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Abstract. We develop an optimization-based approach for additive de-
composition and reconnection of algebraic problems arising from dis-
cretization of partial differential equations (PDEs). Application to a
scalar advection-diffusion PDE illustrates the new approach. In particu-
lar, we obtain a robust iterative solver for advection-dominated problems
using standard multi-level solvers for the Poisson equation.

1 Introduction

Decomposition of PDEs into component problems that are easier to solve is at the
heart of many numerical procedures: operator split [1] and domain decomposition
[2] are two classical examples. The use of optimization and control ideas to this
end is another possibility that has yet to receive proper attention despite its
many promises and excellent theoretical foundations. For previous work in this
direction we refer to [3–5] and the references cited therein.

In this paper we develop an optimization-based approach for additive decom-
position and reconnection of algebraic equations that is appropriate for problems
associated with discretized PDEs. Our approach differs from the ideas in [3–5]
in several important ways. The main focus of [4, 5] is on formulation of non-
overlapping domain-decomposition via optimization, whereas our approach tar-
gets the complementary single domain/multiple physics setting.

Our ideas are closer to the decomposition framework in [3]. Nevertheless,
there are crucial differences in the definition of the objectives, controls, and the
constraints. The approach in [3] retains the original equation, albeit written in a
form that includes the controls, and the constraints impose equality of states and
controls. In other words, reconnection in [3] is effected through the constraints
rather than the objective.

3 Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed
Martin Company, for the United States Department of Energy under contract DE-
AC04-94-AL85000.
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In contrast, we replace the original problem by component problems that,
by themselves, are not equivalent to the original problem. These problems de-
fine the constraints, while reconnection is effected via the objective functional.
Consequently, in our approach the states are different from the controls and the
objective functional is critical for “closing” the formulation.

2 Additive Operator Decomposition

For clarity we present the approach in an algebraic setting, i.e., we consider the
solution of the linear system

Ax = b , (1)
where A ∈ IRn×n is a nonsingular matrix and x and b are vectors in IRn. We
present a method suitable for the scenario in which the matrix A comprises mul-
tiple operators with fundamentally different mathematical properties, e.g. re-
sulting from an all–at–once discretization of a multiphysics problem, in which
case the linear system (1) requires nonstandard, highly specialized solution tech-
niques. For a concrete example and discussion, see Section 4.

The proposed optimization–based approach for the solution of (1) rests on
the assumption that the matrix A can be written as the sum of two component
matrices

A = A1 +A2 (2)
for which robust solvers are readily available. We note that A1 and A2 can rep-
resent the original operator components of a multi–operator equation, however,
other, nontrivial decompositions are oftentimes more useful, see Section 4.

We assume that A1 and A2 are nonsingular. To motivate the optimization
formulation, we consider an equivalent formulation of (1) in terms the component
matrices,

A1x− u− b+A2x+ u = 0 ,
where u ∈ IRn is an arbitrary coupling vector. As the overall intent is to make
use of robust solvers available for the solution of linear systems involving A1 and
A2, we aim to develop a procedure that would allow us to repeatedly solve linear
systems of the type

A1x = u+ b and A2x = −u ,

instead of the original problem. Our approach, based on ideas from optimization
and control, is presented next.

3 Reconnection via an Optimization Formulation

We propose to replace (1) by the following constrained optimization problem:
minimize Jε(x1, x2, u) =

1
2

(
‖x1 − x2‖22 + ε‖u‖22

)
subject to

{
A1x1 − u = b

A2x2 + u = 0,

(3)
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where ε > 0 is a regularization parameter and ‖ · ‖2 denotes the Euclidean 2–
norm. In the language of optimization and control (see, e.g., [6]), x1 and x2 are
the state variables and u is the distributed control variable. We first show that
(3) is well–posed, i.e., that it has a unique solution {xε

1, x
ε
2, u

ε}. Then we examine
the connection between {xε

1, x
ε
2} and the solution x of the original equation (1).

3.1 Existence of Optimal Solutions

The first–order necessary conditions for {xε
1, x

ε
2, u

ε} to be a solution of (3) state
that there is a Lagrange multiplier vector pair {λε

1, λ
ε
2} such that the KKT system

of equations is satisfied,
I −I 0 AT

1 0
−I I 0 0 AT

2

0 0 εI −I I

A1 0 −I 0 0
0 A2 I 0 0




xε

1

xε
2

uε

λε
1

λε
2

 =


0
0
0
b

0

 , (4)

where I is the n×n identity matrix. In the following, we let H denote the 3n×3n
(full) Hessian matrix and Z the 3n× n null–space matrix, respectively,

H =

 I −I 0
−I I 0

0 0 εI

 , Z =

 A−1
1

−A−1
2

I

 ,

with the property (
A1 0 −I
0 A2 I

)
Z =

(
0
0

)
.

Lemma 1. The matrix Ĥ = ZTHZ, known as the reduced Hessian, is sym-
metric positive definite.

Proof. A straightforward calculation yields Ĥ = (A−1
1 +A−1

2 )T (A−1
1 +A−1

2 )+εI.
The matrix (A−1

1 +A−1
2 )T (A−1

1 +A−1
2 ) is (at least) symmetric positive semidef-

inite, while εI is symmetric positive definite. The claim follows.

Corollary 1. Invertibility of A1 and A2 and Lemma 1 directly imply that the
KKT matrix defined in (4) is nonsingular, and that there is a unique pair
{{xε

1, x
ε
2, u

ε}, {λε
1, λ

ε
2}} satisfying (4). Furthermore, the vector triple {xε

1, x
ε
2, u

ε}
is the unique global solution of the optimization problem (3). For a proof, see [7,
p.444–447].

Remark 1. As we will show below, the matrix (A−1
1 +A−1

2 )T (A−1
1 +A−1

2 ) is in fact
symmetric positive definite. Hence the regularization term ε‖u‖22 in (3), which
is typically needed to guarantee existence and uniqueness of optimal solutions,
is seemingly superfluous. However, one should not forget that we think of (1) as
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resulting from discretization of a PDE, i.e., that we are dealing with a family of
linear systems parametrized by some measure h of the mesh size, instead of with
a single linear system. In this case the regularization term is needed to guarantee
the uniform in h invertibility of A; see [8].

3.2 Reformulation Error

In general, as ε > 0, the state solutions xε
1 and xε

2 of (3) will differ from the
solution x of the original problem (1). In this section we calculate the error
induced by ε.

Lemma 2. The matrix (A−1
1 + A−1

2 ) is nonsingular, with the inverse given by
A1 −A1A

−1A1. (It follows trivially that the matrix (A−1
1 +A−1

2 )T (A−1
1 +A−1

2 )
is symmetric positive definite.)

Proof. By inspection,

(A−1
1 +A−1

2 )(A1 −A1A
−1A1) = I +A−1

2 A1 −A−1A1 −A−1
2 A1A

−1A1

= I +
[
A−1

2 − (A1 +A2)−1 −A−1
2 A1(A1 +A2)−1

]
A1

= I +
[
A−1

2 (A1 +A2)− I −A−1
2 A1

]
(A1 +A2)−1A1 = I.

Lemma 3. The following statements hold:

xε
1 − x = εA−1

1 Ĥ−1(I −A1A
−1)b , (5)

and
xε

2 − x = −εA−1
2 Ĥ−1A2A

−1b . (6)

Proof. We present a proof for (6), statement (5) can be verified analogously. The
KKT system (4) yields expressions for the states,

xε
1 = A−1

1 (uε + b), xε
2 = −A−1

2 uε, (7)

the Lagrange multipliers,

λε
1 = −A−T

1 (xε
1 − xε

2), λε
2 = A−T

2 (xε
1 − xε

2),

and the controls,
uε = (1/ε)(λε

1 − λε
2) .

By substitution, we obtain the so–called reduced system for the controls,(
(A−1

1 +A−1
2 )T (A−1

1 +A−1
2 ) + εI

)
uε = −(A−1

1 +A−1
2 )TA−1

1 b , (8)

which using the notation for the reduced Hessian Ĥ implies

xε
2 − x =

[
A−1

2 Ĥ−1(A−1
1 +A−1

2 )TA−1
1 −A−1

]
b

= A−1
2 Ĥ−1

[
(A−1

1 +A−1
2 )TA−1

1

−
(
(A−1

1 +A−1
2 )T (A−1

1 +A−1
2 ) + εI

)
A2A

−1
]
b

= A−1
2 Ĥ−1

[
(A−1

1 +A−1
2 )T

(
A−1

1 − (A−1
1 +A−1

2 )A2A
−1
)
− εA2A

−1
]
b

= A−1
2 Ĥ−1

[
(A−1

1 +A−1
2 )T

(
A−1

1 (A1 +A2)− (A−1
1 +A−1

2 )A2

)
A−1

−εA2A
−1
]
b = −εA−1

2 Ĥ−1A2A
−1b .
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Lemma 4. Let M = (A−1
1 +A−1

2 )T (A−1
1 +A−1

2 ) and let Λmin denote the smallest
eigenvalue of M. Let ε < (Λmin/2). Then,

‖Ĥ−1‖2 ≤
2

Λmin
.

Proof. We have Ĥ = M
(
I − (−εM−1)

)
. Due to ε < (Λmin/2) and e.g. [9,

Lemma 2.3.3], the matrix
(
I − (−εM−1)

)
is nonsingular, hence we can write

Ĥ−1 =
(
I − (−εM−1)

)−1
M−1, which implies

‖Ĥ−1‖2 ≤
1

Λmin

∥∥∥(I − (−εM−1)
)−1
∥∥∥

2
≤ 1
Λmin(1− ‖εM−1‖2)

=
1

Λmin(1− (ε/Λmin))
=

1
Λmin − ε

≤ 2
Λmin

.

Theorem 1. Let the assumptions of Lemma 4 be satisfied. There exists a con-
stant C, independent of ε, such that

‖xε
1 − x‖2 + ‖xε

2 − x‖2 ≤ εC‖b‖2 .

Proof. Lemmas 3 and 4 yield the claim directly, with

C =
2

Λmin

(∥∥A−1
1

∥∥
2

∥∥(I −A1A
−1)
∥∥

2
+
∥∥A−1

2

∥∥
2
‖A2‖2

∥∥A−1
∥∥

2

)
.

Remark 2. For parametrized linear systems (1) corresponding to discretized
PDEs the constant C may depend on the mesh size h.

3.3 A Solution Algorithm

We now exploit the structure of the reformulated problem to develop robust
solution methods for (1). Our approach is based on the premise that robust
solution methods for linear systems involving A1 and A2 are readily available.

We focus on a solution method known as the null–space or reduced–space
approach, which effectively decouples the component equations in (4). In this
approach one typically solves the reduced system (8) iteratively, using a Krylov
subspace method. The main computational cost of such an approach is in the
repeated application of the reduced Hessian operator, which we specify below.

A similar procedure can be derived for the (one–time) computation of the
right–hand side in (8). Optimal states can be recovered by solving either of the
equations given in (7).

4 Numerical Results

In this section we apply the optimization–based reformulation to an SUPG–
stabilized [10] discretization of the scalar convection–diffusion elliptic problem

−ν∆u+ c · ∇u = f in Ω, u = uD on ΓD, ∇u · n = 0 on ΓN . (9)
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Algorithm 1: Application of reduced Hessian Ĥ to vector u.
input : vector u
output: vector bH u
Solve: A1y1 = u, A2y2 = u (state equations)1

Compute: y3 = y1 + y22

Solve: AT
1 y4 = y3, AT

2 y5 = y3 (adjoint equations)3

Compute: bH u = y4 + y5 + εu4

We assume that Ω is a bounded open domain in Rd, d = 2, 3, with the Lipschitz
continuous boundary ∂Ω = ΓD ∪ ΓN , c is a given velocity field with ∇ · c = 0,
uD is a given Dirichlet boundary function, n is the outward unit normal, and
ν > 0 is a constant diffusion coefficient. We focus on settings where ν is small
compared to |c|, i.e., when (9) is convection–dominated.

The linear system resulting from (9) is typically of the form

(νD + C)x = b , (10)

where D is a (pure) diffusion matrix (discretization of the Laplace operator),
C corresponds to the convection contribution (including any terms due to the
SUPG stabilization), and b stands for a discretization of the source term f (plus
stabilization terms). In order to apply our optimization–based approach to (10),
we make the identification

A1 = D + C, and A2 = (ν − 1)D. (11)

The key property of this decomposition is that, unlike the original operator
(νD + C), the matrices A1 and A2 are diffusion–dominated.

The scalable iterative solution of linear systems arising from PDEs of the
type (9) is a very active area of research. Algebraic multigrid methods (see [11]
and references therein) work well for diffusion–dominated problems but their
performance degrades in the convection–dominated case. The efforts to extend
multigrid methods to such problems [12–15] have led to improvements, albeit at
the expense of increased algorithm complexity. As we show below, widely used
“off–the–shelf” multigrid solvers, such as BoomerAMG (hypre library) [16] or
ML (Trilinos project) [17], can lack robustness when applied to problems with
complex convection fields, particularly in the case of very large Péclet numbers.

We consider the so–called double–glazing problem, see [18, p.119]. The do-
main is given by Ω = [−1, 1]2, subject to a uniform triangular partition, gen-
erated by dividing each square of a uniform square partition of Ω into two
triangles, diagonally from the bottom left to the top right corner. The convec-
tion field is given by c =

(
2y(1− x2),−2x(1− y2)

)
, and the diffusion constant

is set to ν = 10−8. Boundary conditions are specified by

ΓN = ∅,

(
uD = 0 on {[−1, 1)× {−1}} ∪ {{−1} × (−1, 1)} ∪ {[−1, 1)× {1}} ,
uD = 1 on {{1} × [−1, 1]} .
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We compare the solution of linear systems arising from the full convection–
diffusion problem (10), denoted the full problem, to the solution of the opti-
mization reformulation (3) with A1 and A2 defined in (11). For the solution of
(10) we use the multigrid solvers BoomerAMG and ML as preconditioners for
the GMRES method with a maximum Krylov subspace size of 200, denoted by
GMRES(200). Solver abbreviations, options, and failure codes used hereafter
are summarized below. We note that the stated MLILU and BAMG parameters
reflect the best solver settings that we could find for the example problem.

MLILU ML: incomplete LU smoother (IFPACK, ILU, threshold=1.05), W cycle

BAMG BoomerAMG: Falgout–CLJP coarsening (6), symmetric Gauss–Seidel
/ Jacobi hybrid relaxation (6), V cycle (1)

—MX exceeded maximum number of GMRES iterations (2000)

The optimization reformulation is solved via the reduced–space approach,
denoted here by OPT. The outer optimization loop amounts to solving the lin-
ear system (8) using unpreconditioned GMRES(200). Within every optimization
iteration, we solve four linear systems, see Algorithm 1. The linear systems in-
volving A1 and A2 are solved using GMRES(10), preconditioned with ML with
a simple smoother, to a relative stopping tolerance of 10−10. We remark that in
either case only 5–8 iterations are required for the solution of each system. The
regularization parameter ε is set to 10−12.

Table 1. Number of outer GMRES(200) iterations for the optimization approach;
total number of GMRES(200) iterations for multigrid applied to the full problem.

ν = 10−8 128× 128
64× 64 128× 128 256× 256 ν = 10−2 ν = 10−4 ν = 10−8

OPT 114 114 113 84 114 114

ML 71 196 —MX 9 96 196

BAMG 72 457 —MX 7 33 457

Table 1 presents a comparison of the number of outer GMRES(200) iterations
for the optimization approach and the total number of GMRES(200) iterations
for multigrid solvers applied to the full problem. Relative stopping tolerances
are set to 10−6. For our test problem, MLILU and BAMG show very strong mesh
dependence, and eventually fail to converge on the 256×256 mesh. OPT, on the
other hand, is robust to mesh refinement, and successfully solves the problem for
all mesh sizes. In addition, Table 1 clearly demonstrates that while MLILU and
BAMG are very sensitive to the size of the Péclet number, OPT’s performance
is affected only mildly, and in fact does not change when the diffusion constant
is lowered from ν = 10−4 to ν = 10−8. Overall, our optimization–based strat-
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egy provides a robust solution alternative for problems on which widely used
multigrid solvers struggle.
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