An Introduction to Fitness Landscape Analysis
and Cost Models for Local Search

Jean-Paul Watson

Abstract Despite their empirical effectiveness, our theoreticalemstanding of
metaheuristic algorithms based on local search (and af gidwradigms) is very lim-
ited, leading to significant problems for both researchadspactitioners. Specifi-
cally, the lack of a theory of local search impedes the dgraknt of more effective
metaheuristic algorithms, prevents practitioners fromniidfying the metaheuris-
tic most appropriate for a given problem, and permits widesg conjecture and
misinformation regarding the benefits and/or drawbacksasfigular metaheuris-
tics. Local search metaheuristic performance is closekeli to the structure of the
fitness landscape, i.e., the nature of the underlying segrate. Consequently, un-
derstanding such structure is a first step toward understgiatal search behavior,
which can ultimately lead to a more general theory of locakde. In this paper,
we introduce and survey the literature on fitness landscaglgsis for local search,
placing the research in the context of a broader, criticatsification scheme de-
lineating methodologies by their potential to account émal search metaheuristic
performance.

1 Introduction

Despite widespread success, very little is known alkdwtiocal search metaheuris-
tics work so well and under what conditions. This situatisrargely due to the
fact that researchers typically focus on demonstrating rert analyzing, algorithm
performance. Most local search metaheuristics are deedlispan ad-hoc manner.
A researcher devises a new search strategy or a modificatameéxisting strategy,
typically arrived at via intuition. The algorithm is implemted, and the resulting
performance is compared with that of existing algorithmssets of widely avail-
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able benchmark problems. If the new algorithm outperfomistiag algorithms, the
results are published, advancing the state-of-the-afortlmately, most researchers
(including, often, the author) fail to actually prove thia¢ proposed enhancement(s)
actually led to the observed performance increase (asaipicnultiple new fea-
tures are introduced simultaneously) or whether the isgr@as due to fine-tuning
of the algorithm or associated parameters, implementéticks, flaws in the com-
parative methodology, or some other factor(s). Hooker [g@rs to this approach
to algorithm development as tlemmpetitive testingparadigm, arguing that “this
modus operandspawns a host of evils that have become depressingly familia
to the algorithmic research community” and that the “emjzhas competition is
fundamentally anti-intellectual” [10], (p. 33). Howeveatthough few would argue
with Hooker’s criticisms, the competitive testing paradigemains the dominant
paradigm for developing new algorithms — independent ofthérehey are exact or
approximate, or based on constructive or local search.

Due largely to the widespread practice of competitive ngstiheoretical results
concerning the operation of local search metaheuristesary limited. In partic-
ular, we currently lack fundamental models of local sear@tameuristic behav-
ior. The importance of behavioral models cannot be undextédeally, behavioral
models enable practitioners to identify those problemsifioich a particular local
search metaheuristic is likely to be effective and thosdler instances that are
likely to be more difficult than others. The broad availabkibf behavioral models
would enable researchers to identify fundamental sintiésriand differences be-
tween different local search metaheuristics and idengfy nesearch directions in
order to improve the performance of existing local seargbrathms. In contrast, the
current lack of behavioral models has led to several unalelsiiside-effects, includ-
ing widespread conjecture and mythology regarding thefitsr@ad/or operation of
particular local search metaheuristics.

A foundational concept in the development of behavior medéllocal search
metaheuristics is the notion ofithess landscapée., the topological structure over
which search is being executed. Given a specific landscapetste — defined by
a search space, objective function, and neighborhood tqpesdocal search meta-
heuristic can be viewed as a strategy for navigating thissire in the search for
optimal or near-optimal solutions. Given this context, éfffectiveness of a particu-
lar metaheuristic is a function of how “well tuned” the naafign strategy is to the
given landscape. Consequently, knowledge of the fitnesistape structure is key
to developing effective metaheuristics, and consequéatiypeen a primary focus in
the theoretical analysis of local search metaheuristihe.dbjective of this chapter
is to survey the prior research on fitness landscape anddysiscal search meta-
heuristics, and assess the potential of these efforts taiexne or more aspects of
metaheuristic behavior / performance.

To facilitate focus and brevity, our emphasis is on locardeanetaheuristics,
e.g., tabu search, simulated annealing, and variable beigbod search. These al-
gorithms, which iteratively modify a single solution vigoesated perturbations, con-
trast to both constructive (e.g., GRASP and ant colony dpétion) and evolution-
ary (e.g., genetic algorithms and genetic programmingpheairistics. However,
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fitness landscape analysis does play a role in these paradigmell. For example,
local search is widely used in both GRASP and ant colony dpétion to post-
process solutions generated by the core constructive guoes. Similarly, fithess
landscape analysis has long been central in genetic digotheory, although the
analysis is significantly complicated by the presence of pufaiion of solutions
and multi-parent recombination. Where appropriate, we @@tevant literature in
both of these sub-fields. Subsequently, where there is hofisonfusion, we refer
to local search metaheuristics simply as metaheuristics.

We begin in Section 2 by formally introducing the concept fifreess landscape
and a local search metaheuristic. Next, we introduce ini@e& a classification
scheme for models of local search metaheuristic behayecisically focusing on
the objectives of any particular analysis; such objectireften implicit or unspec-
ified in the literature, and making the objectives explidihas for an assessment of
the ultimate utility of a given methodology. We survey thedwt range of landscape
structures identified by various researchers in Sectiomsdudsing their role in and
ability to account for metaheuristic performance. Most gle@f local search meta-
heuristic performance are implicit, in that they do not pre@ specific models of
metaheuristic run-time dynamics. In Section 5, we surveylithited exceptions —
which are exemplars of the types of models that ultimately imfiorm a rigorous
theory of local search. Finally, we conclude in Section 6.

2 Combinatorial Optimization, Local Search, and the Fithes
Landscape

We begin by formally defining a combinatorial optimizatioroplem (COP), be-
fore introducing the concepts of a fitness landscape andah $earch metaheuris-
tic. First, we explicitly differentiate @roblem(e.g., Boolean Satisfiability) from a
problem instancée.g., a 100-variable, 300-clause instance of Random kST
k = 3). We denote a combinatorial optimization problem/yand an instance of
I by Q. Q is drawn from some (possibly infinite) universe of possibiekem
instances, which we denoté.

An instanceQ of a combinatorial optimization probleifi is fully specified by
two components: the state space and the objective fundilos state spac8is a
finite, although typically astronomically large, set of pitde solutions taQ. The
objective functiorF assigns a numeric “worth” to each state S. The only formal
restriction onF is that there must exist a total order of the co-domain, sbahd
maximal or minimal value is well-defined. Typically,, S— R" orF: S— Z*. The
objective function is commonly referred to afitaess function

Given a COP instanc@, the ultimate objective is to locate a solutisa Ssuch
thatF (s) is optimal, i.e., minimal or maximal. Without loss of genléyawe assume
the objective is minimization unless otherwise noted.

Local search proceeds via iterative modifications to cotepselutionss € S,
in contrast to constructive and population-based metadtes. We further restrict
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our attention to the subset of local search metaheuridtaisdperate via iterative
modifications to a@inglecomplete solutioss, i.e., we ignore more complicated local
search metaheuristics that employ elite pools and stegemich as optima linking
[30] and path relinking [8]. In doing so, our goal is pragmato discuss the state of
local search theory with respect to the simplest (albditeffiective) class of local
search metaheuristic before tackling more complex powddtivatives.

All single-solution local search metaheuristics consighe following four core
components: the state space, the objective function, ttve imerator, and the nav-
igation strategy. Search begins from an initial solutios spi; that is generated
either at random or via some heuristic procedure, and pdscei@ a sequence of
iterations. Thanove operatospecifies the set of allowable modifications (i.e., the
neighborhood) to the current solutigrat any given iteration, one of which is se-
lected by thenavigation strategyo serve as the basis for the next iteration. The best
solution encountered in any iteration is stored and retlveen the algorithm ter-
minates, typically after a time limit is exceeded or maximamber of iterations is
completed. We now explore each of these four components e aetail, provid-
ing simple examples of each as applied to both the well-knBraaeling Salesman
Problem (TSP) and Maximum Satisfiability Problem (MAX-SAT)

2.1 The State Space and the Objective Function

Both the state spacg®and the objective functiok are taken directly fron®2, the
problem instance under consideration. For example, in-eity TSP instance, the
state space consists of the sehbpermutations, each representing a possible tour;
the objective function simply returns the total length oé tinput tour. In ann-
variable,m-clause MAX-SAT instance, the state space consists of thefsg"
Boolean vectors of length; the objective function returns the number of time
clauses that are satisfied in a solutsx S. In general, although we do not consider
the issue here, the details of how solutions are represeatetnpact the definition
of both the move operator and the navigation strategy. Hewhis is typically not
the case for many well-known combinatorial optimizationlgems — including the
TSP and MAX-SAT.

2.2 The Move Operator

Given a state spac® the notion of locality in a local search algorithm is proad
by the move or neighborhood operatdrN defines the set of allowable modifica-
tions to the current solutiosin any given iteration. In single-solution local search
algorithmsN : S— P(S), whereP(S) denotes the power set 8f More complicated
move operators, e.g., those whose domain and/or codonegr@ss-products &
andP(S), respectively, are found primarily in evolutionary alghms and other re-
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lated approaches such as optima linking, path relinkind sgatter search; see [14]
for a discussion of these and related issues. Given a sokytibe seN(s) is known
as theneighborhoodf s. Similarly, if § € N(s), thens' is said to be aeighborof

S.

Local search metaheuristics often employ rather simpleenoperators. For ex-
ample, the most widely used move operator for MAX-SAT maghemlutionse S
to the subset of solutions (where is the total number of Boolean variables)3n
that differ fromsin the value of a single variable assignment; this is knowthas
“1-flip” neighborhood. Similarly, most local search metahstics for the TSP are
based in part on the 2-opt move operator [19], where the beighof a solution
s Sare defined as the subset@) solutions inS obtained by inverting the sub-
tour between any pair of distinct cities on the tour specifigds. More complex
move operators can be obtained via straightforward gemati@n of these basic
operators, e.gk-flip move operators in MAX-SAT anli-opt move operators in the
TSP.

Move operators can vary significantly in their attempts tantzan “logical” lo-
cality. Both the 1-flip and 2-opt move operators induce malidisruptions to the
current solutiors; 1-flip inverts the value of a single Boolean variable, wizilept
changes exactly 2 edges. However, in local search algosituoh as iterated local
search [20], the differences between neighboring solate@m be much more sub-
stantial, e.g., under the generalizedpt move operator for the TSP [13]. In both
cases, however, the perturbation is local in the sense theigaboring solution is
obtained via asingleapplication of a move operator. We raise this issue to nate th
a “local” search metaheuristic may in fact proceed by makiragstic modifications
to individual solutions.

Mathematically, the move operathrinduces a relation on the spa& S, and
the properties of this relation can influence the performearidocal search. For sim-
plicity, we refer to the relation induced By simply asN. Although both the 1-flip
and 2-opt move operators are symmetric, in 1@ N(s) = s N(s), this is gen-
erally not required. FurtheN is necessarily transitive and anti-reflexive. Beyond
defining the immediate neighborhood, a move operator alpegethe connectiv-
ity of the search space, i.e., what solutions can be reaciaea finite sequence of
moves from an initial solution. A move operatlris said to induce @onnected
search space if from an arbitrary solution there alwaystedsequence of moves
to an optimal solutionN is said to induce dully connectedsearch space if there
exists a sequence of moves between any two arbitrary sotutiRoth the 1-flip and
2-opt move operators induce fully connected, and consdlyusrnnected, search
spaces. However, many powerful, problem-specific moveaipes induce discon-
nected search spaces, e.g., see [25].
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2.3 The Navigation Strategy

The mechanism for selecting some neighSoe N(s) at each iteration of local
search is embodied in the navigation strategy, which we telmpA. One of the
simplest navigation strategies follows the basic prireipf gravity: select a neigh-
bor s € N(s) with F(s') < F(s). Two well-known variants of this greedy strat-
egy form the core of nearly all navigation strategiesnbxt-descensearch, the
neighborsN(s) are randomly ordered, and the first neighlSoe N(s) such that
F(s) < F(s) is selected. Irsteepest-descenearch, the neighbor that provides the
maximal decrease in the objective function valaegininy s F(s)) is selected,
with ties broken randomly.

By iterating greedy descent, local search will eventualtive at a solutiorse S
from which no immediate improvement in the value of the otiyecfunction is
possiblessis known as a local optimum, such th&t € N(s),F(s) > F(s). Unless
sis also a globally optimal solution, the navigation strgtegust then guide search
to unexplored regions of the search space. When there exigtgghbois' € N(s)
such that=(s) = F(¥), sis actually contained in a plateau, which may or may not
be locally optimal; this issue is discussed further in Secf.4.

Within the local search community, strategies for escapingvoiding local op-
tima are commonly referred to asetaheuristicsFormally, a metaheuristic is a
heuristic that dynamically alters the behavior of a coralaearch heuristic, typi-
cally in response to the properties of recently visited $ohs. In most local search
metaheuristics, the core heuristic is greedy descent; alrastistic is activated
when the descent strategy becomes trapped in a local optiendweactivated once
search is successfully directed toward new regions of thechespace. Conceptu-
ally, metaheuristics and greedy descent are distinct fafmsvigation strategies,
each operating at a different level of abstraction. Howeduaesractice, the boundary
between the two is often fuzzy, for example in simulated afing. Consequently,
metaheuristics are often viewed as atomic entities, suadtttle distinction between
the core heuristic and the metaheuristic is ignored. Wegntdbem as such, while at
the same time acknowledging any intended distinction betwtbe core and meta-
heuristic.

Perhaps the most obvious way to escape a local optimum isrergee a new
starting solutiorsj; and then re-initiate greedy descent. This process canragsite
until a global optimum is located. The resulting metaheigris commonly referred
to asiterated descentwvhich is distinct from the next-descent and steepestetgsc
procedures. In practice, iterated descent is a simple wiaygove the performance
of a core greedy descent strategy. Further, iterated desaenlocate very high-
quality solutions for some combinatorial optimization lplems, e.g., see Beveridge
etal. [2].

Clearly, the probability of iterated descent locating abglicptimum approaches
1 as the number of greedy desceNtsapproachese. However, from a practical
standpoint, iterated descent is only effective if the figndstribution of the local
optima assumes a certain form, i.e., one in which the leftafathe distribution
is non-negligible. For many well-known combinatorial opization problems, the
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fitness distribution of local optima in small problem instas satisfies this require-
ment. At the same time, it has been empirically demonstithtgcuch tails typically
vanish at larger problem sizes (for example in the TSP ),inguterated descent to
perform poorly due to what has come to be known as a “centrét tatastrophe”
[13].

2.4 TheFitness Landscape

Given a local search metaheuristi@and a combinatorial optimization problemh,

we are interested in determining what makes a particuléamteQ € Uy easy or
difficult for A. Problem difficulty, or equivalently search cost, is diethby the in-
teraction ofA with the underlying search space. For example, supposdohlhly
optimal solutions td?2 reside in a small region of the search space containing-other
wise poor local optima. IA consistently biases search toward regions of the search
space containing generally high-quality local optimanttiee cost (on average) of
locating optimal solutions t@ usingA is likely to be large. In contrast, & inten-
sifies search in regions of the search space with poor lodahapthenA is more
likely to locate optimal solutions t@ in shorter run-times.

Due to the central role of the search space in determiningl@no difficulty,
much of the research on models of problem difficulty for log@hrch has concen-
trated identifying structural features of the search sphatare likely to influence
the cost of local search. Given a local search metaheuAstite search space is
defined by the combination of (1) the state sp8c€) the move operatdy, and
(3) the objective functiofr. Formally, we define the search space (SN,F) as a
vertex-weighted directed gragh= (V, E) in which:

1.v=S

2. Vv eV, the weightw, of vis equal toF(v)

3. E={(L.D)li# AT i eN())

Within the local search community, the gra@hs known as ditness landscapa
concept first introduced by the theoretical biologist SéWaight in 1932 [44].

We provide two examples of very simple fithess landscapeggiur€ 1; in gen-
eral, landscapes are high-dimensional and extremely uliffic visualize. In both
examplesS={1,2,...,20} andN(x) = {x— 1,x+ 1}, subject to the boundary con-
ditions N(1) = {20,2} andN(20) = {19,1}. Type I fitness landscapes are char-
acterized by deep, punctuated valleys with abrupt chang#ei fithess of neigh-
boring solutions. In contrastype Il fithess landscapes are dominated by plateaus
of equally fit neighboring solutions, with discrete jumpsfitness between the
plateaus. We differentiate between the two types of fitreasddcapes for three rea-
sons. First, different terminology is associated with tlve tandscape types. Sec-
ond, Type | and Type Il landscapes have different implicaifor the design of
metaheuristic navigation strategies. Third, these twesygre representative of the
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Fig. 1 Examples of Type | (left figure) and Type Il (right figure) fisselandscapes.

fitness landscapes found in md$P-hard optimization problems. For example, the
TSP and MAX-SAT respectively possess Type | and Type |l féslasdscapes.

Ina Type | fitness landscape, the two key features of intaredbcal optima and
global optima. Alocal optimumis a pointx € Ssuch that'y € N(x), F(x) <F(y). In
our example Type | landscape, the following vertices aralloptima: 3, 7, 13, 16,
and 18. Aglobal optimumis a pointx € Sthat is both locally optimal andy € S,
F(x) <F(y). In our example Type | landscape, vertex 13 is the sole glop@hum.
Theattractor basinof a local optimuns consists of als' € Ssuch thasresults with
non-zero probability when a descent-based procedure igedpp s'; as first noted
by Reeves [31], attractor basin membership may be stochés#i to the different
forms of randomization commonly associated with descemtquiures.

Plateaus are the dominant feature of Type Il fitness lan@scdpformally, a
plateau is simply an interconnected region of the fithesddeape where all points
have equal fithess. Formally, a plateau is defined asR Se$ such that:

1. ¥x € P, F(x) = C for some constar@

2. For any two points,y € P there is a sequence of solutioftsay, ..., an,y} such
thatVi, a € SandF(x) =F(a1) = ... =F(an) =F(y) =C

3. (@a; € N(x), (b)Vi #n—1,a 1€ N(a), and (cly € N(an)

If for somex € P there exists & € N(x) such that=(y) < C, the plateau is called
a bench and all such solutiony are calledexits If there are no exits from a
plateau, then the plateau is locally optimal. If the platé&alocally optimal and
V¥x € S,C < F(x), then the plateau is also globally optimal. All benchesalaip-
tima, and global optima are labeled in our example Type leEslandscape. There
are many additional nuances regarding the terminologyatififes found in Type Il
fithess landscapes; an overview is provided by Frank etfl. [7

The qualitative differences between Type | and Type |l fitnesdscapes have
an important impact on the design of navigation strategieswetaheuristics for lo-
cal search. For example, both next-descent and steepestrdaypically terminate
once a solutiors is located with no lower-fithess neighbors. The implicitjltun
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assumption is that the local optimusis not a member of a plateau, or thasifs
a member of a plateau, then the plateau itself is locallynogiti In general, these
assumptions do not hold when dealing with Type Il fitness $aages; if greedy
descent terminates at a local optimum, it is possible thabfitimum resides on a
bench, from which an exit may exist. Additionally, the atta basins in Type I
fithess landscapes are often very shallow. For examplekFétaal. [7] have shown
that in MAX-SAT, it is often possible to escape a local optimby accepting a
single non-improving move. Consequently, the emphasisseigation strategies in
Type Il fitness landscapes is on moving quickly from one @lat® another, either
by finding an exit from a bench, or by temporarily accepting4mproving moves.
In contrast, in Type | fitness landscapes the emphasis is capieg) local optima
with potentially large and deep attractor basins.

3 Landscape Analysis and Cost Models: Goals and Classificati

As discussed previously, most research on local searckésmn developing newer,
better-performing algorithms. The goal in such researcleisly todemonstratal-
gorithm performance. Paul Cohen notes in his boipirical Methods for Artificial
Intelligence([5], p. 249) that “It is good to demonstrate performancé,ibis even
better toexplainfemphasis added] performance.” The hard sciences advéamntieev
development of accurate models of the object or objectstefaést, models that are
both consistent with existing observations and suggesthehavioral hypotheses.
Currently, models of local search metaheuristicsgfioycombinatorial optimization
problem are rare to non-existent.

In developing a model of a given object, we generally coneg¢aton capturing
specific behaviors or small sets of behaviors. In the cordkldcal search meta-
heuristics, the behavior of interest is generally the cegtiired to locate an optimal
solution (or, more generally, a solution with a given quatitreshold) to a problem
instance. Due to the stochastic nature of local search (hitlsole noted exception
of some variants of tabu search), search cost is a randoribl@fiith a particular
distribution.Cost model®f local search metaheuristics are behavioral models that
capture various aspects of the cost distribution. Mostofiee focus on thaver-
ageor typical search cost, as defined by either the distributiean or median. It is
well-known that given a fixed problem size (e.g., 100-city?E§ the average search
cost across instances can vary by many orders of magnitudeok)ective in devel-
oping cost models is to account for a significant proportsrd ideally all, of this
variability. A more aggressive, penultimate objectivedglevelop cost models that
account for the entire distribution of search cost.

In this section, we discuss a general classification schemeost models of lo-
cal search metaheuristics. We consider three differeestgpcost models, differing
in both the type of information upon which they are based &edcextent to which
they attempt to explicitly capture metaheuristic run-tilly@amics Staticcost mod-
els (Section 3.1) are functions of one or more features ofitihess landscape, and
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only implicitly consider metaheuristic dynamics. In cadt, quasi-dynamicand
dynamiccost models (Sections 3.2 and 3.3, respectively) are basetalyses of
metaheuristic run-time behavior. Quasi-dynamic cost risde functions of sim-
ple summary statistics of metaheuristic behavior. In @stfrdynamic cost models
explicitly model low-level metaheuristic behavior usingaMov chains.

3.1 Static Cost Models

Static cost models are strictly based on fitness landscape featmetaheuristic
dynamics are completely and explicitly ignored. In a statist model, the inde-
pendent variables are fithess landscapes features, or icatiais thereof, and the
dependent variable is the mean or median search cost. Taatecmodel evalua-
tion, static cost models are expressed as linear or mutgglession models. Under
this formulation, the accuracy of a static cost model candtenally quantified as
ther? value of the corresponding regression model, i.e., thegotim of the total
variability accounted for by the model. Most static cost mlocbnsidered to date
are based on a single feature of the fithess landscape. Hoogas of brevity, we
often denote a static cost model based on the fedagtheX static cost model, or
simply theX model. Similarly, given the close relationship betweetistzost mod-
els and regression models, we frequently use the two tetierxhmangeably. Finally,
regression methods make certain assumptions (e.g., moded are homogeneous
across the range of the independent variable) in order tergémvalid statistical
inferences concerning model parameters. These assumtiergenerally not sat-
isfied in metaheuristic research. The motivation in usirgyession models is to
(1) quantify overall model accuracy using the associafedalue and (2) analyze
worst-case deviations from a predicted/expected valukirEao satisfy regression
assumptions does not impact our ability to achieve eithénede objectives.

The quality of a static cost model is tied to the modfelmodels with larger?
values are more accurate. However, there are limits on thalatie level of accuracy
that we can reasonably expect to achieve. As discussed fio&d¢the most accu-
rate static cost models of local search only yi€ld: 0.5 in the worst case, which is
typically observed for the most difficult sets of problemtareces. Although failure
to develop more accurate static cost models, despite mtesearch effort, is not
evidence for their impossibility, there does appear to beaatjal limit on what
can be achieved. Because static cost models ignore meistietiynamics, the ex-
istence of models with everf ~ 0.5 is in some sense surprising. In expressing
fitness landscape features as atomic numeric quantitiess th also the obvious
potential for loss of information. Further, there are piadt(although not theoreti-
cal) limits on the accuracy with which we can measure vargquasntities, including
search cost.
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3.2 Quasi-Dynamic Cost Models

A first-order approach to improving static cost models isrtoorporate coarse-
grained information concerning metaheuristic run-timbawor. For example, we
might track simple summary statistics that capture defiohayacteristics of the set
of solutions generated by a metaheuristic. Given such sugnatatistics, we can
then construct regression models relating these summatigtsts to search cost,
and quantify model accuracy as the resultifgWe refer to such cost models as
guasi-dynamiaost models. The “quasi-dynamic” modifier derives from thetf
that the model is based on aggregate statistics relatingntdime behavior, as op-
posed to an explicit model of metaheuristic run-time dyremrhe sole difference
between static and quasi-dynamic cost models is in the eatiuthe information
captured in the independent variable(s).

Most of the issues relating to possible limitations on theuaacy of static cost
models equally apply to quasi-dynamic cost models. Howdwecause they ac-
count for some aspects of run-time behavior, we would exjpesbme sense the
accuracy of quasi-dynamic cost models to be higher thanahstiatic cost mod-
els, although less than the fully dynamic cost models cameiibelow. Empirical
evidence supports this observation: some of the most aecaost models of lo-
cal search metaheuristics developed to date are quasivdyifid5], and achieve a
worst-case accuracy of ~ 0.65.

3.3 Dynamic Cost Models

Because they are respectively based on fithess landscapeeteand summary
statistics of run-time behavior, static and quasi-dynaooist models yield ndli-
rectinsight into the dynamical behavior of local search. To gasight as to why
particular landscape or run-time statistics are highlyalated with search cost, we
turn todynamiccost models. Dynamic cost models are high-resolution nsd@eed.,
Markov models) of the run-time behavior of local search metaistics. Research
on dynamic cost models can be traced to Hoos [11], who usedkdvanodels
to posit an explanation for certain run-time behaviors olesé for Walk-SAT and
other local search algorithms in the Random 3-SAT phasesitian region. How-
ever, the ability of these models to account for variabilityproblem difficulty was
not considered.

To date, dynamic cost models are represented as Markovschéiich coarse-
grain the search space in some way. In one common approasth stste of the
Markov chain captures the distanic® the nearedarget (e.g., optimal) solution,
in addition to other algorithm-specific attributes. Trdiosis in the Markov chain
correspond to iterations of the local search metaheuristiynamic cost model is
constructed by specifying a set of states, and then estim#ie various transition
probabilities between the states. The details of the etimarocess are algorithm-
dependent. The search cost predicted by a dynamic cost nwodefined as the
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mean number of iterations until an absorbing state (i.¢ata svithi = 0) is encoun-
tered. For some Markov chains, analytic formulas for the mtéae-to-absorption
are easily derived. When analytic formulas are not immedjiatvailable, it is prag-
matic to resort to simulation of the cost model to estimatamee=arch cost.

To quantify the accuracy of a dynamic cost model, straightfod linear re-
gression models can be used, in which the predicted andlagairch costs serve
as the independent and dependent variables, respectmeljel accuracy is then
quantified by ther? value of the linear model. Dynamic cost models differ from
their static counterparts in that they explicitly consittes metaheuristic, and move
beyond simple numeric characterizations of either fitnesddcape features or run-
time behavior. Consequently, veepriori anticipate higher levels of accuracy than
are possible for static and quasi-dynamic cost models. ddnigecture is supported
in practice;r? values in excess of.90 are reported in the literature. However, the
near-perfect accuracy does not come without costs: dynemsianodels are gener-
ally more expensive to construct than static or quasi-dyoaost models, and are
generally far less intuitive.

3.4 Descriptive Versus Predictive Cost Models

For all practical purposes, the cost models we discuss asdypdescriptive, in that
they providea posterioriexplanations for why one problem instance is more dif-
ficult than another for a given local search metaheuristi@rinciple, cost models
could be used to compute a relatively tight confidence imfemwa standard regres-
sion techniques, for the expected cost required to locatepéimal solution to a
new problem instance. However, because the most accursttencalels to date (as
discussed below) are functions of the seftifoptimal solutions to a problem in-
stance, the effort required to generate the predictioredlgtexceeds that of simply
locating an optimal solution. Given an accurate cost maithel,problem of run-
time prediction is essentially equivalent to the problenestimating the value of
the model parameters. The nature of the cost-accuracy-tfhdfemodel parameter
estimation is currently an open research question.

This doesiotimply that cost models are a scientific curiosity, uselegsattice.
Cost models have been used to make specific predictiongdiegdahe behavior of
local search metaheuristics (e.g., see [42]). Furtherpandaps most importantly,
cost models can explicitly identify those features of theefiis landscape that are
overwhelmingly responsible for problem difficulty in locsgarch. By identifying
such features, we are enabling algorithm designers to foctise areas most likely
to yield performance improvements, and to move beyond theoad benchmark-
driven design methodology that is current employed [10].
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4 Fitness Landscape Features and Static Cost Models

The performance of any local search metaheuristic is didtay the interaction
of the metaheuristic with the underlying fitness landscdpeard understanding
this interaction, researchers have initiated numeroussitnyations of the structural
characteristics of the fitness landscapes of various caatdrial optimization prob-
lems. As a result, several fitness landscape features haveitentified that have
been shown, via abstract argument or in concrete infereaadafluence problem
difficulty for local search. Examples of such features inek

e The number and/or distribution of local optima
e The strength and size of local optima attractor basins
e The size and extension of the search space

Although the importance of these features is widely ackedgéd, little or no em-
pirical evidence exists to substantiate twdentto which any of these features,
or combination thereof, is actually correlated with locaach cost. Because the
strength of the relationships have not in general been digahtit is possible or
even likely that the prime factor(s) dictating problem diffity for local search have
either yet to be identified or remain largely unexplored.

Structural features of the fitness landscape also have,leasiishouldhave, a
major influence on the design of metaheuristics. Local $earetaheuristics dif-
fer largely in their approach to escaping the attractorrzasf local optima, and
the complexity of the proposed escape mechanisms — in tefralgarithmic de-
tails — is highly variable. Ideally, designers tailor a niearistic to the class of
fithess landscapes that the algorithm is likely to encouiYetr very few concrete
details are known about attractor basin strength, i.e.eikpected computational
effort required to escape local optima. This is true for healt combinatorial op-
timization problems. Consequently, it is unclear whethethfer attention on novel
escape mechanisms is warranted, or if researchers shattldhsiir focus to de-
signing more effective high-level search strategies, saaglthose associated with
advanced implementations of tabu search.

While important, the study of factors such as local optintieaator basin strength
are not necessarily a driver in overall problem difficulty.darticular, we observe
that once the problem of escaping local optima is solvedbtbader issue of how
to perform effective global search remains open. We nowesutivose global struc-
tural features of the fithess landscape that have been grdgosaccount for the
variability in problem difficulty for local search. We pregdhe motivation behind
each feature, summarize prior research, and identifyditoibs. It should be noted
that not all of these features have been investigex@ticitlyin the context of a cost
model of local search. However, the objective of corretatime presence of partic-
ular features with search difficulty is a common, necesdagyne. For illustrative
purposes, we additionally provide in some cases graplhissrihting cost model ac-
curacy drawn from the author’s own research on job-shopckdhmgy (JSP). Finally,

1 Kauffman (p. 44, [16]) provides a more comprehensive listetoped for adaptive local search
algorithms.
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Fig. 2 Scatter-plot of the number of globally optimal solutiongsies search cost for 6 job, 6
machine random job-shop problems; the least-squaresditdisuper-imposed.

we note that an alternative, complementary perspectiverast landscape analysis
is provided in [12].

4.1 The Number of Optimal Solutions

One of the most intuitive measures of problem difficulty ie ttumber of globally
optimal solutions in a fitness landscape. It should be diffitulocate a global
optimum if they are relatively rare. Conversely, if globatimna are numerous, then
it should be relatively easy for local search to find one.

The relationship between the number of globally optimalisohs and problem
difficulty for local search was originally analyzed in thentext of MAX-SAT and
the more general MAX-CSP [4]. The motivation behind thiseeesh was to de-
velop an explanation for the easy-hard-easy pattern inl@nokifficulty observed
in the phase transition regions of these problems [17, 2@&f$ initially conjectured
that the peak in search cost was due to changes in the numobptiofal solutions.
Yokoo [45] proved that this was not the case, by showing thatrhean number
of optimal solutions varies in no special way near the phesesition region. In a
more refined analysis, Clark et al. demonstrated a relgtstebng negativéog; o-
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log, correlation between the number of globally optimal solugi@and search cost
for three MAX-SAT metaheuristics, with-values ranging anywhere from0.77
to —0.91. However, the cost model failed to account for the largst eariance ob-
served for problems with small numbers of optimal solutjevisere model residuals
varied over three or more orders of magnitude. A similaraditin is exhibited in the
JSP for tabu search.

In Figure 2, we show a scatter-plot of the mean search cosireztjby tabu
search (see [40] for details) to locate an optimal solutio®job, 6 machine random
JSPs, as a function of the number of optimal solutions to &lpno instance. The
model is not overly accurate, witk = 0.2223, and the graphic clearly demonstrates
the very large residuals common to cost models based on tiderof optimal
solutions.

The distribution of the number of optimal solutions depeindarge part on the
nature of the objective function, specifically whether allaofraction of solution
attributes dictate solution fitness. For example, the nurabeptimal solutions to
instances of the 2-D integer Euclidean Traveling Salesnrabl®m is generally
very small, and is frequently equal to 1 [36]. The reason rigightforward: tour
length is a function oéll the cities in the instance, and the likelihood of two tours
having identical lengths is relatively small given randgreampled inter-city dis-
tances. The likelihood of a single optimal solution is evaghbr if real-valued city
coordinates are allowed. A similar situation is observetha Permutation Flow-
Shop Problem [39]. In contrast, the fitness of solutions @1i8P is dictated by a
subset of job orderings, i.e., those on the critical patmgequently, large plateaus
of solutions are common in the JSP [41].

While intuitive, the accuracy of static cost models basethemnumber of opti-
mal solutions is clearly limited. Further, there is aneatlevidence that accuracy
decreases as larger problem instances are considered.

4.2 The Distance Between Local Optima

The cost of local search is also influenced by the size of tarchespace. Search in
most metaheuristics is heavily biased toward local optenggesting that the size
of the sub-space of local optima may be strongly correlatéupvoblem difficulty.
A straightforward approach to quantifying the size of thealooptima sub-space
is to simply measure the mean distance between a sampledidnmalocal optima;
large distances should be indicative of large sub-spades ribtion of quantifying
search space size was first introduced by Mattfeld et al.if21je context of the
JSP. However, Mattfeld et al. did not investigate the abditthe metric to account
for the variability in problem difficulty across a fixed setiobtances; rather, they
used the metric to account for differences between distypes of JSP instances.
In Figure 3, we show a scatter-plot of the mean search cosireztjby tabu
search (again see [40] for details) to locate an optimaltswiuo 6 job, 6 machine
random JSPs, as a function of the mean distance betweenmdadal optima. Ac-
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Fig. 3 Scatter-plot of the mean distance between random locahaptersus search cost for 6 job,
6 machine random job-shop problems; the least-squaresditdisuper-imposed.

curacy is similar to the static cost model based on the nuwifogptimal solutions,
with r?2 = 0.2744. Similarly, the accuracy of such models tends to deereéth
increases in problem size and the graphic exhibits vergleggiduals, varying over
several orders of magnitude.

4.3 The Distance Between Local and Global Optima

The number of globally optimal solutions and the size of tharsh spacé& are
conceptually independent; it is possible to embed as maf§ aptimal solutions
within a search spacg& Undoubtedly, both factors influence problem difficulty for
local search. If we fiXS and assume that attractor basin strength and size remain
relatively constant, we expect problems to become easitreasumber of optimal
solutions grows. Analogously, if we fix the number of optirsalutions, it should

be more difficult to locate an optimal solution as the numidesmimal solutions
shrinks. It follows that both the number of optimal solusaand the distance be-
tween local optima are, in isolation, unlikely to accountdasignificant proportion

of the variability in problem difficulty for local search.
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line is super-imposed.

To correct for these flaws, we now discuss a measure that tsinadusly ac-
counts for the impact of both features on problem difficuliye mean distance be-
tween random local optima and thearestoptimal solution. The intuition is that
problem difficulty for local search is proportional to theabdistance that must
be traversed between an initial solution (e.g., a randoralloptima) and a tar-
get solution (e.g., an optimal solution). This measure was fintroduced in the
context of MAX-SAT by Singer et al. [35]. Well-known local aeh algorithms
for MAX-SAT rapidly descend from poor-quality initial sdions to near-optimal
“quasi-solutions”, and subsequent search is restrictatig¢space of such quasi-
solutions. Singer et al. hypothesized that the search castpsoportional to the
size of the quasi-solution sub-space, which in turn coulddignated by the mean
distance between the first quasi-solution encounteredhrenddarest optimal solu-
tion. Their experimental results demonstrated a very gt{on= 0.95) correlation
between this metric and search cost for easy MAX-SAT instayior more difficult
instances, the accuracy degraded only slightly400.75.

In Figure 4, we show a scatter-plot of the mean search cosireztjby tabu
search (again see [40] for details) to locate an optimaltswiuo 6 job, 6 machine
random JSPs, as a function of the mean distance betweennndodal optima and
the nearest optimal solution. Thévalue for the corresponding static cost model is
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equal to 06424, similar to the accuracy obtained by Singer et al. \éth &xcep-
tions, residuals vary over roughly 1 to 1.5 orders of magigtithe improvement
is significant relative to static cost models based striotijthe number of optimal
solutions or the mean distance between local optima. Glehd static cost model
based on the measure proposed by Singer et al. is a landnfaevament, repre-
senting the first reasonably accurate cost model of any kemaich metaheuristic,
for any combinatorial optimization problem. Previouslpposed models achieved
accuracy of at most ~ 0.3 in the worst case, in contrast to thfex 0.6 achieved
by Singer et al.

4.4 Fitness-Distance Correlation

Another factor hypothesized to influence problem difficulty adaptive local
search algorithms is the correlation between solution §grend the distance to
an optimal solution, often simply denoted as FDC (Fitheggdbce Correlation)
[18, 22, 37, 24]. In a problem instance with high FDC, goodigohs tend to be
tightly clustered or, equivalently, share many solutidmiladtes in common. Con-
sequently, an adaptive search algorithm should be ablepioiethese similarities
during search. For example, Schneider et al. [33] introducadaptive local search
algorithm for the Traveling Salesman Problem that, aftentiying the edges com-
mon to a set of high-quality local optima, restricts subsstjisearch to the sub-
space of solutions witlonly those edges. Similarly, Sourlas [37] introduced an
adaptive simulated annealing algorithm for the TSP tha¢rd@hes those edges
appearing infrequently in high-quality solutions, andvems subsequent search
from generating tours containing those edges. FDC has also bsed to account
for differences in the relative difficulty of problem instas, e.g., see [15]. As with
correlation length, we do not further consider FDC in theteghof cost models
for local search due to most (basic forms of) local searctahwtristics being non-
adaptive in the evolutionary algorithm sense. Furthenmehe little evidence that
FDC can account for a significant proportion of variabilitysearch cost observed
for a set of fixed-sized problem instances.

4.5 Solution Backbones

Recently, a number of researchers (e.g., [1] and [36]) hapothesized that the
backboneof a problem instance may be correlated with problem difficuhfor-
mally, the backbone of an instance is the set of solutiorbats or variables that
possess identical values @&l optimal solutions; as a consequence, the definition
of a backbone depends on the representation scheme usezbtieesolutions. The
intuition behind the backbone measure is that the majofigffort in local search
may be spent assigning correct values to backbone variditesbackbone vari-
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ables appear to be significantly less constrained, enabéagch to quickly locate
an optimal solution once the backbone is located.

The recent interest in backbones is due in large part to tkerghtion that large-
backboned problem instances begin to appear in large gieantiear the critical
region of the Random 3-SAT phase transition [34] [27] [23]f2he coincidence
of the two observations immediately leads to the hypothésisbackbone size is
correlated with problem difficulty. More recently, Achlitgs et al. [1] argue that the
shift from small to large-backboned instances in the phasesition region suggests
that the most difficult instances may in fact have a backbored 0.5, although
this hypothesis has not been verified. Slaney and Walsh [8&8}ae the correlation
between problem difficulty and backbone size for constvecsiearch algorithms
for a number ofNP-hard optimization problems. For the Traveling Salesmath an
Number Partitioning Problems, they report a weak-to-matgecorrelation (e.gr,
between QL38 andr = 0.388) between backbone size and the cost of locating an
optimal solution.

4.6 Landscape Correlation Length

A number of researchers have hypothesized that the “ruggpsdof a fithess land-
scape is likely to be highly correlated with problem diffigufor adaptive search
algorithms such as genetic and other evolutionary algostf43, 16, 38]. A fithess
landscape is said to be rugged if there is a rapid change fitrtess between nearby
solutions in the landscape. If the fitness of nearby solstismncorrelated, we can-
not expect adaptive search to outperform a random walk tihere is no structure
to exploit. Ruggedness is frequently quantified as the lzaquks correlation length,
which captures the maximal distance between two arbitralytisns for which
there still exists significant correlation between theirdgs values [43]. We do not
consider correlation length in the context of static costlaile of local search for
two reasons. First, most local search metaheuristics aradaptive, such that cor-
relation length is unlikely to have a major impact on probHfficulty. Second, and
more importantly, the extensive research on landscapelation lengths indicate
that for a wide range of well-knowN P-hard optimization problems, the correlation
length isstrictly a function of problem size [32]. For example, the correlatength

in ann-city TSP is given byn/2, while in ann-vertex Graph Bi-Partitioning Prob-
lem, itis given by(n— 3)/8 [38]. Perhaps most dramatically, Rana [29] showed that
the landscape correlation length is effectively constaet the easy-hard-easy pat-
tern in problem difficulty observed for Random 3-SAT. Consaatly, correlation
length fails to account foany of the variability in problem difficulty observed in
sets of fixed-sized problem instances.



20 Jean-Paul Watson

4.7 Phase Transitions

Much of research on problem difficulty within the artificiatélligence and com-
puter science communities has focused on the identificafien-calledohase tran-
sitionsin problem difficulty [9]. A phase transition in a combinatdroptimiza-
tion problem identifies an order parameter that partitidresuniverse of problem
instances into subsets with differing degrees of expecii#idudty. For example,
the clause-to-variable ratim/n in Random 3-SAT induces a clear patternnas
ranges from 0 teo, the degree of problem difficulty exhibits a well-known easy
hard-easy pattern [3]. While successful in identifyingeipartition differences in
problem difficulty, phase transitions fail to account foe thften considerable vari-
ability within a partition; the latter can vary over many (e.g., 6 or morelpos of
magnitude, even for small problem instances. The failurexfgain intra-partition
variance in problem difficulty should not, however, be viewas a deficiency of
phase transition models; phase transition research wiallinimotivated by the
desire to generate difficult test problems, and this goableas achieved.

5 Fitness Landscapes and Run-Time Dynamics

Fitness landscape analysis and the associated static odsisvare only a first step
toward a more general theory of local search metaheuridtiather, the ultimate
objective is to develop models linking the fitness landscstpecture with models
of metaheuristic search dynamics. In contrast to work oesgriandscape analysis,
research addressing metaheuristic dynamics is very limitais is due in part to
the difficulty of the modeling, and to the relatively recemghasis on dynamics
modeling. In this section, we survey this research, higtiigy the accuracy of the
models and the insights they facilitate.

As discussed previously, static cost models only corrditess landscape struc-
tures with search cost; metaheuristic dynamics are coglipliglnored. An interme-
diate between static and dynamic cost models are quasiugcast models, which
are based on summary information concerning metaheudigtiamics. One exam-
ple is introduced by Watson et al. [42] in the context of tabarsh and the JSP. In
Section 4.3, we introduced a related static cost model bageble mean distance
between random local optima and the nearest optimal saluiowever, Watson et
al. observe that random local optima ar@t representative of the solutions visited
by tabu search during execution. Instead, they proposedsi-gynamic cost model
based on the mean distance between solutions actuallgdisit tabu search and
the nearest optimal solution.

In Figure 5, we show a scatter-plot of the mean cost requiyetdlbu search to
locate an optimal solution to 6 job, 6 machine random JSHsnasion of the mean
distance between solutions visited by tabu search and #hresteoptimal solution.
Ther? value for the corresponding quasi-dynamic cost model78@8, represent-
ing a 21% increase over the corresponding static cost mgufer improvements
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Fig. 5 Scatter-plot of the mean distance between solutions digiyetabu search and the nearest
optimal solution versus search cost for 6 job, 6 machine oangbb-shop problems; the least-
squares fit line is super-imposed.

in accuracy were obtained for larger problem instancesh \éitv exceptions, the
predicted costs are within a factor of five of the observeds;agpresenting a
marked improvement in accuracy relative to the best aVeilatatic cost models
presented previously.

While quasi-dynamic cost models clearly illustrate thelioyed accuracy that is
facilitated by linking fitness landscape structure and imetiaistics dynamics, they
provide only indirect insight into metaheuristic dynamiagich is — we argue —
the primary objective in developing any theory of local sbanetaheuristics. Most
metaheuristics are randomized, if implicitly (e.g., thgbwspecification of an initial
starting solution), such that Markov chains can be used plictty model search
dynamics. There are two primary challenges in developirup $varkov models:
(1) aggregating elements of the search space, in order id exponential numbers
of states and (2) estimating the state transition protegsli

To date, the majority of dynamic models of metaheuristicsi¢Ww, as discussed
below, are very limited) follow Pappadimitriou [26] in aggating states based on
their distance to the nearest optimal solution. Dependirtpe metaheuristic, it may
further be necessary to replicate states in order to acéourtemory mechanisms,
e.g., of the form found employed in tabu search [42].
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Hoos [11] proposed a Markov model based on distance aggpagatthe con-
text of MAX-SAT. The objective of Hoos’ analysis was to prdeian explanation for
specific stagnation behavior in (at the time) state-ofaftdecal search metaheuris-
tics for MAX-SAT, in which the run-time cost required to ldesoptimal solutions
for certain instances could not be explained by existing@®dioos hypothesized
that the observed stagnation behavior was caused by thenmeesf sub-optimal
“traps”, which caused search to be drawn away from regiotisen§tate space con-
taining optimal solutions, and introduced a branched Markodel to represent the
search dynamic. Using posited transition probabilitiespgidemonstrated that the
model accurately captured the search dynamics observed§+SAT local search
metaheuristics on this class of problem instance.

Watson et al. [42] introduced Markov models for a tabu seaigorithm for
the JSP. The contents of short-term memory were abstraghgsented as the cur-
rent “gradient” or change in the distance to the nearesttsolution observed
between the current and previous iteration of the tabu beawetaheuristic, and
embedded in the Markov state capturing distance to the sieapéimal solution.
Transition probabilities were estimated by periodicalbserving the tabu search
algorithm, computing the current search gradient and tetadce to the nearest
optimal solution; transition probabilities were then ewted using the aggregate
sample, for each problem instance.

The resulting Markov models were then simulated to comphéalistribution of
the number of tabu search iterations required to locate #mapsolution. Com-
parison of the simulated and empirical results indicated the proposed Markov
model accurately predicts the observed search costspeddnean search cost was
within a factor of five of the observed value, and the full seatcost distribution
was reasonably approximated by the Markov model. Althougyohd the present
scope, Watson et al. also discuss novel observations iiegahe: linkages between
static, quasi-dynamic, and dynamic cost models in the sbofaabu search. Fur-
ther, the model allowed the authors to propose and testicérgpotheses regarding
metaheuristic behavior for the JSP, including the lack ofdii¢ due to alternate ini-
tialization strategies. For completeness and contrast egtresponding results for
static and quasi-dynamic cost models, we shown in Figuresftbdicted versus
actual search costs for 6 job, 6 machine random JSPsrfa the model is a
remarkable ®6, with predictions in nearly all cases within a factor obtaf the
observed values.

Most recently, Fournier [6] introduced a Markov model to @aat for a simple
stochastic local search metaheuristic for MAX-SAT. In cast to Hoos and Watson
et al. the search space is aggregated in terms of solutidityg&ach discrete value
of solution quality (the number of unsatisfied clauses) Fesented by a state in
the Markov chain. The state transition matrix then specifiegprobability of tran-
sitioning from a state with qualitgj to a neighboring state with solution quality
The resulting Markov chain is then simulated and comparedhat experimental
results to assess model quality, which in turn providesrimédion concerning the
accuracy of the proposed metaheuristic dynamics.
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problems, using a Markov model; the least-squares fit liseger-imposed.

Fournier's analysis focuses on a simple metaheuristic f@XMSAT, called
RSAT, which simply selects a neighbor at each iteration wittrobability in pro-
portion to the neighbor’s quality. This is in contrast to lHoand Watson et al.
who analyze metaheuristics closely related to the statbesfirt for their respective
problems. Further, Fournier’s analysis is primarily cameel with average behav-
ior over an ensemble of instances. In particular, the ttemsmatrix is estimated
from a large sample of instances, aggregated into a singlengole estimate. Not
unexpectedly, the accuracy of the model on a per-instarsis Isdimited, although
the model (with some minor, noted exceptions) accuratghyuras metaheuristic
dynamics at the ensemble level.

While limited, the research into dynamic models of metalstiarbehavior has
lead to impressive advances — relative to simple modelslbasditness landscape
features — in cost model accuracy. This progression in acgus graphically illus-
trated in Figures 4 through 6. Although far from represemtingeneral theory of
local search metaheuristics, such dynamic models do pedhiel first steps in that
general, key direction.
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6 Conclusions

Despite the high level of research activity in local sear@taheuristics over the last
two decades, comparatively little progress has been matthe itheoretical founda-
tions of the field. Most research focuses either on the agiptic of existing meta-
heuristics to new problems or the development of new metéi®s. Ideas and
techniques are routinely re-introduced and re-invented j@s often difficult to as-
sess the novelty and/or contribution of new research. Risgéme roots of a theory
of local search have begun to emerge. The type of model disdus this paper, we
believe, provides a basis for a more general theory of lagalch. Specifically, we
have seen examples of how researchers have used fitnessdpedsalysis to better
understand the mechanisms underlying metaheuristiclseaet how these mech-
anisms give rise to various observed behaviors. Model gdination to both other
problems and a wider range of metaheuristics is a signifmatstanding challenge.
Similarly, the implications of these models for metaheigidesign are largely un-
known and unexplored. Even with inefficient and ad-hoc dgwelent methodolo-
gies, researchers have continued to make significant adsandhe effectiveness
of local search metaheuristics. By developing a geneilizeory of local search,
it should be possible to more precisely focus future re$eanc, as a consequence,
significantly accelerate the rate of advances in the field.
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