work, Paltsev 

2005).  For discussion purposes, the effort here is assumed to contain an underlying 

technology-by-technology approach. However, because that analysis may need to assume 

the technology evolves, the concept of a ―technology-family‖ is probably more valid 

characterization of specific technologies.  This quasi-specific, quasi-aggregated 

technology classification of economic processes would require econometric formulations 

be part of the model construct.  

 

The information below is meant to simply introduce the concept – with its further 

implications left to later discussions.  In most instances, the concepts below emphasize 

the importance of portraying technologies as existing in an integrated market rather than 

in isolation to one another.  It is these interactions among technologies that define their 

potential success.  In this context, the current practice of ordering technologies by direct 

cost and carbon intensity are misguiding and useless for policy assessment.  Below is a 

brief discussion of several considerations neglected in current MAC efforts. 

 

1. Indirect and Embodied Carbon 

Forty to sixty percent of the capital cost for synthetic fuels, nuclear power, and wind-

power, for example, is energy.  Much of this ―cost‖ is tied up in the use of concrete and 

steel.  When the price of energy increases, the required price for these technologies to 

become competitive rises.  Minimally, changing energy prices shifts the allocation of 

choices across technologies.  A Leontief approach to the economics can capture these 

impacts in a static sense.  The use of substitution elasticities (Manne 2004) or Induced-

Technological Improvement (Ruttan 2002) can capture components of this change in a 

dynamic sense.  For any modeling effort, it appears that most of the technology-specific 

embodied-energy data are now lost or obsolete.  Thus, there is the need to use (existing) 

aggregated sectoral data to approximate and capture this phenomenon.    
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1.1 Energy payback times 

Having embodied energy means that as the penetration of a technology in the market 

place grows, there is a real growth limit whereby the secondary energy demands for 

construction (or possibly for the fuel cycle in the case nuclear power) overwhelm the 

energy savings that the operation of the technology was supposed to provide (Kenny 

2010).  A dynamic simulation would capture these phenomena. 

 

1.2 Indirect CO2 changes 

Equally important are the systems-wide impacts of carbon-use during construction and in 

the use of the technology for converting one energy form to that variety needed by the 

marketplace.  The previous item 1.1 implied a whole range of secondary phenomena that 

generated carbon emissions during construction.  A common example on the production 

side is the hydrogen fuel-cell that produces only water as a direct emission – while the 

energy to produce the hydrogen could have come from coal-generated electricity.  A 

centralized hydrogen infrastructure would entail the massive energy-intensive 

construction of pipelines.  As another example, uranium mining, processing and 

enrichment also include energy-intensive processes that generate immense amounts of 

carbon, despite the ―zero‖ GHG emissions for a nuclear power plant.  For the purposes of 

the modeling proposed here, the absence of this accounting is a fatal flaw in the current 

(static, ceteris paribus) MAC analyses.  A modified I/O table can capture this accounting 

(White & Kulcinski 1998,2000, Kenny 2010, Norris 20078, Rebitzer 2004, Pennington 

2004). 

 

1.3 Land-use CO2 change  

Whether based on food products or not, the use of biomass drives food production to 

more marginal land thereby requiring more energy-intensive factor-inputs, such as 

fertilizer.  Additionally, it can cause land substitutions as in the case of the deforestation 

of the Amazon Basin.  Further, wind-turbine farms can disrupt local wind patterns.  

These can reduce the land productivity downwind – leading to the replacement of 

agriculture by urbanization, thereby causing reduced land absorption of carbon, increased 

energy usage, and disruption of larger hydrological cycles.  The rapid growth in the use 

of biomass fuels for electrical generation will clearly cause a net increase in atmospheric 

carbon levels until decades after the growth in technology deployment ceases – when 

new sylviculture can mature/expand to where it more than matches the existing carbon 

flow into the atmosphere from its burning and harvesting.  In the same vein as the bio-

fuel discussion above, the change in land use would affect food and demographics with a 

net impact toward greater energy intensity.  The CCSM model‘s biome and land-use 

components have data useable for these assessments (Blackmon 2001, Dickinson 2006).  

 

1.4 LCA and full system impacts over time  

The previous points indicate a need for a full life-cycle analysis (LCA) that recognizes 

the dynamic feedback interactions with (possibly global) socio-economic and geo-

physical systems.  Many organizations (Norris 20078, Rebitzer 2004, Pennington 2004)  

has data and techniques (as used with the US EPA - Beaver 2000) for these evaluations.   
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2. Secondary industry (growth multiplier) cost dynamics 

As groups of new technologies enter the market place, they impose short-term constraints 

on the capacity for support industries.  These capacity or resource constraints can 

dramatically increase construction (or operating) costs, often by a factor of three or more.  

Such situations can delay or invert investment decisions across technologies, while also 

convoluting energy price dynamics.  The old FOSSIL2 (Naill 1992) and SRI-Gulf 

(Nesbitt 1984) models have these algorithms. 

 

3.    R&D spillover 

Efforts to improve the cost or efficiency of one technology to make it competitive can 

often improve the same characteristics for competitors (e.g. better ash removal and heat 

exchangers help both biomass and coal generation plants).  Further, if a new technology 

threatens an incumbent technology, the suppliers of the incumbent technology act to 

make the ―old‖ technology better or to encumber the new technology (e.g., the Wankel 

engine lost out to improved internal-combustion engine improvements; and municipal-

waste power-plant ash was deemed hazardous waste).  Cambridge Econometrics Ltd 

(UK) has methods for modeling this (unconventional) type of spillover (Barker 2010). 

 

4.  Unintended Consequences of Rapid Deployment 

The rapid deployment of corn-ethanol caused global food impacts; the rapid deployment 

of nuclear power or wind would dramatically affect grid stability.  Electric or hydrogen 

vehicles would dramatically affect electrical infrastructure and possibly urban 

infrastructure.  The dynamics of a technology deployment can create cascading 

constraints that effectively prevent the future it was supposed to create.  The SNL NISAC 

group (http://www.sandia.gov/mission/homeland/programs/critical/nisac.html) would 

have some experience useful to this analysis.  

 

5.  Strategic materials and elemental extinction. 

Fuel cells currently require rare-earth catalysts whose global abundance is far below that 

needed for the technology to have game-changing impacts.  The demand for alloy 

elements needed in high performance steels (or for long-term nuclear-waste storage) 

exceed the conceivable supply and marks are dominated by overseas suppliers (DOE 

2010b).  

 

6.  Need to consider impact of other economic usage on need for particular products 

As the model structure decides the selection of new technologies (assumed for electrical 

generation in this modeling effort), it may result in the demand for a significantly 

increased use of oil and coal for the supply of construction materials.  This may generate 

higher energy prices, greater pollution, land-use, and water-use caused dislocations, and 

natural gas shortages.  With climate change, water will become a (dynamically) 

diminishing commodity, and thus represent a severe constraint for new generation 

capacity.  The shifting water situation may also dramatically shift load centers and thus 

affect the applicability of new technologies.  There can clearly be situations where the 

early choice of one technology preempts the choices for later technologies.  This new 

area could be captured using a variant on the secondary industry logic above by 

incorporating hard resource constraints rather than just transient capacity constraints.  
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7.  Supply versus demand components of the carbon balance 

Historically, the number one error in planning and technological forecasting has been the 

neglect of supply and demand feedback interactions (Nelson 1985, Ford 1997, 1982).  

The excess development of supply can suppress prices and stimulate demand.  The 

delayed development of supply can increase prices, reduce demand, and recast the further 

need for supply.  Energy is not a good onto itself.  Energy is a derived demand contingent 

on the service demand, such as for heat or light.  Demand needs to be part of a supply 

model and markets (prices) need to drive supply.  (A Economist article reinforces the 

view that subsidies are counterproductive in the dynamic market sense - Economist 

2009).  The ENERGY2020 model has all algorithms needed for the demand side and 

combining it to the supply side to establish (disequilibrium) price dynamics (ICF 2008, 

AQB 2010, Backus  & Amlin 2005).  

 

7.1 Process versus device efficiency 

Devices convert primary energy to a secondary energy service, and they are limited by 

Carnot efficiencies.  In a static (no economic growth, no population growth) world, 

carbon emissions need to drop by 80% or more just to bring emissions and natural 

absorption into balance.  Process efficiencies define the $ of output per unit of energy (or 

carbon in this context of the proposed work).  Zoning laws to have commercial, 

industrial, and residential activities all in one building (as is common in Sao Paulo) 

reduce heating, lighting, and transportation energy usage by orders of magnitude.  

Telecommuting is another obvious example of a non-Carnot-limited process efficiency 

improvement.  Decentralized versus centralized manufacturing (consistent with 

economies of scale) reduces energy use and becomes viable when carbon costs are 

explicit.  For this work, demand behaviors must include process responses.  

Decentralized energy supply (local, combined heat and electricity) is also subject to 

process-side dynamics. 

 

7.2 Economic/market choices versus costs/engineering 

Not everyone buys the same, least expensive automobile.  Tastes and preferences, as well 

as local needs and conditions affect the choices made.  More importantly, at an enterprise 

level, the choice is a portfolio (or mix) that is dominated by uncertainty and risk 

mitigation.  While firms and individuals all seek to maximize the utility of their choices, 

idealized, discrete, optimal decisions based on simple engineering costs do not reflect the 

actual marketplace dynamics (Jaffe 1994, Sutherland 1991).  Because this effort is to 

actually help solve climate change problems, assumed optimal selections of ranked 

technologies based on perfect foresight cannot be the modus operandi for analyses.  

Qualitative choice theory (QCT) as partial embodied in the SGM (Edmonds 2004) and 

fully embodied ENERGY2020 (ICF 2008, AQB 2010, Backus 1995) models can 

realistically simulate technology selection.   

 

7.3 Learning curve (power versus exponential) 

New technologies initially have high costs until experience allows improved designs and 

operations.  Typically, models assume a learning curve based on a constant return to 

experience (NRC 2010, NEMS 2009).  Under the massive transformation needed to 
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combat climate change, exponential functions with better-defined asymptotic behaviors 

are more realistic.  Over time, many technologies have experienced cost reductions of 

80% over prototype costs, in real-dollar terms.  Conversely, some technologies (such as 

nuclear power) have experienced large cost increases due to added required (safety) 

complexity.  These time dynamics can create bifurcations in the market trajectories 

relative to technology lock-in.  The DOE NEMS (NEMS 2009) model uses a documented 

power-law curve to capture learning, whose parameters could define an exponential-

learning model. 

 

7.3 Economies of scale (power versus exponential) 

In the same vein, the increased flow of technology deployment spreads fixed and hurdle 

costs over a large number of units, thereby (often dramatically) reducing delivered costs 

(NRC 2010).  Several models (including FOSSIL2 - Naill 1992) have attempted to 

capture economies of scale dynamics.  

 

7.4 Financial/Legal Constraints  

Classical optimization assumes perfect DCF/NPV1 results.  In reality, companies who 

own technologies are at the mercy of markets.  Prices and operating costs vary.  

Companies may not be able to maintain investment paths while accommodating financial 

downturns.  Interest payments cause real cash-flows and inflation can quickly make some 

technology decisions non-starters.  Legal constraints can limit the prices companies can 

offer, the financing they can obtain, the designs they can use, and the places where they 

can to build.  A dynamic simulation approach readily captures changing market 

conditions and bifurcations.  

 

7.5 Carbon mitigation and adaptation constraints 

In addition, already conceived carbon mitigation and adaptation programs will stretch 

capital markets.  International economic growth itself can strain financial market 

conditions.  Anticipated global government spending on social security and medical-costs 

already represents daunting challenges.  These financial demands will produce 

investment constraints with cyclical, transiently high interest rates that can dominate the 

viability of capital-intensive technologies.  Algorithms can determine the risk associated 

with these impacts. 

 

7.6 Political realities/constraints 

In an earlier time, nuclear power was seen as an environmentally, economically, and 

socially problematic technology.  Now in varying ways and in different settings, all 

technologies are seen to have political baggage.  Uncertainty in the acceptance of new 

technologies, or the continue acceptance of technologies once their impacts are 

recognized, may totally determine the technological outcome decades hence.  Scenarios 

that attempt to illuminate the implications of political dynamics could constructively add 

to the climate change decision-making.  

 

 

 

                                                 
1 DCF=Discounted Cash Flow, NPV=Net  Present Value 
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8. Transient (oscillatory) energy prices  

Despite economic ―laws‖ to the contrary, oil prices do not follow a monotonic trajectory 

nor do prices contain perfect-foresight.  Investments (consumer and supplier) are 

necessarily based on imperfect expectations about the future (Hotelling 1931).  Over-

building or under-building capacity causes price oscillations which add to consumer and 

supplier decision uncertainty.  Changes in usage decisions cause changes in commodity 

demands, and input-fuel prices can vary even more dramatically.  Only simulation 

modeling can capture these dynamics (Sterman 2000). 

 

8.1 Cap & Trade versus Carbon taxes 

In the above context, cap & trade and carbon-tax approaches to carbon mitigation have 

very different impacts (despite orthodox claims to the contrary).  Carbon taxes are a fixed 

market signal that allocates resources with an added sense of certainty –albeit with 

market dictated winners and losers.  The tax level is the control mechanism to ensure 

market responses.  Cap & Trade schemes distort markets with a priori allocations of 

permits whose value is determined by the vagaries of unverifiable, uncertain future needs 

for permits.  As already experienced, carbon prices in a cap & trade scheme can vary 

dramatically over time, thereby increasing the perceived risk and preventing the proper 

timing of investment decisions (Green 2007, Nordhaus 2009, Reuven 2009, Economist 

2009). 

 

9.  Dynamic versus static implications 

All the above indicates the need for a realistic dynamic rather than a static approach to 

the analysis.  Real decision-makers do operate in an environment of uncertainty.  The 

analysis cannot assume that all parties have prefect knowledge about the future and make 

perfect decisions (Kahneman 2003).    

 

9.1 Growth scenarios 

Population and economic growth will determine the required intensity of and constraints 

on the technologies that collectively must lead to sustainable carbon emissions.  

Economic and population growth could be specified within co-dependent scenarios (to 

simplify the analysis) to illustrate this crucial link between solutions and the drivers that 

create/exacerbate the problems.  Different growth rates will require different food and 

economic investment regimes, and thus create conditions requiring very different carbon-

management programs.  

 

9.2 Economic feedbacks 

Energy is a production factor for all economic activity.  The price of energy affects 

economic growth.  Relatively unsophisticated ―production function‖ approaches to 

economic growth can drive energy demand needs at a US and Rest of world (ROW) level 

(Paltsev 2005).  

 

9.3 Global versus US view 

Although much of the analysis can focus on the U.S. as an isolated entity moving to 

reduce its carbon footprint, global impacts on prices and material flow will in turn affect 

the ability for the U.S. to meet its goals.  In addition, U.S. policy (for example bio-fuel 
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subsidies, and Canadian tar-sand imports) can have large impacts on energy needs, 

carbon emissions, and economic conditions at a global level.  

 

9.4 Impact of boundary choice on conclusion 

As such, the choice of the analysis boundary -- geographically, economically, and 

technologically – can affect the conclusions derived.  Again, it would seem that a detailed 

U.S representation linked to an elementary aggregate ROW representation is required for 

legitimacy and self-consistency.  

 

9.5 Security premium  

Legislation and programs to promote specific technologies (special interests) often have 

to justify the energy balance or cost-effectiveness problems by invoking a security 

premium value that somehow justifies these efforts.  Because the proposed analysis is 

strictly meant to inform the debate, it would seem that the proposed analysis should 

remain agnostic (blind) to ―security premium‖ arguments (and other national security 

rationalizations).  

 

9.6 Control feedback theory process w/uncertainty 

Because the problem is dynamic with large uncertainty, the actual derived path of 

technology implementation is secondary to the control scheme that generates it.  The 

control space represents the policy options (indeed, constrains the flexibility) in robustly 

pursuing carbon emission goals.  Because of the non-linearities and uncertainties in the 

system, heuristic approaches or the leveraging of Darwinian processes (that allow failure 

and correction within an ecology) may be the hallmarks of viable policy options.  

 

9.7 Picking the winning technology 

Many a career has come to an abrupt end through the hubris of picking a ―winning‖ 

technology. The current approach to MAC would seem to imply such a selection is 

possible.  History continues to argue otherwise (Jaffe 1994).  The proposed effort is to 

capture the market dynamics that lead to a desired outcome.  This outcome will obviously 

entail technologies, but the good policy merely provides for the maximal potential for a 

beneficial outcome.  The model simulates technologies to understand the impact of 

market interventions on market choices such that a societal goal (reduced carbon) is 

effectively (economically) achieved.   

 

9.8 Verification and Validation 

Given the enormity of system interactions and unknowns, sensitivity analyses are critical 

to developing defendable conclusions.  Additionally, providing confidence intervals on 

solutions that emanate from varying input technology characterizations, behavioral 

parameters, and delay times is required for defining the real decision-space for policy 

makers.  SNL has several computer applications that can facilitate this component of any 

analysis (Eldred 2006). 

 

10. Interaction of electric generation with other energy services 

Electric cars affect both transportation and electric generation choices.  They change the 

load shape and infrastructure requirements for the grid.  Fuel-cell vehicles complicate the 
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situation by allowing two-way transactions.  The net impact on carbon emission could be 

quite complex, especially if the link between transportation and electrical generation 

makes both less efficient.  Additional electricity is a competing fuel for process heat.  

Other heating fuels also compete for transportation needs.  The model design needs to 

recognize and describe this problem, but its resolution goes far beyond the proposed 

scope of this effort and is best explicitly noted as a limitation of the analyses.  

 

11. Sequestering dynamics and the non-linear supply curve 

Sequestering dramatically changes the perspective on coal (and all fossil-fuel) generation.  

Sequestering entails significant infrastructure creation and geographical constraints on 

technology choices.  It is also a finite resource with non-linear, uncertain, cost curves.  Its 

effectiveness, reliability, and extent remain ill-defined.  The adequate portrayal of 

sequestering in a dynamic model is a major undertaking.  Although it would cause a large 

amount of controversy, analyses with the proposed model could generate scenarios that 

vary the summary cost and magnitude of sequestering.  These values, in turn, strictly 

limit the amount of coal generation in essentially a GIGO sense of the modeling.  This 

approach to sequestering is troubling however, and further research may discover some 

creative alternative approaches.  

 

12. Hybrid solutions 

New estimates indicate that biomass can never serve more than 20% of global energy 

needs – under the proviso that the globe also gives up food production.  Tar sands 

currently produce over 2 tons of CO2 for every ton of oil.  Coal definitionally produces 

over three tons of CO2 for every ton of coal.  Adding water in gasification to produce 

lighter hydrogenated compounds may make the problem worse.  If carbon is simply 

considered a backbone upon which to place hydrogen, biomass could serve all energy 

needs, tar sands emissions would be zero in Alberta, and net oil-sand-derived fuels and 

coal-derived oil  emissions could be 30% of present value – all without the need to use 

coal as more than a benign feedstock.  The problem is in the production of hydrogen and 

process heat.  Several small nuclear reactor designs can provide both.  Further, metal-

fuel, fast reactor designs can eliminates essentially all the CO2 emissions from the 

nuclear fuel cycle.  Using intermittent renewable sources to make liquid fuels also 

appears to have the greatest system-wide benefits – compared, for example, to electricity 

generation on a brittle grid system.  The current focus is on electric generation limits the 

ability to address this perspective.  An exploration of hybrid solutions could be the basis 

of a much easier to achieve efforts than that proposed.  

 

13. Utility generation modeling 

This effort focuses on electrical generation technologies.  There are many, many utility 

planning and regulatory models in existence.  To avoid unnecessary controversy, this 

effort should not compete with any of them.  While the models do have to capture the 

realities (constraints) to technological change in the utility industry, the objective here is 

solely to describe the technology choice process and its impacts such that analyses can 

discover robust policy interventions to minimize (global) carbon with the greatest 

realizable economic efficiency.  
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13.1 Sacredness of property and contracts 

Utilities have special franchise rights and contractual agreements.  Thus, customer 

generated or third party generated power remains illegal in most franchise contracts.  

Further, existing generation counts as property, and as such, governmental rights to extort 

ownership or abrogate contracts for generation usage are only negotiable in relation to 

monetary compensation.   

 

13.2 Electricity Demand 

It is the expectation of future demand that drives capacity additions in regulated utility 

markets.  It is the expectation for future prices that drives capacity expansion of 

deregulated utility markets.  Demand is price responsive, differently over the short and 

long term.  More importantly, the demand varies with the time of day and season.  Peak 

power is dear.  Peak power is not only expensive but challenges the load following 

capabilities of even gas-turbines under the constraints of the brittle U.S. transmission 

system.  As climate change evolves, extreme weather will dramatically increase the share 

of the load that corresponds to peak power.  Intermediate power represents the load 

between base-load and highly variable peak loads.  Oil and small-unit coal generation 

must accommodate this load. Base load represents that load that is nearly constant over 

periods of time consistent with the time constants of large thermally-inertial power 

plants.  Even a simplified demand construct needs to capture the load curve dynamics 

because it so constrains the viable technology options – by unfortunately making required 

near term choices obsolete before the plant is old enough to retire.   

 

13.3 Plant replacement and growth 

Given a constant demand, a large percentage of facilities, in principle, need to be 

replaced over the next decade.  However, the first choice is to austerely extend the life of 

existing facilities.  With growth there is new construction and multiple companies can 

(incorrectly) plan to serve the same load – or have the market (i.e., other utilities) serve it.  

This process creates financial risk and (usually) capacity levels that are out of sync with 

realized demand.  The extreme weather of climate change (driving highly-uncertain, 

weather-related, real-time demands) may defeat the best efforts of regulators and utility 

planners.  This modeling can readily capture the planning function and response, but the 

response (or lack thereof) to financial risk will require scenario methods. 

     

13.4 Intermittent power of renewable energy 

When wind becomes a substantial fraction of a regional grid‘s power supply, the grid can 

no longer maintain stability.  Redundant new (often coal) capacity must compensate for 

the variability in renewable generation or the renewable source must be taken off-line 

when its operation threatens the grid.  Spinning condensers can partially compensate for 

long transmission runs, but this is outside the scope of the proposed study.  The analyses 

could possibly include a simple (off line) probabilistic (illustrative) analysis of renewable 

generation as it affects the grid and the dispatch of other generation – up to an estimated 

maximum constraint.  Despite talk of Smart Grids (a 30-year-old concept), regulatory 

constraints on new grid construction would seem to make this a non-solution for realistic 

policy analysis.  Nonetheless, scenarios could include ―what-if‖ runs to indicate its 

potential value.  This leaves energy storage as the (controversial) required ―solution‖ for 
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allowing unlimited renewable capacity.  This effort does to consider the storage 

technologies ―married‖ to renewable energy in the model.  Flow batteries, compressed 

air, and fuel-production (hydrogen or carbonaceous) are just a few of the possibilities. 

 

13.5 Geography 

The grid topology, load centers, pipelines, rail lines, and water make electric demand and 

generation subservient to regional geography.  Given time and funding limitations, in all 

cases, the proposed modeling must neglect this reality.   

 

13.6 Grid dynamics 

While the modeling must subsume most of the grid away, other than its constraints, there 

are concepts that use the grid to take advantage of the fact the sun shines and the wind 

blows somewhere on the globe at all times (Meisen 1976 and   http://www.geni.org/).  

The analyses probably do not want to include this logic or directly address any of the grid 

stability or constraint issues, but by making sure the design-thinking stays ―in-the-box,‖ 

the design ensures that what the model produces may be irrelevant to what will actually 

transpire.  Does the design process need to step back a bit and consider tech-surprise or 

black-swan scenarios instead of embellishing the single evolutionary branch the world 

thinks it is now technologically on? 

 

13.7 Cycle of build and bust 

Just like commercial real-estate, utilities are routine victims of build and bust cycles (As 

intimated above and studied in Ford 2002).  The capacity expansion choice, in 

monotonically growing (in demand and price) scenarios, is far different from those that 

include cyclical phenomena.  It may be very insightful to include the cyclical behaviors 

(endogenously generated in a simulation model) as the basis for analyses rather than the 

conventional wisdom. 

 

13.8 Utility choice process 

Utilities have to make choice under uncertainty.  They seldom ―put all their eggs in one 

basket,‖ and they are risk adverse.  Optimization models can describe what should be 

done, but empirical data shows that the board of directors maintains a strong tie to human 

nature and produces decisions consistent with the qualitative choice theory (QCT) noted 

earlier (Sterman 1988).  Perceived consumer needs plus regulation drive decisions to 

select and finance new capacity.  The model can capture these phenomena, as noted 

above.  A key point is that although utilities are the actual consumers of technology, their 

choice is the end of a cascading sequence of constraining conditions.  That is, utilities 

make the choice the immediate situation requires, not the choice they would make if only 

perfect economic foresight entered into the equation.   

 
13.9 Marginal investment vs. production costs 

Marginal investments costs are typically used to simulate utility capacity expansion 

decisions.  These calculations assume a fixed utilization of the capacity.  Operationally, 

plants are dispatched based on variable (production) costs and plant availability.  In a 

regulated market, idle capacity is still allowed to recover its capital (fixed) costs in the 

price.  The capital component of the price dilutes the price signal because only the 

http://www.geni.org/
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variable costs fluctuate.  The price becomes an average price and demand responses (only 

efficient with marginal cost pricing) leads to further market distortions in technology 

choice --  and in the value of those choice to society (in terms of economic efficiency or 

in terms of cost-effectively meeting climate change goals).  Analyses may want to 

consider experiments that apply marginal cost pricing versus those that do not.  Because 

of the feedback response on demand and capacity additions, the two results should be 

significantly different.   

   

13.10 Regulated vs. Deregulated markets 

There are many issues concerning the differing conclusions that would come from 

deregulated versus regulated markets that go beyond the scope of the proposed efforts 

(Backus 2005).  Just characterizing the deregulated market definition would raise such 

controversy that no reviewer would ever even make it to the analysis part of the proposed 

work.  Nonetheless, the model must resolve the fact that self-generation and (non-utility) 

third party generation violates the regulatory franchise.  Many of the technologies the 

model might include could fall in these categories.  (Is co-generation a represented 

technology in the model?)  A potential way to get around this conundrum could be 

through assuming the utility is paid (i.e., made whole and risk free) if it accepts 

generation from alternative sources.  Note that the new technology then only becomes 

economically viable under conditions of capacity expansion where the alternative choice 

is less costly (from a risk-adjusted perspective) than any choice the utility could 

implement of its own means.  

 

13.11 Climate Impacts on Generation Lifetimes 

Climate induced changes in precipitation cannot only reduce the available output from 

conventional capacity, but changes in the timing of precipitation can dramatically reduce 

the capability of hydropower.  More importantly, change weather patterns due to climate 

can reduce solar-facility output and nullify wind capacity.  Weather changes cause also 

cause biomass-energy plantations to be abandoned with the (competitive) loss of the local 

biomass generation capacity.  Whenever a renewable facility is dependent on the local 

weather, future climate change might eliminate the required local conditions needed for it 

use. 

 

 

 

The above only scratches the surface and covers a fraction of all possible considerations, 

but it raises enough of the key issues to allow a triage for the purpose of deciding a 

workable route for modeling as described in the main text.  
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Appendix C: Qualitative Choice Theory 
 

Qualitative Choice Theory (QCT) has a long history in psychology.  It has only been 

fully developed for economic use through the work of Daniel McFadden (who won the 

Nobel Prize for the effort in 2000).2  Independent of whether an individual is rational, 

irrational, profit maximizing, or satisficing, qualitative choice theory applies to the 

decision making process.  It simply says that individuals make a choice based on their 

perception of utility in regard to those choices.  QCT causes any and all information 

(preferences, tastes, price, time to delivery, ―little voices,‖ etc.) utilized by the individual 

to define a valid (or at least functional) representation of choice behavior. QCT analyses 

starts with the data reflecting the conditional probability of a choice given possibly 

interacting, conflicting, and limited information.   

 

Theoretically, any form of the probability distribution can be assumed.  In practice, the 

Weibul distribution has the greatest numerical ease-of-use and has shown itself to be 

empirically the most likely shape of the actual distribution.  The Weibul distribution is 

skewed to the left with a broad tail to the right.  This implies that while individuals 

consider high ―cost‖ options, they tend to focus on the lower ―cost‖ (higher value) 

options.   People do not have perfect information.  A sampling of the population shows 

different perceptions of actual costs and personal preferences.  The choice made is called 

Random Utility Maximization or RUM.3  Figure 1 below shows the illustrative 

distribution of perceived price for three technologies (choices).  While the QCT 

formulation can include any concept of culture, ideology, tastes, or preferences, etc, only 

the classical economic example is discussed here.   

   Figure 1: Illustrative Choice Distribution 

                                                 
2 McFadden, D., ―Qualitative Response Models,‖ in Advances in Econometrics, Ed. Werner Hildenbrand, Cambridge University 

Press, New York, 1982 
3 McFadden, D., (1986), ―Econometric Model of Probabilistic Choice,‖ in Structural Analysis of Discrete data with Econometric 
Applications, ed. C.F. Manski and D. McFadden, Cambridge, MA, MIT Press. 
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Maximum-likelihood estimation (MLE) methods determine the shape of the distribution 

as a function of costs and preferences in the model.4  The actual market share is 

determined by mathematical integration over the distributions.5  Nonetheless, the physical 

process can be understood intuitively. The fraction of the time Technology 1 would be 

picked would be the region to the left of the red line and half the region between the left 

red and left green line under the blue distribution.  (The half comes from the price having 

a 50% chance that the cost of Technology 1 is perceived as lower than Technology 2.)  

 

Technology 2 would be selected by the fractional amount equaling one-half the area 

between the left red line and right of the blue line.  Technology 3 would be selected by 

the fractional amount equaling one-half of the area between the left green line and the 

right blue line under the blue curve.  This is the fraction of the instances that Technology 

3 is perceived as having a lower cost than Technologies 1 or 2.  The width (standard 

deviation) of the distribution can be shown to be the uncertainty in the perceived 

information about the technology.   

 

The market share of Technology 1 would be as shown in Figure 2, as its price varied 

relative to the price of the other choices.  As the price of Technology 1 becomes small 

compared to the other choices, its market share would go to unity.  If the uncertainly is 

large (as in a residential decision), the slope is gradual.  If there is significant effort to 

reduce costs (have less uncertainty), the curve is steeper as shown for industrial choices.  

If there is perfect information, as assumed in an unconstrained linear programming (L-P) 

framework, then the market share would jump from 0.0 to 1.0 with the smallest of price 

differentials.   

 

 Figure 2: Illustrative Market Share Response 

 

                                                 
4 Ben-Akiva, M., Discrete Choice Analysis:  Theory and Applications, MIT Press, Cambridge, MA, 1985. 
5 McFadden, D., ―Conditional Logit Analysis of Qualitative Choice Behavior,‖ in Frontiers in Econometrics, Ed. P. Zarembka, New 
York, Academic Press, 1974. 
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The integration of Figure 1 produces the probability of the choice, or in the aggregate, the 

market share, of the i'th choice (MSi) per Figure 2.  For a Weibul distribution, this 

integral has a closed-form solution: 
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  16) 

 

Where Ui is the utility of choice ―i,‖ and ―e‖ is the base of the natural logarithm. 

 

Figure 3: Aggregation of Choices. 

 

If Technology 1 through 3 represents technology choices, then Figure 2 would represent 

the technology market shares on the margin.  If there are many technologies, the shape of 

Figure 2 only changes quantitatively but not qualitatively.  The sum of market shares is a 

market share.  It is then possible to make a curve of an aggregate characteristic such as 

efficiency, where the choice goes from the lowest efficiency technology (when factor 

costs are low) to the highest efficiency (when factor costs are high).  Preferences also 

play into this, but for simplicity, these can be thought of as added perceived costs, in this 

example.  The curve in Figure 3 is the selected marginal efficiency at the current price 

and preferences for an infinite number of choices.  The efficiency ratio (Efficiency/-

Maximum-technological-efficiency) goes between 0.0 and the maximum (1.0).  QCT 

allows the valid aggregation of individual choice to societal choice. This aggregation 

problem has haunted economics for centuries.6 

 

                                                 
6 Keene, S. Debunking Economics,  St. Martin‘s Press, New York, NY, 2001 
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The utility function is often written, for example, as a simple linear function of price (Pi) 

with the constant (non-price) term noted by Train.7   

 

Ui = Ai + B*Pi   17) 

 

In this case, the ―A‖ would be (assumed constant) non-price factors of taste and 

preference for the i‘th choice. It can also capture the ability to make the choice (e.g. the 

limitation of physician selection in an insurance plan) or the availability of the choice 

(e.g. the winter availability of solar energy at the South Pole).  Note again that the B does 

not have a subscript. The ―B‖ is directly related to the uncertainty of the choice – how 

well the information of the choice set is known and understood.  The uncertainty of the 

decision process is the same for all choices in a set because it is an ordinal and not a 

cardinal process that compares all options at once.    

There can be a hierarchy of choice, like a binary tree, but called nesting.  Each level is a 

choice among all the options of that level (e.g. choosing the flavor of ice cream to eat 

occurs, after choosing which place to go for the snack, after the decision to go for a 

snack.)  Each decision level is self-contained but can be conditional on the level below it.    

The derivation of the theory of QCT requires that all choices at any level are mutually 

exclusive (e.g., the decision to live in Boston or Austin).   Empirically this limitation is 

non-binding. A classic example is the addition of travel choice by painting half of all the 

buses green and the remaining buses blue.  There really has been no change in the 

choices -- taking the green bus is no different than taking the blue bus.  The ―A‖ of 

equation 17 can capture this fallacy by simply multiplying the blue-bus and green-bus 

choice, in this example, by 0.5.  The same process can often allow the complicated nested 

equations to be reduced to a single layer called a ―comb‖ that requires only the single use 

(and estimation) of  Equation 16. 

Reducing the uncertainty, increasing the understanding of the choices, and making better 

decisions (as contained in the ―B‖ term), takes time and effort.  The benefit may not be 

worth the effort.  When buying a house, a purchaser may want to know the price within 

1% or less. For a candy bar, a 200% uncertainty variance is tolerable.. The consequences 

of purchasing a house are much more momentous than purchasing a candy bar.   The 

magnitude of the ―B‖ appears to vary directly with the importance of the decision. That 

importance is the cost of the decision compared to the value of the entire output (a labor-

year of income for a person and the revenue for a company).   

If many choices are aggregated to produce the equivalent of Figure 5, the magnitude of 

―B‖ will be reduced.  This reduction occurs because aggregation is like taking a weighted 

average.  It ―smoothes‖ the response intensity compared to a disaggregated either-or-

situation. 

Data indicates the linear function of Equation 17 works well for small variations of the 

input variables, but the actual underlying function is logarithmic.  Equation 18 is a simple 

logarithmic enhancement of Equation 17.  

                                                 
7Train, K., Qualitative Choice Analysis, MIT Press, Cambridge, MA, 1986. 
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Ui = Ai + B*ln(Pi)   18) 

 

This indicates that people can determine relative proportionality but not absolute 

differences in price (or other components of utility).  This implication is consistent with 

the previous discussion that the B is proportional to the percentage impact it has on total 

outcome.  

If Equation 18 is substituted into Equation 16 and ―m‖ is defined as  

 

mi = exp(Ai)   19) 

 

then Equation 16 becomes 
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This equation is consistent with the engineering assessment of options according to the 

distribution of (estimated) cost versus (estimated) performance.  The uncertainty of the 

estimate (the ―B‖) is also a function of the importance of accuracy.  This is the only 

example the author knows, where engineering theory and economic theory agree. 

 

While MLE is required for the unbiased estimation of Equation 20, within a feedback 

system, ordinary least-square estimation often produces adequate parameterization to 

generate accurate forecasts.  

 

Note that because the decision process is always ordinal, there is no absolute concept of 

preference.  Therefore, one of the ―mi‖ must be arbitrarily selected as the numaire and set 

to unity.   

 

When used over a 50 year period to simulate, for example, energy demand, some 

limitations of Equation 18 start to appear.  One obvious area is the impact of income on 

decisions. A cup of Starbuck‘s coffee is more expensive than one from home. The ability 

to afford luxury items affects demand. Changes in the disposable income (I), relative to 

the minimum (Im) needed to maintain health, affects buying and other decision responses.  

 

All goods provide a service. That service is ―demanded‖ relative to the production of  

output, be that output a labor year as measured in annual income units or the revenue 

from an industrial widget.  The market share is for a service. The price is the cost per 

unit. That unit is a factor input to production. (Food is required to produce a labor-year; 

iron is required to produce a power plant.) The units of price are $/factor-unit.  For ―B‖ to 

have a probabilistic meaning, the ―P‖ term must be a proportion. The proportion is the 

comparison of the factor price to the price of output. That process requires a conversion 

term whose units are $ of output per factor unit, here defined as the economic intensity 
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EI.  EI is the measure of efficiency in using the input factor.  With the improved income 

and price concepts, equation 18 becomes: 

 

Ui = Ai + B*ln(Pi/EI)+Ci*(I/Im)  21) 

 

 

The term P/EI has the units of  $-factor/Factor-Unit  /  $-Output/Factor-Unit. The factor-

units cancel, but the dollars do not.  The dollar units of measure have important 

adjectives.  The rigorous use of QCT could lead to the claim that there is no such thing as 

a dimensionless number and that valuable interpretive/causal  information is lost by 

attempting to use dimensionless numbers. (As another example, energy efficiency is not a 

canceling Btu/Btu ratio, but rather BTU-Service-out/Btu-Primary-in.) 

 

The Income term of Equation 21 is adequate for simulating demand  in industrialized 

countries, where I/Im is significantly greater than unity. A more complicated formulation 

is needed for values below and near unity.   

 

The ―A‖ term can be divided into its separate components (Ai,k). One term will always 

have to contain ―other‖ residual ―A‖ components.  For policy purposes, these components 

can represent advertising, availability, color, style characteristics, or anything else that 

might affect the choice. Care is needed during estimation to avoid spurious parameters 

due to too many degrees of freedom given the quality of the data.  Equation 21 then 

becomes: 

 

Ui = ∑Ai,k + B*ln(Pi/EI)+Ci*(I/Im)   23) 

         
k 

 

Note that because the ―Ai,k‖ are use in the exponential context of Equation 16, they 

reflect relative, rather than absolute preferences,   From a QCT sense, they are 

proportional just like all other terms. 

 

Limitations of Qualitative Choice Theory 

 

Non-price terms may be truly co-dependent.  Peer pressure and the reduction of early-

adopter risk may be both a function of knowledge of other users (i.e., the average existing 

market share).  It can become difficult to break out the separate influences.8 Naïvely 

defining decision components can lead to invalid conclusions.   

  

Value of Qualitative Choice Theory to Technology Assessment Modeling 

 

The use of QCT seems to force a rigor and a method for defining the implicit or explicit 

decisions associated with a rate formulation.  Experience indicates that QCT forces a self-

consistency of thought and theory that always has a causal description consistent with 

empirical data. 

                                                 
8 Keeney, R. L. and Raiffa, H., Decisions with Multiple Objectives, John Wiley & Sons, New York NY, 1976. 
 



 53 

Appendix D: Derivation of the Capital Charge Rate 
 

The capital charge rate is the annualization of capital  expenses to account for taxes, tax 

credits, return of principal,  return on investment, and interest during construction.  The  

"CCR" equation is: 

CCR = (1+R)**(C/3)*(1-ITC/(1+NR)-TR*(TL/2)/(TL/2+NR)) 

*R/(1-(1+R)**(-BL))/(1-TR) 

Where: 

R  = Real Return on Investment 

NR = Nominal Return on Investment 

C  = Construction Time 

ITC= Investment Tax Credit 

TR = Tax Rate (Federal plus State income tax) 

TL = Tax Life 

BL = Book Life 

   

NR=(1-TR)*(1-F)*ND+F*NE 

R=(1+NR)/(1+INF)-1 

ND=(1+D)*(1+INF)-1 

NE=(1+E)*(1+INF)-1 

 

Where: 

F  = Fraction Equity 

INF= Inflation Rate 

ND = Nominal Return on Debt (Interest Rate) 

D  = Real Interest Rate 

NE = Nominal Return on Equity 

E  = Real Return on Equity 

   

For small "INF" (less than 10%/yr), a simpler calculation can be  used with acceptable 

error: 

ND=D+INF 

NE=E+INF 

R=(1-TR)*(1-F)*D+F*E 

NR=R+INF 

   

Risk can be added to "R" to reflect uncertainty and a higher  required return.  The model 

can include financial risk concerns by increasing the required rate of return.  Typically, a 

.02 to .05  risk (RISKN) is used for new technologies.
9
   

Although the standard approach uses a constant risk adjustment, a dynamic risk 

adjustment can be easily calculated.   As a first approximation, a technology is assumed 

                                                 
9Backus, G. A.,  FOSSIL79 National Energy Policy Model, Resource Policy Center,  Thayer School of Engineering, Dartmouth 
College, Report No.  DSD-165 through DSD-168, 1979. 
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to be mature  when the demand (D) for it is 10% of the total market demand  (MPD).  

The risk can be reduced over time to reflect this phenomenon: 

RISK=RISKN*EXP(-D/MPD) 

RR=R+RISK 

 

where "RR" is the risk-adjusted "R" that can be used instead of  "R" in all appropriate 

equations. 

The "(1+R)**(C/3)" term in the "CCR" equation represents interest  during construction 

which must be added to the final cost of the  facility.  During construction, costs 

accumulate faster near the  end of the project than at the beginning.  As a good  

approximation, it can be assumed that all the construction costs  occurred two-thirds of 

the way through the construction program.  That means interest charges (R) are 

accumulated for a time equaling ―C/3". 

The "R/(1-(1+R)**(-BL)" term is the classical capital recovery  term.
10

   The "(1-TR)" 

term at the end converts the after tax calculation  into before tax dollars.  

Investment tax credits reduce the cost of the plant by the tax credit after the first year of 

operation using "original"  dollars.  Therefore the value of the tax credit is "ITC/(1+NR)".  

Depreciation is expensed for tax purposes during each year of the  tax life of the plant.  

With the double-declining balance method (DDB) of computing depreciation, the 

depreciation (DEP) of the  plant for each capital dollar spent in year "t" is: 

DEP(t)=2/TL*(1-2/TL)**(t-1) 

 

Depreciation, under existing laws, is a current dollar phenomena which does not account 

for inflation.  Therefore the net present value of the energy is calculated with the nominal 

rate of  return.  If the depreciation life is adequately long to neglect  end year effects, then 

the net present value of depreciation  expenses is: 

(2/TL)/(NR+2/TL) 

 

Because depreciation is a benefit (negative cost) based on the  total plant before 

investment tax credits, it shows up as an  additional negative term in the capital cost 

modifiers of "CCR:" 

(1-ITC/(1+NR)-TR*(TL/2)/(TL/2+NR)) 

 

The CCR calculation is naturally appropriate to business decisions  but its use in the 

residential sector may appear artificial.   When the CCR calculation is used for the 

residential sector, TL and C are set to zero because the residential sector can neither  

write off depreciation expenses nor make adjustments for extended  construction times.  

This makes the calculation exactly correct for housing and any long-term investments.   

Concerns can occur when the life of the loan is much shorter than the physical life 

assumed in the CCR calculation.  When short-term loans (2-5 years) are used, the home 

owner still  implicitly discounts the equity portion of equipment and  depreciates the 

                                                 
10Smith, Gerald W., Engineering Economy: Analysis of  Capital Expenditures, Iowa University Press, Ames, Iowa 1973. 
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equipment over its expected life time.   (Consumers do not expect a car or stove to fail as 

soon as the loan is paid-off; they write-off its value over its actual life time.)  Therefore, 

the CCR calculation can only be incorrect for the debt portion of the investment.  When a 

life cycle cost analysis of the actual cash flows is performed, which levelizes the short-

term interest payments with the life of the equipment, the results are essentially identical 

to those  obtained with the CCR calculation here. 
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1 MS 0899  Technical Library, 9536 (electronic copy) 
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