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Abstract Despite their empirical effectiveness, our theoretical understanding of
metaheuristic algorithms based on local search (and all other paradigms) is very lim-
ited, leading to significant problems for both researchers and practitioners. Specifi-
cally, the lack of a theory of local search impedes the development of more effective
metaheuristic algorithms, prevents practitioners from identifying the metaheuris-
tic most appropriate for a given problem, and permits widespread conjecture and
misinformation regarding the benefits and/or drawbacks of particular metaheuris-
tics. Local search metaheuristic performance is closely linked to the structure of the
fitness landscape, i.e., the nature of the underlying searchspace. Consequently, un-
derstanding such structure is a first step toward understanding local search behavior,
which can ultimately lead to a more general theory of local search. In this paper,
we introduce and survey the literature on fitness landscape analysis for local search,
placing the research in the context of a broader, critical classification scheme de-
lineating methodologies by their potential to account for local search metaheuristic
performance.

1 Introduction

Despite widespread success, very little is known aboutwhylocal search metaheuris-
tics work so well and under what conditions. This situation is largely due to the
fact that researchers typically focus on demonstrating, and not analyzing, algorithm
performance. Most local search metaheuristics are developed in an ad-hoc manner.
A researcher devises a new search strategy or a modification to an existing strategy,
typically arrived at via intuition. The algorithm is implemented, and the resulting
performance is compared with that of existing algorithms onsets of widely avail-
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able benchmark problems. If the new algorithm outperforms existing algorithms, the
results are published, advancing the state-of-the-art. Unfortunately, most researchers
(including, often, the author) fail to actually prove that the proposed enhancement(s)
actually led to the observed performance increase (as typically, multiple new fea-
tures are introduced simultaneously) or whether the increase was due to fine-tuning
of the algorithm or associated parameters, implementationtricks, flaws in the com-
parative methodology, or some other factor(s). Hooker [10]refers to this approach
to algorithm development as thecompetitive testingparadigm, arguing that “this
modus operandispawns a host of evils that have become depressingly familiar
to the algorithmic research community” and that the “emphasis on competition is
fundamentally anti-intellectual” [10], (p. 33). However,although few would argue
with Hooker’s criticisms, the competitive testing paradigm remains the dominant
paradigm for developing new algorithms – independent of whether they are exact or
approximate, or based on constructive or local search.

Due largely to the widespread practice of competitive testing, theoretical results
concerning the operation of local search metaheuristics are very limited. In partic-
ular, we currently lack fundamental models of local search metaheuristic behav-
ior. The importance of behavioral models cannot be understated. Ideally, behavioral
models enable practitioners to identify those problems forwhich a particular local
search metaheuristic is likely to be effective and those problem instances that are
likely to be more difficult than others. The broad availability of behavioral models
would enable researchers to identify fundamental similarities and differences be-
tween different local search metaheuristics and identify new research directions in
order to improve the performance of existing local search algorithms. In contrast, the
current lack of behavioral models has led to several undesirable side-effects, includ-
ing widespread conjecture and mythology regarding the benefits and/or operation of
particular local search metaheuristics.

A foundational concept in the development of behavior models of local search
metaheuristics is the notion of afitness landscape, i.e., the topological structure over
which search is being executed. Given a specific landscape structure – defined by
a search space, objective function, and neighborhood operator, a local search meta-
heuristic can be viewed as a strategy for navigating this structure in the search for
optimal or near-optimal solutions. Given this context, theeffectiveness of a particu-
lar metaheuristic is a function of how “well tuned” the navigation strategy is to the
given landscape. Consequently, knowledge of the fitness landscape structure is key
to developing effective metaheuristics, and consequentlyhas been a primary focus in
the theoretical analysis of local search metaheuristics. The objective of this chapter
is to survey the prior research on fitness landscape analysisfor local search meta-
heuristics, and assess the potential of these efforts to explain one or more aspects of
metaheuristic behavior / performance.

To facilitate focus and brevity, our emphasis is on local search metaheuristics,
e.g., tabu search, simulated annealing, and variable neighborhood search. These al-
gorithms, which iteratively modify a single solution via repeated perturbations, con-
trast to both constructive (e.g., GRASP and ant colony optimization) and evolution-
ary (e.g., genetic algorithms and genetic programming) metaheuristics. However,
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fitness landscape analysis does play a role in these paradigms as well. For example,
local search is widely used in both GRASP and ant colony optimization to post-
process solutions generated by the core constructive procedures. Similarly, fitness
landscape analysis has long been central in genetic algorithm theory, although the
analysis is significantly complicated by the presence of a population of solutions
and multi-parent recombination. Where appropriate, we cite relevant literature in
both of these sub-fields. Subsequently, where there is no risk of confusion, we refer
to local search metaheuristics simply as metaheuristics.

We begin in Section 2 by formally introducing the concept of afitness landscape
and a local search metaheuristic. Next, we introduce in Section 3 a classification
scheme for models of local search metaheuristic behavior, specifically focusing on
the objectives of any particular analysis; such objectivesare often implicit or unspec-
ified in the literature, and making the objectives explicit allows for an assessment of
the ultimate utility of a given methodology. We survey the broad range of landscape
structures identified by various researchers in Section 4, discussing their role in and
ability to account for metaheuristic performance. Most models of local search meta-
heuristic performance are implicit, in that they do not propose specific models of
metaheuristic run-time dynamics. In Section 5, we survey the limited exceptions –
which are exemplars of the types of models that ultimately will inform a rigorous
theory of local search. Finally, we conclude in Section 6.

2 Combinatorial Optimization, Local Search, and the Fitness
Landscape

We begin by formally defining a combinatorial optimization problem (COP), be-
fore introducing the concepts of a fitness landscape and a local search metaheuris-
tic. First, we explicitly differentiate aproblem(e.g., Boolean Satisfiability) from a
problem instance(e.g., a 100-variable, 300-clause instance of Random k-SATwith
k = 3). We denote a combinatorial optimization problem byΠ and an instance of
Π by Ω . Ω is drawn from some (possibly infinite) universe of possible problem
instances, which we denoteUΠ .

An instanceΩ of a combinatorial optimization problemΠ is fully specified by
two components: the state space and the objective function.The state spaceS is a
finite, although typically astronomically large, set of possible solutions toΩ . The
objective functionF assigns a numeric “worth” to each states∈ S. The only formal
restriction onF is that there must exist a total order of the co-domain, such that a
maximal or minimal value is well-defined. Typically,F : S→R+ or F : S→ Z+. The
objective function is commonly referred to as afitness function.

Given a COP instanceΩ , the ultimate objective is to locate a solutions∈ Ssuch
thatF(s) is optimal, i.e., minimal or maximal. Without loss of generality, we assume
the objective is minimization unless otherwise noted.

Local search proceeds via iterative modifications to complete solutionss∈ S,
in contrast to constructive and population-based metaheuristics. We further restrict
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our attention to the subset of local search metaheuristics that operate via iterative
modifications to asinglecomplete solutions, i.e., we ignore more complicated local
search metaheuristics that employ elite pools and strategies such as optima linking
[30] and path relinking [8]. In doing so, our goal is pragmatic: to discuss the state of
local search theory with respect to the simplest (albeit still effective) class of local
search metaheuristic before tackling more complex powerful derivatives.

All single-solution local search metaheuristics consist of the following four core
components: the state space, the objective function, the move operator, and the nav-
igation strategy. Search begins from an initial solutions = sinit that is generated
either at random or via some heuristic procedure, and proceeds via a sequence of
iterations. Themove operatorspecifies the set of allowable modifications (i.e., the
neighborhood) to the current solutions at any given iteration, one of which is se-
lected by thenavigation strategyto serve as the basis for the next iteration. The best
solution encountered in any iteration is stored and returned when the algorithm ter-
minates, typically after a time limit is exceeded or maximalnumber of iterations is
completed. We now explore each of these four components in more detail, provid-
ing simple examples of each as applied to both the well-knownTraveling Salesman
Problem (TSP) and Maximum Satisfiability Problem (MAX-SAT).

2.1 The State Space and the Objective Function

Both the state spaceS and the objective functionF are taken directly fromΩ , the
problem instance under consideration. For example, in ann-city TSP instance, the
state space consists of the set ofn! permutations, each representing a possible tour;
the objective function simply returns the total length of the input tour. In ann-
variable,m-clause MAX-SAT instance, the state space consists of the set of 2n

Boolean vectors of lengthn; the objective function returns the number of them
clauses that are satisfied in a solutions∈ S. In general, although we do not consider
the issue here, the details of how solutions are representedcan impact the definition
of both the move operator and the navigation strategy. However, this is typically not
the case for many well-known combinatorial optimization problems – including the
TSP and MAX-SAT.

2.2 The Move Operator

Given a state spaceS, the notion of locality in a local search algorithm is provided
by the move or neighborhood operatorN. N defines the set of allowable modifica-
tions to the current solutions in any given iteration. In single-solution local search
algorithms,N : S→P(S), whereP(S) denotes the power set ofS. More complicated
move operators, e.g., those whose domain and/or codomain are cross-products ofS
andP(S), respectively, are found primarily in evolutionary algorithms and other re-
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lated approaches such as optima linking, path relinking, and scatter search; see [14]
for a discussion of these and related issues. Given a solution s, the setN(s) is known
as theneighborhoodof s. Similarly, if s′ ∈ N(s), thens′ is said to be aneighborof
s.

Local search metaheuristics often employ rather simple move operators. For ex-
ample, the most widely used move operator for MAX-SAT maps each solutions∈ S
to the subset ofn solutions (wheren is the total number of Boolean variables) inS
that differ froms in the value of a single variable assignment; this is known asthe
“1-flip” neighborhood. Similarly, most local search metaheuristics for the TSP are
based in part on the 2-opt move operator [19], where the neighbors of a solution
s∈ S are defined as the subset of

(n
2

)

solutions inS obtained by inverting the sub-
tour between any pair of distinct cities on the tour specifiedby s. More complex
move operators can be obtained via straightforward generalization of these basic
operators, e.g.,k-flip move operators in MAX-SAT andk-opt move operators in the
TSP.

Move operators can vary significantly in their attempts to maintain “logical” lo-
cality. Both the 1-flip and 2-opt move operators induce minimal disruptions to the
current solutions: 1-flip inverts the value of a single Boolean variable, while2-opt
changes exactly 2 edges. However, in local search algorithms such as iterated local
search [20], the differences between neighboring solutions can be much more sub-
stantial, e.g., under the generalizedk-opt move operator for the TSP [13]. In both
cases, however, the perturbation is local in the sense that aneighboring solution is
obtained via asingleapplication of a move operator. We raise this issue to note that
a “local” search metaheuristic may in fact proceed by makingdrastic modifications
to individual solutions.

Mathematically, the move operatorN induces a relation on the spaceS×S, and
the properties of this relation can influence the performance of local search. For sim-
plicity, we refer to the relation induced byN simply asN. Although both the 1-flip
and 2-opt move operators are symmetric, in thats′ ∈ N(s) ⇒ s∈ N(s′), this is gen-
erally not required. Further,N is necessarily transitive and anti-reflexive. Beyond
defining the immediate neighborhood, a move operator also defines the connectiv-
ity of the search space, i.e., what solutions can be reached via a finite sequence of
moves from an initial solution. A move operatorN is said to induce aconnected
search space if from an arbitrary solution there always exists a sequence of moves
to an optimal solution.N is said to induce afully connectedsearch space if there
exists a sequence of moves between any two arbitrary solutions. Both the 1-flip and
2-opt move operators induce fully connected, and consequently connected, search
spaces. However, many powerful, problem-specific move operators induce discon-
nected search spaces, e.g., see [25].
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2.3 The Navigation Strategy

The mechanism for selecting some neighbors′ ∈ N(s) at each iteration of local
search is embodied in the navigation strategy, which we denote by ∆ . One of the
simplest navigation strategies follows the basic principle of gravity: select a neigh-
bor s′ ∈ N(s) with F(s′) < F(s). Two well-known variants of this greedy strat-
egy form the core of nearly all navigation strategies. Innext-descentsearch, the
neighborsN(s) are randomly ordered, and the first neighbors′ ∈ N(s) such that
F(s′) < F(s) is selected. Insteepest-descentsearch, the neighbor that provides the
maximal decrease in the objective function value (argmins′∈N(s)F(s′)) is selected,
with ties broken randomly.

By iterating greedy descent, local search will eventually arrive at a solutions∈ S
from which no immediate improvement in the value of the objective function is
possible;s is known as a local optimum, such that∀s′ ∈ N(s),F(s′) ≥ F(s). Unless
s is also a globally optimal solution, the navigation strategy must then guide search
to unexplored regions of the search space. When there existsa neighbors′ ∈ N(s)
such thatF(s) = F(s′), s is actually contained in a plateau, which may or may not
be locally optimal; this issue is discussed further in Section 2.4.

Within the local search community, strategies for escapingor avoiding local op-
tima are commonly referred to asmetaheuristics. Formally, a metaheuristic is a
heuristic that dynamically alters the behavior of a core local search heuristic, typi-
cally in response to the properties of recently visited solutions. In most local search
metaheuristics, the core heuristic is greedy descent; a metaheuristic is activated
when the descent strategy becomes trapped in a local optimum, and deactivated once
search is successfully directed toward new regions of the search space. Conceptu-
ally, metaheuristics and greedy descent are distinct formsof navigation strategies,
each operating at a different level of abstraction. However, in practice, the boundary
between the two is often fuzzy, for example in simulated annealing. Consequently,
metaheuristics are often viewed as atomic entities, such that the distinction between
the core heuristic and the metaheuristic is ignored. We present them as such, while at
the same time acknowledging any intended distinction between the core and meta-
heuristic.

Perhaps the most obvious way to escape a local optimum is to generate a new
starting solutionsinit and then re-initiate greedy descent. This process can be iterated
until a global optimum is located. The resulting metaheuristic is commonly referred
to asiterated descent, which is distinct from the next-descent and steepest-descent
procedures. In practice, iterated descent is a simple way toimprove the performance
of a core greedy descent strategy. Further, iterated descent can locate very high-
quality solutions for some combinatorial optimization problems, e.g., see Beveridge
et al. [2].

Clearly, the probability of iterated descent locating a global optimum approaches
1 as the number of greedy descentsN approaches∞. However, from a practical
standpoint, iterated descent is only effective if the fitness distribution of the local
optima assumes a certain form, i.e., one in which the left tail of the distribution
is non-negligible. For many well-known combinatorial optimization problems, the
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fitness distribution of local optima in small problem instances satisfies this require-
ment. At the same time, it has been empirically demonstratedthat such tails typically
vanish at larger problem sizes (for example in the TSP ), causing iterated descent to
perform poorly due to what has come to be known as a “central limit catastrophe”
[13].

2.4 The Fitness Landscape

Given a local search metaheuristicA and a combinatorial optimization problemΠ ,
we are interested in determining what makes a particular instanceΩ ∈ UΠ easy or
difficult for A. Problem difficulty, or equivalently search cost, is dictated by the in-
teraction ofA with the underlying search space. For example, suppose all globally
optimal solutions toΩ reside in a small region of the search space containing other-
wise poor local optima. IfA consistently biases search toward regions of the search
space containing generally high-quality local optima, then the cost (on average) of
locating optimal solutions toΩ usingA is likely to be large. In contrast, ifA inten-
sifies search in regions of the search space with poor local optima, thenA is more
likely to locate optimal solutions toΩ in shorter run-times.

Due to the central role of the search space in determining problem difficulty,
much of the research on models of problem difficulty for localsearch has concen-
trated identifying structural features of the search spacethat are likely to influence
the cost of local search. Given a local search metaheuristicA, the search space is
defined by the combination of (1) the state spaceS, (2) the move operatorN, and
(3) the objective functionF. Formally, we define the search spaceL = (S,N,F) as a
vertex-weighted directed graphG = (V,E) in which:

1. V = S
2. ∀v∈V, the weightwv of v is equal toF(v)
3. E = {(i, j)|i 6= j ∧∃i, j : i ∈ N( j)}

Within the local search community, the graphG is known as afitness landscape, a
concept first introduced by the theoretical biologist Sewall Wright in 1932 [44].

We provide two examples of very simple fitness landscapes in Figure 1; in gen-
eral, landscapes are high-dimensional and extremely difficult to visualize. In both
examples,S= {1,2, ...,20} andN(x) = {x−1,x+1}, subject to the boundary con-
ditions N(1) = {20,2} and N(20) = {19,1}. Type I fitness landscapes are char-
acterized by deep, punctuated valleys with abrupt changes in the fitness of neigh-
boring solutions. In contrast,Type II fitness landscapes are dominated by plateaus
of equally fit neighboring solutions, with discrete jumps infitness between the
plateaus. We differentiate between the two types of fitness landscapes for three rea-
sons. First, different terminology is associated with the two landscape types. Sec-
ond, Type I and Type II landscapes have different implications for the design of
metaheuristic navigation strategies. Third, these two types are representative of the
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Fig. 1 Examples of Type I (left figure) and Type II (right figure) fitness landscapes.

fitness landscapes found in mostNP-hard optimization problems. For example, the
TSP and MAX-SAT respectively possess Type I and Type II fitness landscapes.

In a Type I fitness landscape, the two key features of interestare local optima and
global optima. Alocal optimumis a pointx∈Ssuch that∀y∈N(x), F(x)≤ F(y). In
our example Type I landscape, the following vertices are local optima: 3, 7, 13, 16,
and 18. Aglobal optimumis a pointx ∈ S that is both locally optimal and∀y ∈ S,
F(x)≤ F(y). In our example Type I landscape, vertex 13 is the sole globaloptimum.
Theattractor basinof a local optimumsconsists of alls′ ∈ Ssuch thats results with
non-zero probability when a descent-based procedure is applied to s′; as first noted
by Reeves [31], attractor basin membership may be stochastic due to the different
forms of randomization commonly associated with descent procedures.

Plateaus are the dominant feature of Type II fitness landscapes. Informally, a
plateau is simply an interconnected region of the fitness landscape where all points
have equal fitness. Formally, a plateau is defined as a setP⊆ Ssuch that:

1. ∀x∈ P, F(x) = C for some constantC
2. For any two pointsx,y∈ P there is a sequence of solutions{x,a1, ...,an,y} such

that∀i, ai ∈ SandF(x) = F(a1) = ... = F(an) = F(y) = C
3. (a)a1 ∈ N(x), (b)∀i 6= n−1,ai+1 ∈ N(ai), and (c)y∈ N(an)

If for somex ∈ P there exists ay ∈ N(x) such thatF(y) < C, the plateau is called
a bench, and all such solutionsy are calledexits. If there are no exits from a
plateau, then the plateau is locally optimal. If the plateauis locally optimal and
∀x ∈ S,C ≤ F(x), then the plateau is also globally optimal. All benches, local op-
tima, and global optima are labeled in our example Type II fitness landscape. There
are many additional nuances regarding the terminology of features found in Type II
fitness landscapes; an overview is provided by Frank et al. [7].

The qualitative differences between Type I and Type II fitness landscapes have
an important impact on the design of navigation strategies and metaheuristics for lo-
cal search. For example, both next-descent and steepest-descent typically terminate
once a solutions is located with no lower-fitness neighbors. The implicit, built-in
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assumption is that the local optimums is not a member of a plateau, or that ifs is
a member of a plateau, then the plateau itself is locally optimal. In general, these
assumptions do not hold when dealing with Type II fitness landscapes; if greedy
descent terminates at a local optimum, it is possible that the optimum resides on a
bench, from which an exit may exist. Additionally, the attractor basins in Type II
fitness landscapes are often very shallow. For example, Frank et al. [7] have shown
that in MAX-SAT, it is often possible to escape a local optimum by accepting a
single non-improving move. Consequently, the emphasis on navigation strategies in
Type II fitness landscapes is on moving quickly from one plateau to another, either
by finding an exit from a bench, or by temporarily accepting non-improving moves.
In contrast, in Type I fitness landscapes the emphasis is on escaping local optima
with potentially large and deep attractor basins.

3 Landscape Analysis and Cost Models: Goals and Classification

As discussed previously, most research on local search focuses on developing newer,
better-performing algorithms. The goal in such research isclearly todemonstrateal-
gorithm performance. Paul Cohen notes in his bookEmpirical Methods for Artificial
Intelligence([5], p. 249) that “It is good to demonstrate performance, but it is even
better toexplain[emphasis added] performance.” The hard sciences advance via the
development of accurate models of the object or objects of interest, models that are
both consistent with existing observations and suggest newbehavioral hypotheses.
Currently, models of local search metaheuristics foranycombinatorial optimization
problem are rare to non-existent.

In developing a model of a given object, we generally concentrate on capturing
specific behaviors or small sets of behaviors. In the contextof local search meta-
heuristics, the behavior of interest is generally the cost required to locate an optimal
solution (or, more generally, a solution with a given quality threshold) to a problem
instance. Due to the stochastic nature of local search (withthe sole noted exception
of some variants of tabu search), search cost is a random variable with a particular
distribution.Cost modelsof local search metaheuristics are behavioral models that
capture various aspects of the cost distribution. Most often, we focus on theaver-
ageor typical search cost, as defined by either the distributionmean or median. It is
well-known that given a fixed problem size (e.g., 100-city TSPs), the average search
cost across instances can vary by many orders of magnitude. One objective in devel-
oping cost models is to account for a significant proportion,and ideally all, of this
variability. A more aggressive, penultimate objective is to develop cost models that
account for the entire distribution of search cost.

In this section, we discuss a general classification scheme for cost models of lo-
cal search metaheuristics. We consider three different types of cost models, differing
in both the type of information upon which they are based and the extent to which
they attempt to explicitly capture metaheuristic run-timedynamics.Staticcost mod-
els (Section 3.1) are functions of one or more features of thefitness landscape, and
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only implicitly consider metaheuristic dynamics. In contrast,quasi-dynamicand
dynamiccost models (Sections 3.2 and 3.3, respectively) are based on analyses of
metaheuristic run-time behavior. Quasi-dynamic cost models are functions of sim-
ple summary statistics of metaheuristic behavior. In contrast, dynamic cost models
explicitly model low-level metaheuristic behavior using Markov chains.

3.1 Static Cost Models

Static cost models are strictly based on fitness landscape features; metaheuristic
dynamics are completely and explicitly ignored. In a staticcost model, the inde-
pendent variables are fitness landscapes features, or combinations thereof, and the
dependent variable is the mean or median search cost. To facilitate model evalua-
tion, static cost models are expressed as linear or multipleregression models. Under
this formulation, the accuracy of a static cost model can be naturally quantified as
the r2 value of the corresponding regression model, i.e., the proportion of the total
variability accounted for by the model. Most static cost model considered to date
are based on a single feature of the fitness landscape. For purposes of brevity, we
often denote a static cost model based on the featureX as theX static cost model, or
simply theX model. Similarly, given the close relationship between static cost mod-
els and regression models, we frequently use the two terms interchangeably. Finally,
regression methods make certain assumptions (e.g., model errors are homogeneous
across the range of the independent variable) in order to generate valid statistical
inferences concerning model parameters. These assumptions are generally not sat-
isfied in metaheuristic research. The motivation in using regression models is to
(1) quantify overall model accuracy using the associatedr2 value and (2) analyze
worst-case deviations from a predicted/expected value. Failure to satisfy regression
assumptions does not impact our ability to achieve either ofthese objectives.

The quality of a static cost model is tied to the modelr2: models with largerr2

values are more accurate. However, there are limits on the absolute level of accuracy
that we can reasonably expect to achieve. As discussed in Section 4, the most accu-
rate static cost models of local search only yieldr2 ≈ 0.5 in the worst case, which is
typically observed for the most difficult sets of problem instances. Although failure
to develop more accurate static cost models, despite intense research effort, is not
evidence for their impossibility, there does appear to be a practical limit on what
can be achieved. Because static cost models ignore metaheuristic dynamics, the ex-
istence of models with evenr2 ≈ 0.5 is in some sense surprising. In expressing
fitness landscape features as atomic numeric quantities, there is also the obvious
potential for loss of information. Further, there are practical (although not theoreti-
cal) limits on the accuracy with which we can measure variousquantities, including
search cost.
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3.2 Quasi-Dynamic Cost Models

A first-order approach to improving static cost models is to incorporate coarse-
grained information concerning metaheuristic run-time behavior. For example, we
might track simple summary statistics that capture definingcharacteristics of the set
of solutions generated by a metaheuristic. Given such summary statistics, we can
then construct regression models relating these summary statistics to search cost,
and quantify model accuracy as the resultingr2. We refer to such cost models as
quasi-dynamiccost models. The “quasi-dynamic” modifier derives from the fact
that the model is based on aggregate statistics relating to run-time behavior, as op-
posed to an explicit model of metaheuristic run-time dynamics. The sole difference
between static and quasi-dynamic cost models is in the nature of the information
captured in the independent variable(s).

Most of the issues relating to possible limitations on the accuracy of static cost
models equally apply to quasi-dynamic cost models. However, because they ac-
count for some aspects of run-time behavior, we would expectin some sense the
accuracy of quasi-dynamic cost models to be higher than thatof static cost mod-
els, although less than the fully dynamic cost models considered below. Empirical
evidence supports this observation: some of the most accurate cost models of lo-
cal search metaheuristics developed to date are quasi-dynamic [35], and achieve a
worst-case accuracy ofr2 ≈ 0.65.

3.3 Dynamic Cost Models

Because they are respectively based on fitness landscape features and summary
statistics of run-time behavior, static and quasi-dynamiccost models yield nodi-
rect insight into the dynamical behavior of local search. To gaininsight as to why
particular landscape or run-time statistics are highly correlated with search cost, we
turn todynamiccost models. Dynamic cost models are high-resolution models (e.g.,
Markov models) of the run-time behavior of local search metaheuristics. Research
on dynamic cost models can be traced to Hoos [11], who used Markov models
to posit an explanation for certain run-time behaviors observed for Walk-SAT and
other local search algorithms in the Random 3-SAT phase transition region. How-
ever, the ability of these models to account for variabilityin problem difficulty was
not considered.

To date, dynamic cost models are represented as Markov chains which coarse-
grain the search space in some way. In one common approach, each state of the
Markov chain captures the distancei to the nearesttarget (e.g., optimal) solution,
in addition to other algorithm-specific attributes. Transitions in the Markov chain
correspond to iterations of the local search metaheuristic. A dynamic cost model is
constructed by specifying a set of states, and then estimating the various transition
probabilities between the states. The details of the estimation process are algorithm-
dependent. The search cost predicted by a dynamic cost modelis defined as the
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mean number of iterations until an absorbing state (i.e., a state withi = 0) is encoun-
tered. For some Markov chains, analytic formulas for the mean time-to-absorption
are easily derived. When analytic formulas are not immediately available, it is prag-
matic to resort to simulation of the cost model to estimate mean search cost.

To quantify the accuracy of a dynamic cost model, straightforward linear re-
gression models can be used, in which the predicted and actual search costs serve
as the independent and dependent variables, respectively;model accuracy is then
quantified by ther2 value of the linear model. Dynamic cost models differ from
their static counterparts in that they explicitly considerthe metaheuristic, and move
beyond simple numeric characterizations of either fitness landscape features or run-
time behavior. Consequently, wea priori anticipate higher levels of accuracy than
are possible for static and quasi-dynamic cost models. Thisconjecture is supported
in practice;r2 values in excess of 0.90 are reported in the literature. However, the
near-perfect accuracy does not come without costs: dynamiccost models are gener-
ally more expensive to construct than static or quasi-dynamic cost models, and are
generally far less intuitive.

3.4 Descriptive Versus Predictive Cost Models

For all practical purposes, the cost models we discuss are purely descriptive, in that
they providea posterioriexplanations for why one problem instance is more dif-
ficult than another for a given local search metaheuristic. In principle, cost models
could be used to compute a relatively tight confidence interval, via standard regres-
sion techniques, for the expected cost required to locate anoptimal solution to a
new problem instance. However, because the most accurate cost models to date (as
discussed below) are functions of the set ofall optimal solutions to a problem in-
stance, the effort required to generate the prediction actually exceeds that of simply
locating an optimal solution. Given an accurate cost model,the problem of run-
time prediction is essentially equivalent to the problem ofestimating the value of
the model parameters. The nature of the cost-accuracy trade-off in model parameter
estimation is currently an open research question.

This doesnot imply that cost models are a scientific curiosity, useless inpractice.
Cost models have been used to make specific predictions regarding the behavior of
local search metaheuristics (e.g., see [42]). Further, andperhaps most importantly,
cost models can explicitly identify those features of the fitness landscape that are
overwhelmingly responsible for problem difficulty in localsearch. By identifying
such features, we are enabling algorithm designers to focuson the areas most likely
to yield performance improvements, and to move beyond the ad-hoc, benchmark-
driven design methodology that is current employed [10].
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4 Fitness Landscape Features and Static Cost Models

The performance of any local search metaheuristic is dictated by the interaction
of the metaheuristic with the underlying fitness landscape.Toward understanding
this interaction, researchers have initiated numerous investigations of the structural
characteristics of the fitness landscapes of various combinatorial optimization prob-
lems. As a result, several fitness landscape features have been identified that have
been shown, via abstract argument or in concrete inference,to influence problem
difficulty for local search. Examples of such features include1:

• The number and/or distribution of local optima
• The strength and size of local optima attractor basins
• The size and extension of the search space

Although the importance of these features is widely acknowledged, little or no em-
pirical evidence exists to substantiate theextent to which any of these features,
or combination thereof, is actually correlated with local search cost. Because the
strength of the relationships have not in general been quantified, it is possible or
even likely that the prime factor(s) dictating problem difficulty for local search have
either yet to be identified or remain largely unexplored.

Structural features of the fitness landscape also have, or atleastshouldhave, a
major influence on the design of metaheuristics. Local search metaheuristics dif-
fer largely in their approach to escaping the attractor basins of local optima, and
the complexity of the proposed escape mechanisms – in terms of algorithmic de-
tails – is highly variable. Ideally, designers tailor a metaheuristic to the class of
fitness landscapes that the algorithm is likely to encounter. Yet, very few concrete
details are known about attractor basin strength, i.e., theexpected computational
effort required to escape local optima. This is true for nearly all combinatorial op-
timization problems. Consequently, it is unclear whether further attention on novel
escape mechanisms is warranted, or if researchers should shift their focus to de-
signing more effective high-level search strategies, suchas those associated with
advanced implementations of tabu search.

While important, the study of factors such as local optima attractor basin strength
are not necessarily a driver in overall problem difficulty. In particular, we observe
that once the problem of escaping local optima is solved, thebroader issue of how
to perform effective global search remains open. We now survey those global struc-
tural features of the fitness landscape that have been proposed to account for the
variability in problem difficulty for local search. We present the motivation behind
each feature, summarize prior research, and identify limitations. It should be noted
that not all of these features have been investigatedexplicitly in the context of a cost
model of local search. However, the objective of correlating the presence of partic-
ular features with search difficulty is a common, necessary theme. For illustrative
purposes, we additionally provide in some cases graphics illustrating cost model ac-
curacy drawn from the author’s own research on job-shop scheduling (JSP). Finally,

1 Kauffman (p. 44, [16]) provides a more comprehensive list, developed for adaptive local search
algorithms.
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Fig. 2 Scatter-plot of the number of globally optimal solutions versus search cost for 6 job, 6
machine random job-shop problems; the least-squares fit line is super-imposed.

we note that an alternative, complementary perspective on fitness landscape analysis
is provided in [12].

4.1 The Number of Optimal Solutions

One of the most intuitive measures of problem difficulty is the number of globally
optimal solutions in a fitness landscape. It should be difficult to locate a global
optimum if they are relatively rare. Conversely, if global optima are numerous, then
it should be relatively easy for local search to find one.

The relationship between the number of globally optimal solutions and problem
difficulty for local search was originally analyzed in the context of MAX-SAT and
the more general MAX-CSP [4]. The motivation behind this research was to de-
velop an explanation for the easy-hard-easy pattern in problem difficulty observed
in the phase transition regions of these problems [17, 28]. It was initially conjectured
that the peak in search cost was due to changes in the number ofoptimal solutions.
Yokoo [45] proved that this was not the case, by showing that the mean number
of optimal solutions varies in no special way near the phase transition region. In a
more refined analysis, Clark et al. demonstrated a relatively strong negativelog10-
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log10 correlation between the number of globally optimal solutions and search cost
for three MAX-SAT metaheuristics, withr-values ranging anywhere from−0.77
to −0.91. However, the cost model failed to account for the large cost variance ob-
served for problems with small numbers of optimal solutions, where model residuals
varied over three or more orders of magnitude. A similar situation is exhibited in the
JSP for tabu search.

In Figure 2, we show a scatter-plot of the mean search cost required by tabu
search (see [40] for details) to locate an optimal solution to 6 job, 6 machine random
JSPs, as a function of the number of optimal solutions to a problem instance. The
model is not overly accurate, withr2 = 0.2223, and the graphic clearly demonstrates
the very large residuals common to cost models based on the number of optimal
solutions.

The distribution of the number of optimal solutions dependsin large part on the
nature of the objective function, specifically whether all or a fraction of solution
attributes dictate solution fitness. For example, the number of optimal solutions to
instances of the 2-D integer Euclidean Traveling Salesman Problem is generally
very small, and is frequently equal to 1 [36]. The reason is straightforward: tour
length is a function ofall the cities in the instance, and the likelihood of two tours
having identical lengths is relatively small given randomly sampled inter-city dis-
tances. The likelihood of a single optimal solution is even higher if real-valued city
coordinates are allowed. A similar situation is observed inthe Permutation Flow-
Shop Problem [39]. In contrast, the fitness of solutions in the JSP is dictated by a
subset of job orderings, i.e., those on the critical path. Consequently, large plateaus
of solutions are common in the JSP [41].

While intuitive, the accuracy of static cost models based onthe number of opti-
mal solutions is clearly limited. Further, there is anecdotal evidence that accuracy
decreases as larger problem instances are considered.

4.2 The Distance Between Local Optima

The cost of local search is also influenced by the size of the search space. Search in
most metaheuristics is heavily biased toward local optima,suggesting that the size
of the sub-space of local optima may be strongly correlated with problem difficulty.
A straightforward approach to quantifying the size of the local optima sub-space
is to simply measure the mean distance between a sample of random local optima;
large distances should be indicative of large sub-spaces. This notion of quantifying
search space size was first introduced by Mattfeld et al. [21]in the context of the
JSP. However, Mattfeld et al. did not investigate the ability of the metric to account
for the variability in problem difficulty across a fixed set ofinstances; rather, they
used the metric to account for differences between distincttypes of JSP instances.

In Figure 3, we show a scatter-plot of the mean search cost required by tabu
search (again see [40] for details) to locate an optimal solution to 6 job, 6 machine
random JSPs, as a function of the mean distance between random local optima. Ac-
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Fig. 3 Scatter-plot of the mean distance between random local optima versus search cost for 6 job,
6 machine random job-shop problems; the least-squares fit line is super-imposed.

curacy is similar to the static cost model based on the numberof optimal solutions,
with r2 = 0.2744. Similarly, the accuracy of such models tends to decrease with
increases in problem size and the graphic exhibits very large residuals, varying over
several orders of magnitude.

4.3 The Distance Between Local and Global Optima

The number of globally optimal solutions and the size of the search spaceS are
conceptually independent; it is possible to embed as many as|S| optimal solutions
within a search spaceS. Undoubtedly, both factors influence problem difficulty for
local search. If we fix|S| and assume that attractor basin strength and size remain
relatively constant, we expect problems to become easier asthe number of optimal
solutions grows. Analogously, if we fix the number of optimalsolutions, it should
be more difficult to locate an optimal solution as the number of optimal solutions
shrinks. It follows that both the number of optimal solutions and the distance be-
tween local optima are, in isolation, unlikely to account for a significant proportion
of the variability in problem difficulty for local search.
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Fig. 4 Scatter-plot of the mean distance between random local optima and the nearest optimal
solution versus search cost for 6 job, 6 machine random job-shop problems; the least-squares fit
line is super-imposed.

To correct for these flaws, we now discuss a measure that simultaneously ac-
counts for the impact of both features on problem difficulty:the mean distance be-
tween random local optima and thenearestoptimal solution. The intuition is that
problem difficulty for local search is proportional to the total distance that must
be traversed between an initial solution (e.g., a random local optima) and a tar-
get solution (e.g., an optimal solution). This measure was first introduced in the
context of MAX-SAT by Singer et al. [35]. Well-known local search algorithms
for MAX-SAT rapidly descend from poor-quality initial solutions to near-optimal
“quasi-solutions”, and subsequent search is restricted tothe space of such quasi-
solutions. Singer et al. hypothesized that the search cost was proportional to the
size of the quasi-solution sub-space, which in turn could beestimated by the mean
distance between the first quasi-solution encountered and the nearest optimal solu-
tion. Their experimental results demonstrated a very strong (r ≈ 0.95) correlation
between this metric and search cost for easy MAX-SAT instances; for more difficult
instances, the accuracy degraded only slightly tor ≈ 0.75.

In Figure 4, we show a scatter-plot of the mean search cost required by tabu
search (again see [40] for details) to locate an optimal solution to 6 job, 6 machine
random JSPs, as a function of the mean distance between random local optima and
the nearest optimal solution. Ther2 value for the corresponding static cost model is
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equal to 0.6424, similar to the accuracy obtained by Singer et al. With few excep-
tions, residuals vary over roughly 1 to 1.5 orders of magnitude; the improvement
is significant relative to static cost models based strictlyon the number of optimal
solutions or the mean distance between local optima. Clearly, the static cost model
based on the measure proposed by Singer et al. is a landmark achievement, repre-
senting the first reasonably accurate cost model of any localsearch metaheuristic,
for any combinatorial optimization problem. Previously proposed models achieved
accuracy of at mostr2 ≈ 0.3 in the worst case, in contrast to ther2 ≈ 0.6 achieved
by Singer et al.

4.4 Fitness-Distance Correlation

Another factor hypothesized to influence problem difficultyfor adaptive local
search algorithms is the correlation between solution fitness and the distance to
an optimal solution, often simply denoted as FDC (Fitness-Distance Correlation)
[18, 22, 37, 24]. In a problem instance with high FDC, good solutions tend to be
tightly clustered or, equivalently, share many solution attributes in common. Con-
sequently, an adaptive search algorithm should be able to exploit these similarities
during search. For example, Schneider et al. [33] introducean adaptive local search
algorithm for the Traveling Salesman Problem that, after identifying the edges com-
mon to a set of high-quality local optima, restricts subsequent search to the sub-
space of solutions withonly those edges. Similarly, Sourlas [37] introduced an
adaptive simulated annealing algorithm for the TSP that determines those edges
appearing infrequently in high-quality solutions, and prevents subsequent search
from generating tours containing those edges. FDC has also been used to account
for differences in the relative difficulty of problem instances, e.g., see [15]. As with
correlation length, we do not further consider FDC in the context of cost models
for local search due to most (basic forms of) local search metaheuristics being non-
adaptive in the evolutionary algorithm sense. Further, there is little evidence that
FDC can account for a significant proportion of variability in search cost observed
for a set of fixed-sized problem instances.

4.5 Solution Backbones

Recently, a number of researchers (e.g., [1] and [36]) have hypothesized that the
backboneof a problem instance may be correlated with problem difficulty. Infor-
mally, the backbone of an instance is the set of solution attributes or variables that
possess identical values inall optimal solutions; as a consequence, the definition
of a backbone depends on the representation scheme used to encode solutions. The
intuition behind the backbone measure is that the majority of effort in local search
may be spent assigning correct values to backbone variables. Non-backbone vari-
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ables appear to be significantly less constrained, enablingsearch to quickly locate
an optimal solution once the backbone is located.

The recent interest in backbones is due in large part to the observation that large-
backboned problem instances begin to appear in large quantities near the critical
region of the Random 3-SAT phase transition [34] [27] [23] [35]; the coincidence
of the two observations immediately leads to the hypothesisthat backbone size is
correlated with problem difficulty. More recently, Achlioptas et al. [1] argue that the
shift from small to large-backboned instances in the phase transition region suggests
that the most difficult instances may in fact have a backbone size of 0.5, although
this hypothesis has not been verified. Slaney and Walsh [36] analyze the correlation
between problem difficulty and backbone size for constructive search algorithms
for a number ofNP-hard optimization problems. For the Traveling Salesman and
Number Partitioning Problems, they report a weak-to-moderate correlation (e.g.,r
between 0.138 andr = 0.388) between backbone size and the cost of locating an
optimal solution.

4.6 Landscape Correlation Length

A number of researchers have hypothesized that the “ruggedness” of a fitness land-
scape is likely to be highly correlated with problem difficulty for adaptive search
algorithms such as genetic and other evolutionary algorithms [43, 16, 38]. A fitness
landscape is said to be rugged if there is a rapid change in thefitness between nearby
solutions in the landscape. If the fitness of nearby solutions is uncorrelated, we can-
not expect adaptive search to outperform a random walk, i.e., there is no structure
to exploit. Ruggedness is frequently quantified as the landscape correlation length,
which captures the maximal distance between two arbitrary solutions for which
there still exists significant correlation between their fitness values [43]. We do not
consider correlation length in the context of static cost models of local search for
two reasons. First, most local search metaheuristics are not adaptive, such that cor-
relation length is unlikely to have a major impact on problemdifficulty. Second, and
more importantly, the extensive research on landscape correlation lengths indicate
that for a wide range of well-knownNP-hard optimization problems, the correlation
length isstrictly a function of problem size [32]. For example, the correlation length
in ann-city TSP is given byn/2, while in ann-vertex Graph Bi-Partitioning Prob-
lem, it is given by(n−3)/8 [38]. Perhaps most dramatically, Rana [29] showed that
the landscape correlation length is effectively constant over the easy-hard-easy pat-
tern in problem difficulty observed for Random 3-SAT. Consequently, correlation
length fails to account forany of the variability in problem difficulty observed in
sets of fixed-sized problem instances.
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4.7 Phase Transitions

Much of research on problem difficulty within the artificial intelligence and com-
puter science communities has focused on the identificationof so-calledphase tran-
sitions in problem difficulty [9]. A phase transition in a combinatorial optimiza-
tion problem identifies an order parameter that partitions the universe of problem
instances into subsets with differing degrees of expected difficulty. For example,
the clause-to-variable ratiom/n in Random 3-SAT induces a clear pattern: asm/n
ranges from 0 to∞, the degree of problem difficulty exhibits a well-known easy-
hard-easy pattern [3]. While successful in identifying inter-partition differences in
problem difficulty, phase transitions fail to account for the often considerable vari-
ability within a partition; the latter can vary over many (e.g., 6 or more) orders of
magnitude, even for small problem instances. The failure toexplain intra-partition
variance in problem difficulty should not, however, be viewed as a deficiency of
phase transition models; phase transition research was initially motivated by the
desire to generate difficult test problems, and this goal hasbeen achieved.

5 Fitness Landscapes and Run-Time Dynamics

Fitness landscape analysis and the associated static cost models are only a first step
toward a more general theory of local search metaheuristics. Rather, the ultimate
objective is to develop models linking the fitness landscapestructure with models
of metaheuristic search dynamics. In contrast to work on fitness landscape analysis,
research addressing metaheuristic dynamics is very limited. This is due in part to
the difficulty of the modeling, and to the relatively recent emphasis on dynamics
modeling. In this section, we survey this research, highlighting the accuracy of the
models and the insights they facilitate.

As discussed previously, static cost models only correlatefitness landscape struc-
tures with search cost; metaheuristic dynamics are completely ignored. An interme-
diate between static and dynamic cost models are quasi-dynamic cost models, which
are based on summary information concerning metaheuristicdynamics. One exam-
ple is introduced by Watson et al. [42] in the context of tabu search and the JSP. In
Section 4.3, we introduced a related static cost model basedon the mean distance
between random local optima and the nearest optimal solution. However, Watson et
al. observe that random local optima arenot representative of the solutions visited
by tabu search during execution. Instead, they proposed a quasi-dynamic cost model
based on the mean distance between solutions actually visited by tabu search and
the nearest optimal solution.

In Figure 5, we show a scatter-plot of the mean cost required by tabu search to
locate an optimal solution to 6 job, 6 machine random JSPs, asfunction of the mean
distance between solutions visited by tabu search and the nearest optimal solution.
Ther2 value for the corresponding quasi-dynamic cost model is 0.7808, represent-
ing a 21% increase over the corresponding static cost model;greater improvements
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Fig. 5 Scatter-plot of the mean distance between solutions visited by tabu search and the nearest
optimal solution versus search cost for 6 job, 6 machine random job-shop problems; the least-
squares fit line is super-imposed.

in accuracy were obtained for larger problem instances. With few exceptions, the
predicted costs are within a factor of five of the observed costs, representing a
marked improvement in accuracy relative to the best available static cost models
presented previously.

While quasi-dynamic cost models clearly illustrate the improved accuracy that is
facilitated by linking fitness landscape structure and metaheuristics dynamics, they
provide only indirect insight into metaheuristic dynamics, which is – we argue –
the primary objective in developing any theory of local search metaheuristics. Most
metaheuristics are randomized, if implicitly (e.g., through specification of an initial
starting solution), such that Markov chains can be used to explicitly model search
dynamics. There are two primary challenges in developing such Markov models:
(1) aggregating elements of the search space, in order to avoid exponential numbers
of states and (2) estimating the state transition probabilities.

To date, the majority of dynamic models of metaheuristics (which, as discussed
below, are very limited) follow Pappadimitriou [26] in aggregating states based on
their distance to the nearest optimal solution. Depending on the metaheuristic, it may
further be necessary to replicate states in order to accountfor memory mechanisms,
e.g., of the form found employed in tabu search [42].
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Hoos [11] proposed a Markov model based on distance aggregation in the con-
text of MAX-SAT. The objective of Hoos’ analysis was to provide an explanation for
specific stagnation behavior in (at the time) state-of-the-art local search metaheuris-
tics for MAX-SAT, in which the run-time cost required to locate optimal solutions
for certain instances could not be explained by existing models. Hoos hypothesized
that the observed stagnation behavior was caused by the presence of sub-optimal
“traps”, which caused search to be drawn away from regions ofthe state space con-
taining optimal solutions, and introduced a branched Markov model to represent the
search dynamic. Using posited transition probabilities, Hoos demonstrated that the
model accurately captured the search dynamics observed by MAX-SAT local search
metaheuristics on this class of problem instance.

Watson et al. [42] introduced Markov models for a tabu searchalgorithm for
the JSP. The contents of short-term memory were abstractly represented as the cur-
rent “gradient” or change in the distance to the nearest optimal solution observed
between the current and previous iteration of the tabu search metaheuristic, and
embedded in the Markov state capturing distance to the nearest optimal solution.
Transition probabilities were estimated by periodically observing the tabu search
algorithm, computing the current search gradient and the distance to the nearest
optimal solution; transition probabilities were then estimated using the aggregate
sample, for each problem instance.

The resulting Markov models were then simulated to compute the distribution of
the number of tabu search iterations required to locate an optimal solution. Com-
parison of the simulated and empirical results indicated that the proposed Markov
model accurately predicts the observed search costs; predicted mean search cost was
within a factor of five of the observed value, and the full search cost distribution
was reasonably approximated by the Markov model. Although beyond the present
scope, Watson et al. also discuss novel observations regarding the linkages between
static, quasi-dynamic, and dynamic cost models in the context of tabu search. Fur-
ther, the model allowed the authors to propose and test certain hypotheses regarding
metaheuristic behavior for the JSP, including the lack of benefit due to alternate ini-
tialization strategies. For completeness and contrast with corresponding results for
static and quasi-dynamic cost models, we shown in Figure 6 the predicted versus
actual search costs for 6 job, 6 machine random JSPs. Ther2 for the model is a
remarkable 0.96, with predictions in nearly all cases within a factor of two of the
observed values.

Most recently, Fournier [6] introduced a Markov model to account for a simple
stochastic local search metaheuristic for MAX-SAT. In contrast to Hoos and Watson
et al. the search space is aggregated in terms of solution quality. Each discrete value
of solution quality (the number of unsatisfied clauses) is represented by a state in
the Markov chain. The state transition matrix then specifiesthe probability of tran-
sitioning from a state with qualityq to a neighboring state with solution qualityq′.
The resulting Markov chain is then simulated and compared against experimental
results to assess model quality, which in turn provides information concerning the
accuracy of the proposed metaheuristic dynamics.
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Fig. 6 Scatter-plot of the predicted versus actual search cost for6 job, 6 machine random job-shop
problems, using a Markov model; the least-squares fit line issuper-imposed.

Fournier’s analysis focuses on a simple metaheuristic for MAX-SAT, called
RSAT, which simply selects a neighbor at each iteration witha probability in pro-
portion to the neighbor’s quality. This is in contrast to Hoos and Watson et al.
who analyze metaheuristics closely related to the state-of-the-art for their respective
problems. Further, Fournier’s analysis is primarily concerned with average behav-
ior over an ensemble of instances. In particular, the transition matrix is estimated
from a large sample of instances, aggregated into a single ensemble estimate. Not
unexpectedly, the accuracy of the model on a per-instance basis is limited, although
the model (with some minor, noted exceptions) accurately captures metaheuristic
dynamics at the ensemble level.

While limited, the research into dynamic models of metaheuristic behavior has
lead to impressive advances – relative to simple models based on fitness landscape
features – in cost model accuracy. This progression in accuracy is graphically illus-
trated in Figures 4 through 6. Although far from representing a general theory of
local search metaheuristics, such dynamic models do provide the first steps in that
general, key direction.
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6 Conclusions

Despite the high level of research activity in local search metaheuristics over the last
two decades, comparatively little progress has been made inthe theoretical founda-
tions of the field. Most research focuses either on the application of existing meta-
heuristics to new problems or the development of new metaheuristics. Ideas and
techniques are routinely re-introduced and re-invented, and it is often difficult to as-
sess the novelty and/or contribution of new research. Recently, the roots of a theory
of local search have begun to emerge. The type of model discussed in this paper, we
believe, provides a basis for a more general theory of local search. Specifically, we
have seen examples of how researchers have used fitness landscape analysis to better
understand the mechanisms underlying metaheuristic search and how these mech-
anisms give rise to various observed behaviors. Model generalization to both other
problems and a wider range of metaheuristics is a significantoutstanding challenge.
Similarly, the implications of these models for metaheuristic design are largely un-
known and unexplored. Even with inefficient and ad-hoc development methodolo-
gies, researchers have continued to make significant advances in the effectiveness
of local search metaheuristics. By developing a generalized theory of local search,
it should be possible to more precisely focus future research and, as a consequence,
significantly accelerate the rate of advances in the field.
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