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Abstract

Quantitative measures are proposed for characterizing the complexity of material
models used in computational mechanics. The algorithms for evaluating these metrics
operate on the mathematical equations in the model rather than a code implemen-
tation and are different from software complexity measures. The metrics do not rely
on a physical understanding of the model, using instead only a formal statement of
the equations. A new algorithm detects the dependencies, whether explicit or im-
plicit, between all the variables. The resulting pattern of dependencies is expressed in
a set of pathways, each of which represents a chain of dependence between the vari-
ables. These pathways provide the raw data used in the metrics, which correlate with
the expected ease of understanding, coding, and applying the model. Usage of the
ComplexityMetrics code is described, with examples.
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1 Introduction

Excessive complexity of a material model in computational mechanics can add to the costs of
developing and maintaining the model throughout its lifecycle. It can also add to the costs
of evaluating parameters and applying the model, as well as hindering the understanding
of how it works. However, there is no widely accepted definition of what complexity is
for a material model, let alone an accepted set of metrics for measuring it. As a result,
most people view complexity subjectively: “I know it when I see it.” Persons who have a
deep understanding of the scientific meaning of a model naturally tend to see its underlying
simplicity. Yet others who may need to code, apply, or maintain the same model may view it
as more complex. The purpose of the work described in this report is to propose objective,
quantitative measures for complexity of a model that reduce the need for subjectivity in
assessments of how complex a model is.

By the time a model under development is implemented in a code, it may be too late
to significantly influence its complexity. Therefore, the metrics proposed here were designed
to operate on the mathematical equations that comprise the model, not on software. As
such, these metrics are fundamentally different from the many software complexity metrics
that have been proposed [1]. For the same reason, evaluation of the metrics does not require
number crunching: the model is never actually applied to any data; only a formal statement
of the equations is used. This makes the present work different from the use of statistical
techniques that apply a model many times to determine the sensitivity of outputs to inputs
[2].

The metrics proposed here attempt to quantify three key aspects of complexity:

• Sequentiality. This measures whether the outputs can be solved for one-by-one, or
whether they need to be solved for simultaneously. The need to solve sets of equations
simultaneously, particularly if the equations are nonlinear, is one aspect of complexity.

• Formal complexity. This metric simply counts the total number of symbols that are
used in the equations of the model, other than standard mathematical symbols and
constants. Formal complexity correlates with our subjective first impression of the
complexity of a model when reading its documentation for the first time. However,
it is incomplete because it says nothing about the hidden interdependencies between
variables; hence the need for the additional metrics proposed here.

• Full complexity. This metric augments the formal complexity by including a measure
of indirect as well as direct dependencies between variables. It includes, for example,
the possibility that input variable x affects output variable y because it is used in many
intermediate quantities that determine y through convoluted mathematical interrela-
tionships. The heart of this metric is a new algorithm that uncovers all of pathways
from each input variable and material parameter to each output, representing a chain
of intermediate dependencies. Full complexity attempts to measure the level of intel-
lectual effort needed to fully understand how all the variables in the model interact
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with each other.

• Indirectness. This measures the extent to which the dependencies between variables
in the model are hidden from plain view in the formal statement of the model. A
high value of indirectness means that the dependence between inputs and outputs can
follow multiple pathways through different equations and intermediate variables. A
high value therefore suggests that the model may be harder to understand and debug
than if the dependencies were stated more explicitly.

The metrics proposed here use only a formal statement of the model in terms of symbols,
without including any aspect of its scientific content. For scientists and engineers who
attempt to comprehend a model by developing an intuitive understanding of the physical
meaning of each variable, this requires changing gears. For example, persons who are fluent in
the usage of index notation might question why the symbol ui should be treated as different
from uj for purposes of the complexity metrics even though they mean the same thing,
that is, the components of the vector u. However, relying completely formal mathematical
statements helps ensure objectivity and uniformity of the complexity metrics.

In addition to defining the algorithms that act on a formal model to determine the
metrics, this report also documents the ComplexityMetrics code that evaluates them for
specific models. Several examples illustrate the result that a model with three inputs and
three outputs can have widely different complexity metrics, depending on the specifics of
the equations. To illustrate the application of the method to a real-world material model,
the final example determines the metrics for the Mooney-Rivlin rubber elasticity model as
documented in the LAME material model library [3].
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2 Definition of the model

The methods described below for determining the complexity of a model use the number
of occurrences of the various symbols used in the model, rather than its scientific content.
In each equation in the model, we count up the number of times each symbol appears.
These sums are recorded in the formal dependency matrix, to be defined below. This matrix
contains all the information that is used in evaluating the complexity of the model.

2.1 Model variables

It is assumed that the model can be expressed in the form of E equations:

0 = e1(y1, . . . , yNy ;x1, . . . , xNx ; p1, . . . , pNp),

0 = e2(y1, . . . , yNy ;x1, . . . , xNx ; p1, . . . , pNp),

...

0 = eE(y1, . . . , yNy ;x1, . . . , xNx ; p1, . . . , pNp)

where y1, . . . are the outputs, x1, . . . are the inputs, and p1, . . . are the parameters. Inter-
mediate quantitites, that is, variables that are computed internally within the model but not
saved after the each evaluation of the model, are treated as outputs. It is helpful to treat
all the outputs, inputs, and parameters collectively as the N = Ny + Nx + Np variables vi
expressed as a row vector:

〈v〉 = 〈y1 . . . yNy x1 . . . xNx p1 . . . pNp〉.

Thus the model may be written as

0 = e1(v1, . . . , vN),

0 = e2(v1, . . . , vN),
...

0 = e2(v1, . . . , vN).

It is assumed that E ≥ Ny. In most properly formulated models, E = Ny, but the case of
inequality is included here for generality. The case E < Ny is excluded because there is little
hope of determining the outputs from a smaller number of equations.
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2.2 Formal dependency matrix

Form the E ×N formal dependency matrix D defined by

Dij = number of times that the symbol vj appears in equation ei.

For example, if the model has E = 1 and

e(y, x, p) = 5y + x+ x sin px,

then
〈v〉 = 〈y x p〉, D =

[
1 3 1

]
.

Dij depends on the way the model is written, not on the true meanings of the equations. If,
in the above example, the model were rewritten as

e(y, x, p) = 5y + x/2 + x/2 + x sin px

then we would have
D =

[
1 4 1

]
.

Another example to emphasize that we are concerned only with symbols, not scientific con-
tent, is given by

e(y, xi, pi) = −y +
10∑
i=1

pixi,

for which
D =

[
1 1 1

]
.

In this example, it does not matter that there are really ten values of x and of p that are
involved. For purposes of studying the complexity of the model, only the symbols xi and pi
are included.

2.3 Conditional statements

A special case arises when a model contains cases or branches. For example, consider the
model given by

y1 =


x1 if x3 ≤ 6,
x2 +

√
x1 if 6 < x3 ≤ 8,

x1 + x2 + 1/x3 otherwise.
(1)

In this case we treat the expressions to the right of each “if” as outputs whose value is either
0 or 1. This creates new outputs that are included in the formal dependency matrix. The
above model is rewritten as

y1 = x1y2 + (x2 +
√
x1)y3 + (x1 + x2 + 1/x3)(1− y2 − y3)

y2 = eval{x3 ≤ 6}
y3 = eval{6 < x3 ≤ 8}
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where the notation eval{E} signifies the value of the Boolean expression E , either 0 or 1.
The formal dependency matrix is then written

D =

 1 2 2 3 2 1
0 1 0 0 0 1
0 0 1 0 0 1

 .
where the vector of variables is

〈v〉 = 〈y1 y2 y3 x1 x2 x3〉.

Each case in (1) adds one equation and one output, resulting in an increase in all of the
complexity metrics.

2.4 Functions

Another special case occurs if the model contains references to functions. For purposes of
constructing the formal dependency matrix, the symbol representing the function is ignored,
as though it were a numerical constant. If the function is not considered to be part of the
model for purposes of the complexity metrics, then no other action is necessary (for example
if it a standard function like sinx).

If, on the other hand, the function is considered to be part of the material model, its
definition is included in the D matrix. The symbol representing the function is the treated
as an output. Its dummy arguments are treated as inputs. For example, the model defined
by

y = 1/x+ f(x)

f(q) = q5 + q

has variables
〈v〉 = 〈y f x q〉

and formal dependency matrix

D =

[
1 1 2 0
0 1 0 3

]
.

2.5 Internal state variables

Some models include quantities that are not part of the useful output but are computed
internally and need to be saved for the next time the model is evaluated for the same element.
For example, a model might evolve the entropy over time, even though this quantity does
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not appear in the balance of linear momentum or the balance of energy. This type of
variable, which is called an internal state variable, is treated as both an input variable and
an output variable, representing the old and new values respectively. This is different from
an intermediate value that is not saved between time steps, which is treated only as an
output variable.

For example, consider the following model with one output y and one input x (exclusive
of the internal state variable), and parameter ∆t. The model has an internal state variable
s. Let s− denote the value of s for the element in previous time step:

y = s2

s = s− + x∆t.

The variables are
〈v〉 = 〈y s x s− ∆t〉

and the formal depency matrix is

D =

[
1 1 0 0 0
0 1 0 1 1

]
.

2.6 Associativity, volume, and population

Define the operator B by

Bu =

{
1, if u > 0,

0, otherwise.

By the obvious extension to matrices, B is applied to each element, thus

B
[

5 1
0 2

]
=

[
1 1
0 1

]
.

Define the associativity matrix B of the model by

B = BD.

The associativity matrix is not used in the complexity metrics defined below, but it is
mentioned here because it has an interesting similarity to the analogous quantity used in
graph theory. In fact, a material model can be represented as a graph with the variables as
vertices and the submodels (to be defined below) as edges. However, these concepts are not
needed in the present work.

Define the volume of a matrix A by

VA =
∑
i

∑
j

Aij
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where the sums are taken over all the rows and columns. The volume of a matrix is the sum
of all the elements in the matrix. Define the population of a matrix A by

PA =
∑
i

∑
j

BAij

where the sums are taken over all the rows and columns. The population of a matrix is the
number of positive elements in the matrix.
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3 Units of complexity

Some of the complexity measures discussed below are expressed in terms of complexity units
(CU). One CU is defined to be the incremental increase in complexity of a model due to the
inclusion of one additional input variable or parameter to one equation, provided that this
change affects only one output parameter. For example, changing the model from

0 = e1(y1, x1, p1),

0 = e2(y2, x2, p2)

to

0 = e1(y1, x1, p1, p3),

0 = e2(y2, x2, p2)

increases the complexity measures (to be defined below) by 1 CU.
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4 Finding the dependencies between variables

This section describes an algorithm for determining the following:

• a solution strategy that detects a sequence of submodels (sets of equations that can
be solved by themselves from the inputs, the parameters, and the results of previously
solved submodels);

• the pathways (sequences of intermediate dependencies between variables).

4.1 Dependence algorithm

The algorithm described here determines all the submodels and pathways. Let Cnm denote the
set of all combinations of the integers 1, 2, . . . , n taken m ways. For example, the elements
of C4

2 are
{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}.

The algorithm below divides the solution of the complete model (that is, determining all
the outputs from given values of the inputs and parameters) into steps. Each step solves a
submodel within D. A submodel K is a subset of the model comprised of K equations each
of which depends on the same L outputs, L ≤ K. As each submodel is identified, all of
its equations are thereafter considered to be solved , and all the outputs in those equations
are considered to be solved-for . The algorithm, in search of the easiest route to solving the
entire set of equations, first tries to find submodels with one unsolved equation (and possibly
additional previously solved equations). It then considers this unsolved equation thereafter
to be solved, and all the outputs it contains to be solved-for. When the algorithm can’t find
any more submodels with one unsolved equation, it searches for those with two, then three,
and so on.

As it searches for submodels, the algorithm preferentially searches for those with the
fewest numbers of outputs. In general, a submodel includes some equations that have pre-
viously been solved and always contains one or more that have not. Also in general, the
variables in a submodel contain some outputs that have been solved-for and some that have
not. The number of equations that are solved in submodel number U is denotedGU , GU ≤ K.
This number is important in some of the complexity metrics defined below, because a model
all of whose submodels have GU = 1 has a great advantage in simplicity.

The significance of this strategy of identifying the fewest number of unsolved equations
that can be solved in each step is that it avoids unfairly assigning high complexity to portions
of the model that can be solved individually in a simple way. The outputs that are solved-for
in a submodel will never have additional complexity attributed to them by later submodels,
even if the outputs appear in those later submodels.

A pathway is a row vector R = 〈r1 r2 r3 . . . rδ〉 that represents the chain of
intermediate dependencies by which variable r1 depends on rδ, where δ is the length of the
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pathway. The meaning of the pathway may be stated as follows: “Variable r1 depends on
variable r2 which depends on variable r3 . . . which depends on variable rδ.”

A separate row vector 〈U1 U2 . . . Uδ−1 0〉 contains the submodel numbers through
which rn depends on rn+1. By convention, the starting variable in a pathway is numbered
highest, that is, output r1 depends through the chain of variables on rδ.

A summary of the notation that appears in the dependency algorithm is as follows:

• K is a submodel.

• K is the number of equations in a submodel.

• U is a submodel number.

• L is the number of outputs in a submodel.

• C is the set of outputs in a submodel.

• GU is the number of equations that are solved by submodel number U .

• Rn is pathway n, a row vector containing a chain of dependencies.

• Un is a row vector containing the submodels in pathway n.

• P is the total number of pathways.

• δn is the length of pathway number n (number of elements in Rn).

• T is the set of variables that appear in a submodel.

The details of the dependency algorithm are given in Algorithm 1. An example of a full set
of pathways for a model with two inputs and two outputs is illustrated in Figure 1 in the
form of a directed graph.

4.2 Depth of pathways

For each pathway n = 1, 2, . . . , P , define the depth dn by

dn =
∑

1≤i≤δn

GUN

To interpret this definition, recall that GU is the number of equations that are solved in
submodel number U . dn is therefore the total number of equations that need to be solved to
get from the start of the chain to the end, along this pathway. In general, the same variables
can depend on each other through multiple pathways, some shorter or longer than others
(Figure 1).
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𝑥2 

𝑦2 

𝑦1 

𝑥1 

Model 

E1:     𝑦1 = 𝑥1 + 4    

E2:     𝑦2 = 𝑥1𝑥2 + 3𝑦1  

𝑈1 

𝑈2 

𝑈2 

𝑈2 

𝑈2 

Submodel 𝑈1:   E1 
Submodel 𝑈2:   E1 + E2 

𝑈2 

Figure 1. Full set of pathways in a model with two equa-
tions. Output y2 depends both directly (purple pathway) and
indirectly (green pathway) on input x1. It also depends on
y1 (blue pathway) although y1 does not depend on y2. The
green pathway has depth 2; all others have depth 1.
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Algorithm 1 Find the dependencies of each output on all other variables.

1: procedure FindDependencies

2: . Initialize.
3: All E equations are unsolved.
4: All Ny outputs are unsolved-for.
5: U ← 0. . Submodel counter

6: . Define an initial pathway for each variable.
7: P ← N . Pathway counter
8: for each n← 1, N do
9: Rn ← n. . Pathway variables

10: Un ← 0. . Pathway submodels
11: δn ← 1. . Pathway length
12: end for

13: . Find all submodels, starting with those with the fewest
14: . unsolved equations.
15: for each G← 1, E do

16: . Find all submodels with G unsolved equations.
17: . L is the number of outputs in a submodel.
18: for each L← 1, Ny do

19: . Find sets of equations K with the same L outputs
20: . whether solved-for or not.
21: for each C ∈ CNy

L do
22: K ← set of equations whose outputs are all in C.
23: G′ ← number of unsolved equations in K.

24: . Only want submodels with G unsolved equations.
25: if G′ = G then
26: K ← number of equations in K.

27: . Need at least as many equations as outputs.
28: if K ≥ L then . Solvable submodel found
29: U ← U + 1. . Submodel counter
30: KU ← K.
31: GU ← G. . Number of equations solved in K

18



Algorithm 2 Dependency algorithm, ctd.

32: for each unsolved-for output j ∈ C do
33: . Create new pathways through all variables
34: . that j depends on.
35: CreatePathways(j,K)
36: Output j is now solved for.
37: end for
38: for each unsolved equation in i ∈ K do
39: Equation i is now solved.
40: end for
41: end if
42: end if
43: end for
44: end for
45: end for
46: end procedure

Algorithm 3 Add pathways as each output becomes solved-for.

1: procedure CreatePathways(j,K)
2: T ← set of all variables in K.

3: . Create a new pathway to j from each existing pathway that ends
4: . in a variable (other than j) in submodel K.
5: for each t ∈ T do
6: for each n← 1, P do
7: if LRn = t then . Leftmost element of Rn.
8: if t 6= j then
9: P ← P + 1

10: RP ← j‖Rn . New pathway is j appended by Rn.
11: UP ← U‖Un. . Submodels in new pathway.
12: δP ← δn + 1. . Length of new pathway.
13: end if
14: end if
15: end for
16: end for
17: end procedure
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Higher values of depth tend to increase the complexity of the model, because they indicate
that dependencies follow tortuous paths that involve interrelation of multiple equations in
ways that may not be apparent to a person attempting to understand the model. Units of
depth are CU.
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5 Complexity metrics

This section describes the proposed complexity metrics, making use of the dependencies
between variables determined by the algorithm described above.

5.1 Sequentiality

Recall that Gu is the number of equations that are solved in submodel u. Define the sequen-
tiality of the model σ by

σ = max
1≤u≤U

{Gu}

where U is the total number of submodels. If σ = 1, the model is ideally sequential , meaning
that the outputs can be solved for one at a time. Otherwise, σ represents the largest
number of equations that must be solved for simultaneously. Larger values of σ imply greater
complexity because of the need to solve multiple equations simultaneously. Sequentiality is
a dimensionless measure.

5.2 Formal complexity

Define the formal complexity φ0 by
φ0 = VD.

φ0 is a measure of the total number of times all the variables appear in the formal statement
of the model. It does not take into account the dependencies that are not stated explicitly
in the formal statement. It represents the complexity of the model as it would apply to
a person with a strong understanding of the physics represented by the model. To such a
person, the indirect dependencies of the outputs on the other variables would not be essential
to understanding how the model works. The units of formal complexity are CU.

5.3 Full complexity

Define the full complexity φ1 by

φ1 = φ0 +

( ∑
1≤n≤P

dn +Ny − PD

)
. (2)

φ1 is a measure of the total number of dependencies of the outputs on the inputs and param-
eters, weighted by the depth of the pathways that characterize the individual dependencies.
The full complexity can greatly exceed the formal complexity because, for a complex model,
the number of pathways (and therefore the sum of their depths) can be much greater than
the number of symbols in the formal statement of the model. The last two terms in (2),
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Ny −PD, appear as normalization terms such that φ1 = φ0 in the simplest possible models
(see Example 1 below).

The full complexity is a measure of the total number of “pieces of information” (variables
and the relationships between them) that are present, even if these relationships are not
stated explicitly in the formal statement of the model. This metric therefore correlates with
the “cognitive load” placed on a person, such as a professional programmer with no training
in the physical sciences, who approaches the task of learning the model without the benefit
of physical understanding. The units of full complexity are CU.

5.4 Indirectness

Define the indirectness of the model by

ω =
φ1

φ0

.

This is a measure of the extent to which dependencies between variables are hidden, that is,
not obvious from the formal model. A large value of ω indicates that changing the value of
one input could result in changes in the outputs that are not obvious (except possibly to an
expert in the physics) on the basis of the formal statement of the model. Indirectness is a
dimensionless measure.

If ω = 1, the model is ideally direct . This condition is met by model of the form

0 = e1(y1;x1; p1),

0 = e2(y2;x2; p2),
...

0 = eNy(yNy ;xNy ; pNy).

A model can sometimes be restated in a way that reduces indirectness by “in-lining,”
that is, writing out expressions explicitly to avoid the use of intermediate variables. For
example, the model in Figure 1 can be rewritten as shown in Figure 2, resulting in fewer
pathways. This reduces the indirectness from 1.33 to 1.00.
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𝑥2 

𝑦2 

𝑦1 

𝑥1 

Model 

E1:     𝑦1 = 𝑥1 + 4    

E2:     𝑦2 = 𝑥1𝑥2 + 3 𝑥1 + 4 

𝑈1 
𝑈2 

𝑈2 

Submodel 𝑈1:   E1 
Submodel 𝑈2:   E2 

Figure 2. Rewriting the model in Figure 1 to avoid using y1

as an intermediate variable reduces the number of pathways
and the indirectness.
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6 ComplexityMetrics code usage

The algorithms and complexity metrics described above have been implemented in the
ComplexityMetrics code. The following is a summary of how to build and use the code.

6.1 Building the code

To build the code on a Linux system with an Intel Fortran 90 compiler type the following
from a Linux command line:

ifort -o ComplexityMetrics ComplexityMetrics.f90

6.2 Running the code

To run the code, type the following from a Linux command line:

ComplexityMetrics [file.in]

where file.in is the text input file. The default input file name is complex.in.

6.3 Code input

The contents of the input file file.in are as follows. Keywords start in column 1. Numerical
values can be entered in any format and start on the line below the keyword. All numerical
values are non-negative integers.

number_of_outputs

Ny

where Ny= Ny.

number_of_inputs

Nx

where Nx= Nx.
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number_of_parameters

Np

where Np= Np.

number_of_equations

E

where E= E.

outputs

Y1

Y2

...

YNy

where Y1,... are Ny character strings identifying the outputs, one per line.

inputs

X1

X2

...

XNx

where X1,... are Nx character strings identifying the inputs, one per line.

parameters

P1

P2

...

PNp

where P1,... are Np character strings identifying the inputs, one per line.

equations

ename1

ename2

...

enameE
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where ename1,... are E character strings identifying the equations, one per line.

formal_model

D11 D12 ... D1N

D21 D22 ... D2N

...

DE1 DE2 ... DEN

where D11,... are the E ×N elements of the formal dependency matrix D, where E is the
number of equations in the model and N = Ny +Nx +Np.

6.4 Code output

Code output is written to the standard output file. The output includes the following:

• A list of all the equations in each submodel, indicating which equations are solved by
the submodel and which are not.

• A list of all the pathways to each output. For each element of the pathway, the list
shows the number of the submodel that created it. The depth of each pathway is also
given.

• The complexity metrics.
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7 Examples

7.1 Example 1

Consider the following model with 3 inputs, 3 outputs, and 1 parameter:

0 = Y1 + 5X1 + P1

0 = Y2 + 2X2

0 = Y3 −
√
X3

The variables are

〈Y1 Y2 Y3 X1 X2 X3 P1〉

The code input is as follows:

number_of_outputs

3

outputs

Y1

Y2

Y3

number_of_inputs

3

inputs

X1

X2

X3

number_of_parameters

1

parameters

P1

number_of_equations

3

equations

E1

E2

E3

formal_model

1 0 0 1 0 0 1

0 1 0 0 1 0 0

0 0 1 0 0 1 0

The code output is as follows:
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List of the equations in each submodel:

Submodel 1:

E1 is solved by this submodel.

Submodel 2:

E2 is solved by this submodel.

Submodel 3:

E3 is solved by this submodel.

Paths to output 1 Y1

Y1 depends through submodel 1 on X1 (depth= 1)

Y1 depends through submodel 1 on P1 (depth= 1)

Paths to output 2 Y2

Y2 depends through submodel 2 on X2 (depth= 1)

Paths to output 3 Y3

Y3 depends through submodel 3 on X3 (depth= 1)

Net complexity measures:

Sequentiality : 1

Formal model complexity : 7

Full model complexity : 7

Indirectness : 1.00

The model in this example, in spite of having multiple inputs and outputs, is both ideally
sequential and ideally direct. This indicates that there are no hidden dependencies, making it
easy to debug any problems that may occur in applications. For example, if a finite element
has a bad value of Y3, we don’t have to look very far to find the culprit: it has to be X3.
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7.2 Example 2

Compare the following model with Example 1:

0 = Y1 + 5X1/Y3 + Y3 + P1

0 = Y2 + 2X2 expY1

0 = Y3 −
√
X3

The code input is the same as in Example 7.1 except as follows:

formal_model

1 0 2 1 0 0 1

1 1 0 0 1 0 0

0 0 1 0 0 1 0

The code output is as follows:

List of the equations in each submodel:

Submodel 1:

E3 is solved by this submodel.

Submodel 2:

E1 is solved by this submodel.

E3 is part of this submodel but was previously solved.

Submodel 3:

E1 is part of this submodel but was previously solved.

E2 is solved by this submodel.

E3 is part of this submodel but was previously solved.

Paths to output 1 Y1

Y1 depends through submodel 2 on Y3 (depth= 1)

Y1 depends through submodel 2 on Y3

which depends through submodel 1 on X3 (depth= 2)

Y1 depends through submodel 2 on X1 (depth= 1)

Y1 depends through submodel 2 on P1 (depth= 1)

Paths to output 2 Y2

Y2 depends through submodel 3 on Y1 (depth= 1)

Y2 depends through submodel 3 on Y1

which depends through submodel 2 on Y3 (depth= 2)

Y2 depends through submodel 3 on Y1

which depends through submodel 2 on Y3

which depends through submodel 1 on X3 (depth= 3)

Y2 depends through submodel 3 on Y1

which depends through submodel 2 on X1 (depth= 2)

Y2 depends through submodel 3 on Y1
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which depends through submodel 2 on P1 (depth= 2)

Y2 depends through submodel 3 on X2 (depth= 1)

Paths to output 3 Y3

Y3 depends through submodel 1 on X3 (depth= 1)

Net complexity measures:

Sequentiality : 1

Formal model complexity : 10

Full model complexity : 21

Indirectness : 2.10

From the list of submodels, it can be seen that the algorithm recognizes that it can solve
for Y3 first (submodel 1), then use the result to solve for Y1 (submodel 2), then solve for Y2

(submodel 3). The sequentiality is still ideal (σ = 1) because each submodel solves only one
equation, even though submodels 2 and 3 contain multiple equations.

The pathway from X3 to Y2 has depth δ = 3 because the dependence goes through
intermediate steps. Someone attempting to understand the dependence of Y2 on X3 would
have to “dig deeper” into the model to reveal it than if the dependence were explicit, hence
the term depth.
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7.3 Example 3

Now consider a more “dense” model using the same variables as in Examples 1 and 2:

0 = Y1Y2 + 5X1/Y3 + Y3 +X2X3 + P1

0 = Y2 + 2X2 expY1 − Y3

0 = Y1Y3 −
√
X3

The code input is the same as in Example 7.1 except as follows:

formal_model

1 1 2 1 1 1 1

1 1 1 0 1 0 0

1 0 1 0 0 1 0

The code output is as follows:

List of the equations in each submodel:

Submodel 1:

E1 is solved by this submodel.

E2 is solved by this submodel.

E3 is solved by this submodel.

Paths to output 1 Y1

Y1 depends through submodel 1 on Y2 (depth= 3)

Y1 depends through submodel 1 on Y3 (depth= 3)

Y1 depends through submodel 1 on X1 (depth= 3)

Y1 depends through submodel 1 on X2 (depth= 3)

Y1 depends through submodel 1 on X3 (depth= 3)

Y1 depends through submodel 1 on P1 (depth= 3)

Paths to output 2 Y2

Y2 depends through submodel 1 on Y1 (depth= 3)

Y2 depends through submodel 1 on Y3 (depth= 3)

Y2 depends through submodel 1 on X1 (depth= 3)

Y2 depends through submodel 1 on X2 (depth= 3)

Y2 depends through submodel 1 on X3 (depth= 3)

Y2 depends through submodel 1 on P1 (depth= 3)

Paths to output 3 Y3

Y3 depends through submodel 1 on Y1 (depth= 3)

Y3 depends through submodel 1 on Y2 (depth= 3)

Y3 depends through submodel 1 on X1 (depth= 3)

Y3 depends through submodel 1 on X2 (depth= 3)

Y3 depends through submodel 1 on X3 (depth= 3)

Y3 depends through submodel 1 on P1 (depth= 3)
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Net complexity measures:

Sequentiality : 3

Formal model complexity : 15

Full model complexity : 58

Indirectness : 3.87

There is only one submodel, because all three equations must be solved simultaneously. The
model is therefore not ideally sequential (σ > 1). As shown by the pathways, all the outputs
depend on all the inputs, on the parameter, and the other outputs. The fairly large value of
indirectness in this example reflects the fact that in this model, nearly “everything depends
on everything,” so we anticipate difficulties in finding the source of any bad values that might
occur in a finite element simulation.
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7.4 Example 4

Using the same variables as in the previous examples, consider a model that contains multiple
branches:

0 = Y1 +X1 + P1

0 = Y2 +X2

0 =

{
Y1 + Y3 if X3 > 0,
Y2 + Y3 otherwise.

To account for the condition, define an intermediate variable I1 by

I1 = eval{X3 > 0}

then restate the model as

0 = Y1 +X1 + P1

0 = Y2 +X2

0 = I1 − eval{X3 > 0}
0 = I1(Y1 + Y3) + (1− I1)(Y2 + Y3).

The variables are now
〈Y1 Y2 Y3 I1 X1 X2 X3 P1〉

where I1, since it is an unknown until it is computed, is treated as an output.

The code input is as follows:

number_of_outputs

4

outputs

Y1

Y2

Y3

I1

number_of_inputs

3

inputs

X1

X2

X3

number_of_parameters

1

parameters

P1

number_of_equations

4

equations
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E1

E2

E3

E4

formal_model

1 0 0 0 1 0 0 1

0 1 0 0 0 1 0 0

0 0 0 1 0 0 1 0

1 1 2 2 0 0 0 0

The code output is as follows:

List of the equations in each submodel:

Submodel 1:

E1 is solved by this submodel.

Submodel 2:

E2 is solved by this submodel.

Submodel 3:

E3 is solved by this submodel.

Submodel 4:

E1 is part of this submodel but was previously solved.

E2 is part of this submodel but was previously solved.

E3 is part of this submodel but was previously solved.

E4 is solved by this submodel.

Paths to output 1 Y1

Y1 depends through submodel 1 on X1 (depth= 1)

Y1 depends through submodel 1 on P1 (depth= 1)

Paths to output 2 Y2

Y2 depends through submodel 2 on X2 (depth= 1)

Paths to output 3 Y3

Y3 depends through submodel 4 on Y1 (depth= 1)

Y3 depends through submodel 4 on Y1

which depends through submodel 1 on X1 (depth= 2)

Y3 depends through submodel 4 on Y1

which depends through submodel 1 on P1 (depth= 2)

Y3 depends through submodel 4 on Y2 (depth= 1)

Y3 depends through submodel 4 on Y2

which depends through submodel 2 on X2 (depth= 2)

Y3 depends through submodel 4 on I1 (depth= 1)

Y3 depends through submodel 4 on I1

which depends through submodel 3 on X3 (depth= 2)

Paths to output 4 I1

I1 depends through submodel 3 on X3 (depth= 1)
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Net complexity measures:

Sequentiality : 1

Formal model complexity : 13

Full model complexity : 21

Indirectness : 1.62

The use of conditional statements in a model tends to increases the complexity metrics.
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7.5 Example 5: Mooney-Rivlin model

The following is a statement of the Mooney-Rivlin model for rubber elasticity taken verbatim
from the LAME material library documentation [3]:

U = C10(Ī1 − 3) + C01(Ī2 − 3) +K(Jm ln Jm − Jm)[
B̄
]

=
[
F̄
] [
F̄
]T[

F̄
]

= J−1/3 [F ]

J = det [F ]

Ī1 = [I] :
[
B̄
]

Ī2 =
1

2

(
Ī2
1 − [I] : (

[
B̄
] [
B̄
]
)
)

Jm = J/Jth

[F ] = [Fm] [Fth]

[Fth] = J
1/3
th [I]

[σ′] =
2

Jm
dev

[
(C10 + Ī1C01)

[
B̄
]
− C01

[
B̄
] [
B̄
] ]

p = K ln Jm

The inputs are:
[F ], Jth.

The parameters are:
C10, C01, K.

The outputs, including intermediate quantities, are:

U, [σ′], p, Ī1, Ī2, [F̄ ], [Fm], [Fth], J, Jm, [B̄].

The symbols [I], dev, and det are considered to be standard tools of algebra and are not
treated as variables. The full list of variables is as follows:

〈v〉 = 〈U [σ′] p Ī1 Ī2 [F̄ ] [Fm] [Fth] J Jm [B̄] [F ] Jth C10 C01 K〉.

The ComplexityMetrics input is as follows:

number_of_outputs

11

outputs

U

SigmaDev

p
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Ibar1

Ibar2

Fbar

Fm

Fth

J

Jm

Bbar

number_of_inputs

2

inputs

F

Jth

number_of_parameters

3

parameters

C10

C01

K

number_of_equations

11

equations

E1

E2

E3

E4

E5

E6

E7

E8

E9

E10

E11

* the following line is a comment to help arrange the formal_model:

* U SigmaDev p Ibar1 Ibar2 Fbar Fm Fth J Jm Bbar F Jth C10 C01 K

formal_model

1 0 0 1 1 0 0 0 0 3 0 0 0 1 1 1

0 0 0 0 0 2 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 2 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0

0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
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0 1 0 1 0 0 0 0 0 1 3 0 0 1 2 0

0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1

The code output is as follows (only the pathways to U are included here):

List of the equations in each submodel:

Submodel 1:

E9 is solved by this submodel.

Submodel 2:

E4 is solved by this submodel.

Submodel 3:

E3 is solved by this submodel.

E4 is part of this submodel but was previously solved.

Submodel 4:

E4 is part of this submodel but was previously solved.

E7 is solved by this submodel.

Submodel 5:

E4 is part of this submodel but was previously solved.

E7 is part of this submodel but was previously solved.

E11 is solved by this submodel.

Submodel 6:

E2 is solved by this submodel.

E3 is part of this submodel but was previously solved.

E4 is part of this submodel but was previously solved.

Submodel 7:

E2 is part of this submodel but was previously solved.

E3 is part of this submodel but was previously solved.

E4 is part of this submodel but was previously solved.

E5 is solved by this submodel.

Submodel 8:

E3 is part of this submodel but was previously solved.

E4 is part of this submodel but was previously solved.

E8 is solved by this submodel.

E9 is part of this submodel but was previously solved.

Submodel 9:

E2 is part of this submodel but was previously solved.

E3 is part of this submodel but was previously solved.

E4 is part of this submodel but was previously solved.

E5 is part of this submodel but was previously solved.

E6 is solved by this submodel.

Submodel 10:

E2 is part of this submodel but was previously solved.

E3 is part of this submodel but was previously solved.
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E4 is part of this submodel but was previously solved.

E5 is part of this submodel but was previously solved.

E7 is part of this submodel but was previously solved.

E10 is solved by this submodel.

Submodel 11:

E1 is solved by this submodel.

E2 is part of this submodel but was previously solved.

E3 is part of this submodel but was previously solved.

E4 is part of this submodel but was previously solved.

E5 is part of this submodel but was previously solved.

E6 is part of this submodel but was previously solved.

E7 is part of this submodel but was previously solved.

Paths to output 1 U

U depends through submodel 11 on Ibar1 (depth= 1)

U depends through submodel 11 on Ibar1

which depends through submodel 7 on Bbar (depth= 2)

U depends through submodel 11 on Ibar1

which depends through submodel 7 on Bbar

which depends through submodel 6 on Fbar (depth= 3)

U depends through submodel 11 on Ibar1

which depends through submodel 7 on Bbar

which depends through submodel 6 on Fbar

which depends through submodel 3 on J (depth= 4)

U depends through submodel 11 on Ibar1

which depends through submodel 7 on Bbar

which depends through submodel 6 on Fbar

which depends through submodel 3 on J

which depends through submodel 2 on F (depth= 5)

U depends through submodel 11 on Ibar1

which depends through submodel 7 on Bbar

which depends through submodel 6 on Fbar

which depends through submodel 3 on F (depth= 4)

U depends through submodel 11 on Ibar2 (depth= 1)

U depends through submodel 11 on Ibar2

which depends through submodel 9 on Ibar1 (depth= 2)

U depends through submodel 11 on Ibar2

which depends through submodel 9 on Ibar1

which depends through submodel 7 on Bbar (depth= 3)

U depends through submodel 11 on Ibar2

which depends through submodel 9 on Ibar1

which depends through submodel 7 on Bbar

which depends through submodel 6 on Fbar (depth= 4)

U depends through submodel 11 on Ibar2

which depends through submodel 9 on Ibar1
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which depends through submodel 7 on Bbar

which depends through submodel 6 on Fbar

which depends through submodel 3 on J (depth= 5)

U depends through submodel 11 on Ibar2

which depends through submodel 9 on Ibar1

which depends through submodel 7 on Bbar

which depends through submodel 6 on Fbar

which depends through submodel 3 on J

which depends through submodel 2 on F (depth= 6)

U depends through submodel 11 on Ibar2

which depends through submodel 9 on Ibar1

which depends through submodel 7 on Bbar

which depends through submodel 6 on Fbar

which depends through submodel 3 on F (depth= 5)

U depends through submodel 11 on Ibar2

which depends through submodel 9 on Bbar (depth= 2)

U depends through submodel 11 on Ibar2

which depends through submodel 9 on Bbar

which depends through submodel 6 on Fbar (depth= 3)

U depends through submodel 11 on Ibar2

which depends through submodel 9 on Bbar

which depends through submodel 6 on Fbar

which depends through submodel 3 on J (depth= 4)

U depends through submodel 11 on Ibar2

which depends through submodel 9 on Bbar

which depends through submodel 6 on Fbar

which depends through submodel 3 on J

which depends through submodel 2 on F (depth= 5)

U depends through submodel 11 on Ibar2

which depends through submodel 9 on Bbar

which depends through submodel 6 on Fbar

which depends through submodel 3 on F (depth= 4)

U depends through submodel 11 on Jm (depth= 1)

U depends through submodel 11 on Jm

which depends through submodel 4 on J (depth= 2)

U depends through submodel 11 on Jm

which depends through submodel 4 on J

which depends through submodel 2 on F (depth= 3)

U depends through submodel 11 on Jm

which depends through submodel 4 on Jth (depth= 2)

U depends through submodel 11 on C10 (depth= 1)

U depends through submodel 11 on C01 (depth= 1)

U depends through submodel 11 on K (depth= 1)

Net complexity measures:
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Sequentiality : 1

Formal model complexity : 43

Full model complexity : 217

Indirectness : 5.05

In the listing of the submodels, note the progression from submodels with fewer equations
to those with more.

The Mooney-Rivlin model as described in the LAME documentation is found by the code
to be ideally sequential. However, there are 7 pathways that start with [F ] and end with
U , revealing that the dependence of U on [F ] is somewhat concealed by the heavy use of
intermediate quantities. This is reflected by the large value of indirectness shown at the end
of the model output.

If temperature dependence were not included, all of the complexity metrics would be
substantially reduced. This is an example of the increase in complexity of models when
multiple physical fields are included (“multiphysics” models).
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8 Conclusions

A fundamental principle in this work is that dependence between variables has direction,
that is, the fact that y2 depends on y1 does not imply that y1 depends on y2. Recognizing
this principle immediately reveals the inadequacy of superficial measures, such as merely
counting the number of material parameters Np, to fully characterize the complexity of a
model.

The complexity metrics proposed here are an attempt to reduce the subjectivity in com-
paring the complexity of different material models. By design, the metrics avoid any reliance
on understanding of the physics, since this varies between individuals. The metrics also avoid
actually running calculations with the model. This increases their potential usefulness dur-
ing the development phase, rather than the software implementation phase, at which time
may be too late for such metrics to have any benefit.

It may be seen from Example 5, the Mooney-Rivlin model, that a large number of vari-
ables does not necessarily reduce the sequentiality of a model, making it relatively straight-
forward to implement. It would also be possible to have a model with a large number of
inputs, outputs, and parameters that is easy to understand if the indirectness is low.

However, the overall trend in the examples, including the Mooney-Rivlin model, is that
when intermediate variables are used, and when outputs depend on other outputs, there is a
snowballing effect on the full complexity and indirectness metrics as the number of variables
increases. This trend of the full complexity outpacing the formal complexity as variables
are added is a manifestation of the “out-of-control” complexity of models that is sometimes
perceived when more and more ingredients, such as multiphysical fields and rate dependence,
are added to a model. The inclusion of temperature in the Mooney-Rivlin mechanical model
is a benign but illustrative example of this.
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