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Abstract

This report introduces the concepts of Bayesian model selection, which provides a systematic
means of calibrating and selecting an optimal model to represent a phenomenon. This
has many potential applications, including for comparing constitutive models. The ideas
described herein are applied to a model selection problem between different yield models for
hardened steel under extreme loading conditions.
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Chapter 1

Introduction

This report documents the use of ALEGRA [13] and Dakota [1] to perform a Bayesian model
selection of the best model to reproduce the depth of penetration (d.o.p.) as a function of
time for a hardened steel plate being impacted by a tungsten rod. It is common in realistic
engineering problems that there are multiple constitutive models for a single phenomenon,
none of which is highly reliable in all situations. Bayesian model selection provides a means
of measuring which model is best to represent that phenomenon, given the uncertainties
present in the modeling process, such as measurement error and parameter uncertainty.

The report will proceed as follows: in Chapter 2, the Bayesian uncertainty quantification
framework is quickly summarized; in Chapter 3, Bayesian model selection and other model
selection criteria are outlined; in Chapter 4, the workflow for performing the Bayesian model
selection amongst the material models is described; in Chapter 5, the material models under
consideration for the study described in this report are introduced; and finally, results of the
model selection are reported in 6.
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Chapter 2

Bayesian Uncertainty Quantification
and Calibration

Uncertainties arise in the modeling process for many different reasons. Two examples are
measurement uncertainty and parameter uncertainty. Measurement uncertainty is widely
acknowledged and has historically been reported in the form of confidence intervals. Model
parameter uncertainty arises because parameters, with the exception of fundamental physical
constants such as the speed of light, cannot be determined exactly. If a parameter is a
physical constant that can be measured directly, it will still have measurement uncertainty; if
it is unobservable, it must be inferred indirectly from uncertain data. If it appears in a closure
model, there may not be any “true” value the parameter should attain, because the model is
only an approximate representation of reality. In that case, there is uncertainty about which
value of the parameter is “best,” in some sense. Uncertainty quantification accounts for
these uncertainties by modeling them with probability distributions and propagates those
uncertainties to the solution of interest, either a solution of a computational model or a
solution of an inverse problem.

Consider a modelM with parameters θ. The model parameters are uncertain, but there
may be some available prior information. The uncertain parameters can be modeled using
probability densities. For instance, if a parameter is known to fall in a specific range of
values, it can be modeled as a uniform random variable falling in that interval, or if it can
be measured and there is a sample mean and standard deviation, it can be modeled as a
normal distribution. These probability densities describing the prior information available
about the model parameters are called prior probability densities. See [7] for considerations
in choosing a prior and the implications of using maximum-entropy priors. If the parameters
are statistically independent, the joint prior distribution over all the model parameters is
defined as

p(θ) ≡
Nθ∏
i=1

p(θi).

Now consider data corresponding to an observable quantity predicted by the model. The
data is also uncertain due to experimental and measurement variations, which are generally
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assumed to be independent and normally distributed with zero mean and variance σ2:

di = si + εi, εi ∼ N (0, σ2), i = 1, . . . , Nd,

where si represents the “true” signal that would have been observed if there were no obser-
vational error. Assuming the model M is a correct description of the underlying physics,
the signal is equivalent to

si ≡ O[M(θ∗)]i,

where O represents the process of mapping the model output to the quantity that is being
observed, such as the time-trace of penetration of a penetrator, and θ∗ represents the “true”
values of the model parameters.

With this substitution, the likelihood that the observed data di arose from the model,
given a specific set of parameters θ, is related to the discrepancy between the model predic-
tion and the data, since

di = O[M(θ)]i + εi

⇓
di −O[M(θ)]i = εi ∼ N (0, σ2).

Substituting this discrepancy into the measurement error model defines what is called the
likelihood density:

L(θ) ≡ p(d|θ) ≡ 1

(2πσ)Nd/2
exp

(
− 1

2σ2
‖d−O[M(θ)]‖22

)
.

Finally, Bayes’s theorem provides us with the probability of the model parameters θ
given observational data d and prior distribution p(θ), called the posterior distribution:

p(θ|d) =
p(d|θ)p(θ)∫
p(d|θ)p(θ)dθ

.

A simple example of an application of Bayes’s theorem is shown in Figure 2.1.

Assuming the model is correct, the maximum a posteriori (MAP) point, θ̂, which is the
point that maximizes the posterior distribution, should be the true model parameter values,
θ∗. With increasing amounts of data, the posterior distribution becomes tightly peaked
around θ∗, and a dirac delta in the limit of infinite data.
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Figure 2.1. This is an example of Bayes’s rule where the
model is the identity (d = θ + ε). We see that the posterior
distribution falls in the region where the likelihood and the
prior distributions overlap, more heavily weighted toward the
likelihood distribution. This is because the likelihood distri-
bution was more tightly peaked around its mean. Something
more precise could be said about the data than about the
prior, so it had a stronger effect on the posterior distribu-
tion.

An analytical expression for the posterior distribution is not typically available because of
the nonlinear nature of models for complex physical processes. Because of this, it is common
to generate sample draws from the posterior distribution using the Markov Chain Monte
Carlo (MCMC) method and estimate its density using the samples. The details of this will
not be described further here. The important thing to note is that each sample from the
posterior distribution requires one or more model evaluations, which can be prohibitive if
the relevant models are computationally expensive. Dakota will be used to generate these
samples and for other analysis tools that will be needed for the model selection. For more
comprehensive introductions regarding UQ and MCMC, see [17, 3].
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Chapter 3

Bayesian Model Selection

In the previous discussion, it was assumed that the model M was a correct description of
the underlying physics of the problem, and the only uncertainties arose from incomplete
knowledge of the model parameters. A much more common situation, especially during the
process of model development, is that there is more than one model that might explain the
physical phenomenon.

This situation arises often in material modeling. For instance, as will be described in
Chapter 5, many models and model variations have been proposed to represent the von Mises
flow stress, such as the Johnson-Cook (JC), Zerilli-Armstrong (ZA), and Steinberg-Guinan-
Lund (SGL) constitutive models. Different models perform better in different situations and
in predicting certain quantities. Certainly none of the models is a perfect representation of
reality. This report focused on determining which of the three models could best reproduce
depth-of-penetration data as a function of time.

We will denote such a collection of models {Mi}Nmi=1, where Nm is the number of models
under consideration. Each model has its own set of parameters, which we will denote {θi}Nmi=1,
and each model can have a different number of parameters, as is the case for JC, ZA, and
SGL. These parameters might be, for instance, the coefficient and exponent in the work-
hardening term, or initial yield strength. We will denote the number of model parameters
for modelMi as N i

θ. In this situation, one can imagine there is a “true” model that produced
some observation data,

di = O[m(θ)]i + εi, i = 1, · · · , Nd,

and one can ask “what is the probability that m =Mi, given the observed data d?” In the
case of this report, the data d is time-series observations of the nose of a long tungstent-alloy
rods impacting a hardened steel plate at high velocity, described in Chapter 5 and reported in
[2]. The observations of model output O [Mi(θi)] are the location of a Lagrangian material
tracer at the interface of the tungsten-alloy rod and the steel plate, taken at different times
during an ALEGRA simulation, using one of the constitutive models and one set of values
for its parameters.

This collection of models can be thought of as a discrete probability space, where each
model has some probability of being the true model, and their probabilities sum to one.
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Bayes’s rule with discrete probabilities for the models can be written

P (m =Mi|d) =
p(d|m =Mi)P (m =Mi)∑Nm
j=1 p(d|m =Mj)P (m =Mj)

, (3.1)

where p represents probability densities of continuous random variables and P represents
probabilities of discrete random variables. For notational simplicity, the probabilities will be
denoted in terms of Mi instead of m =Mi, for the remainder of the report.

The likelihood of the model Mi is determined by averaging the likelihood of its model
parameters over all possible values of the model parameters, according to their prior distri-
butions:

p(d|Mi) =

∫
p(d|θi,Mi)p(θi)dθi. (3.2)

This value is often called the evidence, or the marginal likelihood of the model. The likelihood
in the integral, p(d|θi,Mi), is the likelihood the data d would be observed, assuming Mi

was the true model m and assuming a specific set of values θi. Mathematically, it is

p(d|θi,Mi) = (2πσ)−N
i
θ/2 exp

(
− 1

2σ2
‖d−O[Mi(θi)]‖22

)
.

Typically all models are assigned equal prior probabilities; that is, P (Mi) = N−1
m . As-

suming equal prior probabilities for each model, the posterior probability for each model is
is simplified to

P (Mi|d) =
p(d|Mi)∑Nm
j=1 p(d|Mj)

. (3.3)

We see that the key component to Bayesian model selection will lie in computing, or accu-
rately approximating, the model evidence. Three methods are detailed herein, and all were
computed for this study. Much of this discussion is a summary of the ideas described in
detail in [23].

3.1 Approximating model evidence

There are several methods to approximate the model evidence. The methods that were used
in this study are described below. Multiple approximation methods were used because some
are relatively cheap compute but are less reliable, while others are more expensive but more
reliable.
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3.1.1 Monte Carlo integration

The most brute-force, generally applicable method uses Monte Carlo integration:

p(d|Mi) =

∫
p(d|θi,Mi)p(θi)dθ ≈ 1

Ns

Ns∑
j=1

p(d|θ(j)
i ,Mi), θ(j) ∼ p(θ).

The process amounts to randomly sampling from the prior distribution of the parameters
for model Mi, evaluating the likelihood, and averaging the results. The error converges as
N
−1/2
s , which is not ideal, but the cost doesn’t balloon as the parameter dimension increases.

This approximation can take many more samples than one might expect, because if only
a small region of the parameters’ prior probability space maps to high likelihood regions,
many of the samples will evaluate to approximately zero. See, e.g. [24], for background on
Monte Carlo integration.

3.1.2 Laplace approximation

A popular alternate approach employs a Laplace approximation of the integral, which ap-
proximates the posterior distribution with a Gaussian centered at the maximum a posteriori
(MAP) point, θ̂, where the inverse covariance of the Gaussian is approximated with the
Hessian of the negative log posterior distribution, denoted by H [11]. Then the Laplace
approximation is

∫
p(d|θ)p(θ)dθ ≈ p(d|θ̂)p(θ̂)(2π)Nθ/2

∣∣∣det(H(θ̂))
∣∣∣−1/2

.

This approximation is relatively accurate as long as the posterior of the parameters is well
approximated by a Gaussian. If the posterior distribution is multimodal or significantly
non-Gaussian, the approximation may be suspect. The method requires no sampling. The
bad news here is that it requires a Hessian of the log posterior, or else an approximation
of the Hessian. This requires first and second derivatives of the model with respect to its
parameters, which are often quite difficult to obtain. Even so, a finite-difference approxima-
tion might not be as costly as running an expensive Monte Carlo simulation. For the study,
derivatives were taken with respect to a surrogate model of the original model, for which
analytical derivatives were available.

3.1.3 KDE approximation

The approach advocated by Wasserman in [23] is to compute a Kernel Density Estimate
(KDE) of the posterior distribution of a model’s parameters, given samples of the posterior
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distribution (details on this subject are availabe in [16]). This can be used to approximate
the evidence by noting that

p(d|θ) =
p(d|θ)p(θ)∫
p(d|θ)p(θ)dθ

=⇒
∫
p(d|θ)p(θ)dθ =

p(d|θ)p(θ)

p(d|θ)
.

The expression on the right-hand side is true for any θ, including θ̂. Denoting the KDE
approximation of the posterior as p̂(θ|d), the evidence can thus be approximated as

∫
p(d|θ)p(θ)dθ =

p(d|θ̂)p(θ̂)

p(d|θ̂)
.

This approach works generally because it does not assume the posterior is Gaussian or uni-
modal, although computing a KDE can become prohibitive if the number of model parame-
ters becomes too large. Since this feature is only available through Dakota for independent
variables, the KDE functionality in SciPy [9] was used, which implements the algorithm in
[16].
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Chapter 4

Model selection workflow

The workflow for model selection will fall into the following broad categories: determining
prior distributions for model parameters (either using nominal values or deterministic cal-
ibration), surrogate construction, sensitivity analysis, and model evidence approximation.
A flowchart of this process, once the subset of model parameters to be calibrated for each
model has been chosen, is provided in Figure 4.1. In the following sections, the purpose and
methodology behind each category will be discussed.

4.1 Determining parameter uncertainty representations

Model parameter uncertainty representations are used as prior densities for the Bayesian
calibration of each model. The determination of these prior densities is an important part
of the model selection process and can affect the solution of the model selection problem.
This is because the model evidence is essentially an average over likelihood values, weighted
by the prior density. Care should be taken to begin with as accurate a description of the
parameter uncertainty as possible. For instance, if reasonable ranges a parameter should
take are available, a uniform distribution over that range could be used. If a parameter is
known to be positive, a log-Normal distribution can be used. If no prior information can be
brought to bear, be sure to begin with a broad prior density, to signify great uncertainty in
the parameter values.

For this study, all uncertain parameters were modeled as multivariate Gaussians, with
means either set to nominal values or to deterministically calibrated values, and with stan-
dard deviations assumed to be 5%. This was chosen for simplicity and had no basis in prior
information about the parameters’ uncertainty. In general one might wish to use a larger
standard deviation, such as 10%, when it is not clear what values the model parameters
should take.

If experimental uncertainty in Hopkinson bar, tensile, etc. test data is accounted for when
determining the model parameter values in the first place using Bayesian calibration, then
the experimental uncertainty will be propagated to the model parameters. The posterior
distributions of the model parameters after Bayesian calibration against these canonical
tests could then be used as the prior distributions for a model selection study.
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4.2 Surrogate construction

Bayesian calibration, sensitivity analysis, and MC integration require hundreds of thousands,
even millions of model evaluations. For computationally-intensive models such as those
used for this study, using the model for these purposes is infeasible. The solution was to
use surrogate models, constructed in Dakota using strategically-chosen samples of the yield
model parameters. In the context of this work, surrogate models are interpolative fits to
response data, given variations in parameter values. They are popular for performing UQ
studies on complex systems where the underlying computational model is expensive to run,
because they provide a means of producing the thousands of samples that are required for
such studies at a fraction of the computational cost. The sampling technique employed for
the study is Latin Hypercube Sampling (LHS), which requires fewer samples to approximate
statistics than purely random sampling.

LHS is a semi-random exploration of parameter space. To produce N samples, each
dimension of parameter space is partitioned into N equal-probability regions. One sample
is drawn for each dimension according to its distribution in that partition, and the samples
from each dimension are randomly paired with each other. If the samples are projected onto
one dimension, there will always be only one sample per partition. For further details on
how Latin Hypercube samples are produced, there is a very nice explanation in Section 2 of
[20].

Latin Hypercube sampling can be advantageous for the purposes of surrogate construction
it requires fewer samples than standard MC to obtain accurate statistics. The key point that
the number of samples does not increase with the number of parameters. It is important
to note that because of the equal-probability partitioning of the parameter space in each
dimension, it is nontrivial to produce more samples. In order to maintain this property, the
existing partitions must again be split equally. In the case of using Dakota, this means that
the number of sample points would need to be doubled in order to keep the partitions equal.
A heuristic for selecting the number of LHS samples is to have approximately 20 samples
per model parameter. For the study, slightly more than 20 samples per parameter were used
for each model.

The two types of surrogates used for this study were Gaussian Process (GP) models
and Polynomial Chaos Expansion (PCE) models. In broad strokes, both are constructed by
fitting to samples of model output. However, the way they are constructed differs. For more
information on the different types of surrogates and how they are constructed, see [12] and
[15] for GP models and [25] and [4] for PCEs.

Unfortunately, analytical results regarding approximation error for surrogates are largely
unavailable. This has to do with the fact that the performance of the surrogate depends
on the scenario in which it is being used. For instance, GPs and PCE expansions do not
perform well when there is a discontinuity in the model output space. However, it is difficult
to know a priori when such challenges will arise. Because of this, it is important to vet the
surrogate before using it as a substitute for the original model. Given the minimal effort to
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generate different types of surrogates, once model evaluations have been computed, it is a
good idea to build two or three different types and compare the result for consistency between
the methods. See [21] for discussion of ways to improve and ensure surrogate accuracy in
practice.

4.3 Sensitivity analysis

The number of model parameters were relatively small for this study, none of them hav-
ing more than 10 parameters. However, for more complicated models, it would be useful
to perform a global sensitivity analysis to determine which model parameters significantly
affect the model output and which do not. The method of sensitivity analysis used in this
paper is a variance-based sensitivity analysis, in which Sobol indices are computed. Sobol
indices express, roughly, the fraction of variation in model outputs that can be attributed to
variations in each model parameter.

An example of the result of such a sensitivity analysis, displaying the Sobol indices for
the parameters of the Zerilli-Armstrong yield model, as well as their effect on depth of
penetration (d.o.p.) as a function of time, are shown in Figure 6.8. The result of this
sensitivity analysis shows that for all three models, the parameters that are related to initial
yield strength significantly affect the depth of penetration, which agrees with intuition. For
more complicated problems where this intuition is not available, variance-based sensitivity
analysis can help shed light on which parameters to calibrate and treat as uncertain for the
model selection process.

The computation of Sobol indices requires thousands of sample response evaluations (in
this case, the depth of penetration at each observation time), so PCE and GP surrogates
were used for the sensitivity analysis. The samples used for the sensitivity analysis cannot
be reused for the model selection study, if some of the parameters are deemed insignificant
and are not going to be calibrated. With this in mind, the LHS samples generated for the
sensitivity analysis used a coarser mesh for the ALEGRA solves than was used for those
used for the Bayesian calibration in order to minimize computational cost. The cell size was
chosen so that ALEGRA runs were fast while maintaining the same qualitative behavior of
the d.o.p. compared to the converged mesh. See Appendix A for more details regarding the
definition and computation of Sobol indices.

4.4 Bayesian calibration

For the model selection study, LHS samples were generated on the target mesh size and were
used to construct a GP surrogate, as mentioned in Section 4.2. The surrogate was constructed
and used for the Bayesian calibration using Dakota. The calibration was performed using
Markov Chain Monte Carlo (MCMC), as mentioned in Chapter 2, using Dakota. A pre-run
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optimization for the MAP point was performed to start the chain in a high-probability region
of the posterior density. This MAP point was extracted and used to compute the Laplace
approximation of the model evidence, discussed in 3.1.2. MCMC chains of length 1e6 were
produced for the study.

The result of the MCMC-based Bayesian calibration is a set of samples of the model
parameters, distributed according to the posterior distribution. These samples were used
to generate a KDE approximation of the posterior distribution, used for the KDE-based
approximation of the model evidence, described in 3.1.3. Note that the KDE approximation
is only as good at the quality of the samples used in the approximation. A good discussion
of diagnostic checks and analyzing chain convergence is provided in [5].

4.5 Model selection

As discussed in Chapter 3, the most important part of performing a Bayesian model selection
is approximating the model evidence as defined in (3.2) and appearing in the model posterior
probability in (3.1). Two of the three methods used in this study for approximating the model
evidence are generated using the MCMC chain produced during Bayesian calibration. The
third approach, using MC integration, was performed by sampling from the specified prior
distributions and evaluating a GP surrogate model of the DOP. These evaluations were then
used to evaluate the likelihood density for each sample. In total, 1e6 samples were used
for each MC integration. A running approximation of the integral was reported every 1e5
samples to check for statistical convergence.

For each method of approximating the evidence, a posterior probability for each model
was computed according to (3.3), which assumed uniform prior model probabilities. By con-
struction, the posterior probabilities sum to 1 for each of the model evidence approximations.
In this case, the posterior distributions for the model parameters were unimodal and approx-
imately Gaussian, so the different methods of approximation assigned highest probability to
the same model (see Figure 6.1). However, if there is significant discrepancy between the
approximated evidences for a model, it is possible that the posterior distributions are not
as “nice.” In that case, one should check for multimodality or a significantly non-Gaussian
shaped posterior distribution.
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Chapter 5

Flow stress model selection for
high-velocity impact of steel

For this study we applied these ideas to a simple model selection problem between ma-
terial models, evaluating their ability to reproduce depth of penetration as a function of
time. We will be considering three popular strength models used for metals subject to large
strains, high strain rates, and high temperatures: the Johnson-Cook, Zerilli-Armstrong, and
Steinberg-Guinan-Lund constitutive models [8, 26, 19]. Each model is briefly described be-
low.

5.1 Johnson-Cook strength model

The Johnson-Cook strength model [8] is an empirical model, which defines the von Mises
flow stress as

σ = [A+Bεn][1 + C ln ε̇∗][1− T ∗m], (5.1)

where the meaning of the state variables are defined in Table 5.1. The first term represents
the stress as a function of strain when ε̇∗ = 1 and T ∗ = 0. The second and third terms
represent the effects of strain rate and temperature, respectively.

ε equivalent plastic strain

ε̇∗ = ε̇/ε̇0 dimensionless plastic strain rate, ε̇0 = 1.0s−1

T ∗ =
T − Troom

Tm − Troom

homologous temperature, Tm melting point

Table 5.1: The terms in the Johnson-Cook strength model.
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5.2 Zerilli-Armstrong strength model

The Zerilli-Armstrong strength model is a constitutive model based on theoretical results
related to a physical model of the crystal structure of the material (body-centered or face-
centered crystals) [26]. It models the flow stress as

σ = ∆σ′G + kl−
1
2 + (c1 + c2ε

1
2 ) exp(−c3T + c4T ln ε̇) + c5ε

N ,

where again ε is the equivalent plastic strain. The first order terms ∆σ′G and kl−
1
2 are often

lumped together. The combined parameter will be denoted c0. The parameter c2 is related
to the face-centered case, while c1, c5 are related to the body-centered case. Thus, if c2 6= 0,
then c1, c5 = 0 and vice-versa. Substituting in c0 for the first-order terms will give us our
working definition of the ZA model:

σ = c0 + (c1 + c2ε
1
2 ) exp(−c3T + c4T ln ε̇) + c5ε

N . (5.2)

5.3 Steinberg-Guinan-Lund strength model

The Steinberg-Guinan-Lund strength model is a semi-empirical constitutive model that ac-
counts for the effects of pressure and temperature on the yield strength Y and the shear
modulus G [19]. Note that Y = σ from previous discussion; the notation is different for
historical reasons. The version of the model that was considered neglects dependence on
strain rate based on experimental observations that rate-dependent effects are neglible at
strain rates above ε̇ ≥ 105s−1. The (rate-independent) SGL model in [19] is defined as

Y = Y0f(ε)

[
1 +

(
Y ′p
Y0

)
P

η1/3
−
(
G′T
G0

)
(T − Troom)

]
,

Ymax ≥ Y0f(ε),

f(ε) = [1 + βε]n ,

G = G0

[
1 +

(
G′p
G0

)
P

η1/3
−
(
G′T
G0

)
(T − Troom)

]
,

where ε is the equivalent plastic strain, η is compression (initial specific volume v0 divided by
specific volume v), β and n are work-hardening parameters, Ymax is the largest value for Y in
the literature (this limit will not be reached in most cases). The variables subscripted with
0 are their values at the reference state (T = 300 K, P = 0, ε = 0). The primed parameters
are derivatives with respect to their subscripts, evaluated at the reference state. The work-
hardening function f(ε) is entirely empirical, but SGL includes a pressure dependence that
is not accounted for in the ZA or JC models.
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The ALEGRA implementation of SGL assumes that

Y ′p
Y0

≈
G′p
G0

,

as was mentioned in [19]. Then the final form of SGL used for the study is

Y = Y0f(ε)
G

G0

,

Ymax ≥ Y0f(ε),

f(ε) = [1 + βε]n ,

G = G0

[
1 +

AP

η1/3
−B(T − Troom)

]
.

(5.3)

5.4 Calibration data experimental configuration

The experimental data that will be used to calibrate the models is presented in [2]. For
each observation, a long tungsten-alloy rod penetrated and stagnated in an effectively semi-
infinite plate of hardened steel. The target material was HzB steel, which is a hardened
steel found in some ballistic protection applications. A time trace of the penetration was
collected by repeatedly shooting rods at the same initial velocity and observing the depth
of penetration at successively later times. The time history was collected for two different
penetration velocities. See Figure 5.1 for a time-trace at one of the impact velocities. The
study only used the lower-velocity data in [2], with an impact velocity of 1250 m/s.

5.4.1 Observational uncertainty model

The observational standard deviation for the data is reported as .01 cm in [2], but there is
a distinct, nonphysical “kink” in the observational data, which calls into question whether
there were some uncertainties not accounted for in that estimate. The issue with misre-
ported measurement error is that the relative effect of the likelihood density on the posterior
distribution increases with decreasing measurement error. This can cause an overfitting to
the data that could lead to nonphysical results.

To attempt to address this missing uncertainty, a polynomial regressive fit was performed,
and a standard deviation of approximately .06 cm was estimated using the data’s deviation
from that experimental fit. See the difference in the uncertainties for these two approaches
in Figure 5.1. The study used the estimated standard deviation from the polynomial fit.
The y−intercept was not constrained to the origin, so the standard deviation may even still
be smaller than it should be.
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Figure 5.1. A quadratic was fit to the data and used to
estimate the data uncertainty.

5.5 Parameter uncertainty models

As mentioned in Section 4.1, the parameters for all models will be assumed distributed
according to normal distributions with means at the values listed in Tables 5.5.1, 5.5.2,
and 5.5.3, and standard deviations of 5%. The mean values were based on information in
ALEGRA material model libraries for HzB or comparable steels. In the case when nominal
values were not available for the model parameters, the prior means were determined using a
global optimization scheme, starting with parameterizations for the comparable steels. The
global optimization was run using the ALEGRA/Dakota embedded interface.

The choice to use normal distributions to represent parameter uncertainty and the choice
to optimize for initial parameter values was for the sake of simplicity and because there
was little prior information regarding the uncertainty in the model parameters. It is always
preferable to use any reasonable arguments that can be made regarding bounds on the model
parameter values or prior information about parameter uncertainties and values gleaned from
previous fits to experimental data, such as Hopkinson bar, tensile, etc. tests. Doing so helps
to improve the fidelity of the results.

5.5.1 JC model parameters

The authors of [2] compared their experiments to a numerical simulation using the JC model
and parameters for high-hard steel, which is similar to the HzB steel they used in their
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experiments. Those parameters and those for the tungsten alloy rod are presented in Table
5.5.1 and were used as initial values in the calibration study performed for the JC model.

A [GPa] B [GPa] n C m

Tungsten alloy 1.51 0.177 0.12 0.016 1.00
High-hard steel 1.50 0.569 0.22 0.003 1.17

Table 5.5.1: JC model parameters used in [2]. Flow stress
σ = [A+Bεn][1 + C ln ε̇∗][1− T ∗m] .

5.5.2 ZA model parameters

The values to use for the ZA were not as obvious, because predetermined constants were
not available. The starting constants were decided by choosing the most-similar material
that had a ZA parametrization. After performing a sensitivity analysis to determine which
parameters were significant, those parameters, c1, c3, and c5, were calibrated deterministically
using the ALEGRA/Dakota interface using the ZA model directly (versus using a surrogate
model). The best set of parameters out of 100 global optimization steps were used as the
means for the prior distributions for the remainder of the study, and the same 5% standard
deviation was used for this case. The ZA parameter values for HzB steel that were used
for the model selection study are listed in Table 5.5.2. All the parameters were considered
uncertain and were be calibrated, except for c2, which remained fixed at 0.

c0 [Pa] c1 [Pa] c3 [K−1] c4 [K−1] c5 [Pa] N

5.0e7 1.524e9 1.649e-3 4.5e-5 1.690e9 6.2e-1

Table 5.5.2: ZA model parameters for HzB steel used for the model selection study.
Flow stress σ = c0 + c1 exp (−c3T + c4T ln ε̇) + c5ε

N .

5.5.3 Steinberg-Guinan-Lund model parameters

The SGL model required several parameters to be set. Similar to ZA, a parametrization
for HzB steel was unavailable, so starting parameter values were determined from a similar
material. After a sensitivity analysis, it was determined that the only parameter that sig-
nificantly affected the depth-of-penetration behavior was the initial yield stress, Y0. Since a
value for this quantity was provided in the experimental paper, that value was used as the
prior mean distribution. The rest of the parameters were left at the values for the similar
material.
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Y0 [Pa] β n Ymax G0 [Pa] A [Pa−1] B [K−1]

1.45e+09 2.0 5.0e-1 2.5e+09 7.18e+10 2.06e-11 3.1501e-04

Table 5.5.3: The initial prior mean values used in the model selection study for the SGL
model parameters, as defined in Equation 5.3.

5.6 Numerical configuration

The experimental configuration described in [2] was replicated and run in ALEGRA using
cylindrical coordinates and assuming axisymmetry. Dimensions included a rod length of 5
cm, rod radius of 0.2 cm, target plate thickness of 2.9 cm, and target plate radius of 4 cm.
The depth of penetration as a function of time was computed by placing a Lagrangian tracer
at r = 0 at the interface between the rod and the steel target. The mesh was refined until the
difference in the time history of the tracer was smaller than the data’s measurement error
(see Figure 5.2) and the behavior of the tracer had more or less converged. The cell size was
1e-4, equating to 40 elements spanning the radius of the tungsten-alloy rod. Representative
results from the ALEGRA simulations are included here in Figure 5.3, showing snapshots of
the density field during penetration for the JC case with parameters from Table 5.5.1.
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Figure 5.3. Representative ALEGRA simulation results
for 1250-m/s impact using the JC model for HzB steel.
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Chapter 6

Results

To reiterate, the Bayesian model selection was performed to select between the Johnson-
Cook (JC), Zerilli-Armstrong (ZA), and Steinberg-Guinan-Lund (SGL) yield models. The
model selection was performed both with all of the model parameters discussed in Chapter
5, as well as with only those determined to be significant after a sensitivity analysis. The
results of the Bayesian calibration will be reported for each model individually, then the
posterior probabilities will be reported for all three models together. The results for JC will
be described in detail, to explain the significance of each figure. The results for ZA and SGL
present the same figures and so will be discussed in less detail.

6.1 Johnson-Cook Bayesian Calibration Results

First, 256 LHS samples were generated for the Johnson-Cook model using ALEGRA’s em-
bedded Dakota interface. These samples were used to generate a Gaussian Process (GP)
that was then sampled extensively to compute Sobol Indices, which are shown in Figure 6.2.
A brief explanation of Sobol indices, how they are computed, and the distinction between
“main” and “total effects” is available in Appendix A. We see that JC’s model parameter
A, which represents the yield stress, has the most significant impact on the depth of pen-
etration (d.o.p.) at each time observation. Generally this sort of result could be used to
motivate limiting calibration to only that parameter. As a proof of concept, all the parame-
ters were calibrated for this study, to show that the parameters that were informed by data
corresponded to those deemed significant by the sensitivity analysis.

This is demonstrated in Figure 6.3, which shows the prior and posterior distributions
for each of the JC model parameters. The only one that was significantly changed by the
calibration is the initial yield strength, A. As was discussed in Chapter 2, the width of a
distribution indicates the degree of uncertainty in that quantity’s value. The fact that the
other distributions did not change at all is an indication that the uncertainty in the other
parameters was not affected at all by comparing against the data. In effect, nothing was
learned about the other model parameter values.

The MCMC chains and marginal joint posterior samples for the JC model parameters
are presented in Figures 6.4 and 6.5. The joint posterior samples in Figure 6.5 show a slight
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dependence between JC’s model parameters A and B. This is to be expected, since they
appear in the same strain-dependent term of the JC model.

The posterior mean and 95% confidence interval of the depth of penetration as a function
of time, plotted against the data with its estimated uncertainty, is shown in Figure 6.6.
Finally, the mean posterior depth of penetration is compared to the predicted depth of
penetration before any calibration (deterministic or Bayesian), along with the observational
data, in Figure 6.7.

6.2 Zerilli-Armstrong Bayesian Calibration Results

The result of the sensitivity analysis for ZA show, in Figure 6.8, that c1, c3 and c5 are
significant to the behavior of the depth of penetration as a function of time. c1 appears in
a term related to initial yield strength, so its significance agrees with what was found for
the other models. In contrast to the other two models, c3 and c5, which appear on the ZA
thermal softening and work-hardening terms respectively, are deemed significant as well. It
is interesting that the parameters associated with work hardening were not deemed similarly
significant in JC and SGL. One potential explanation for this is that only in ZA does the
work-hardening term appear independently, without being multiplied by other dependencies,
such as temperature.

Calibration results show C1 and C5 to be informed by the data, while C3 was modified only
slightly (see Figure 6.9). The mean of the work-hardening exponent N shifted slightly, but
the support of the prior and posterior distributions is essentially the same width, indicating
that it was not informed by the data (which is equivalent to saying it was not significant to
the d.o.p.). The marginal join posterior plots of the MCMC samples show that the samples
of C1 and C5 are correlated, indicating a dependence between C1 and C5 (see Figure 6.10).

6.3 Steinberg-Guinan-Lund Bayesian Calibration Re-

sults

Strikingly, for the model with the most parameters, only one parameter was significant to
the behavior of the d.o.p. Once again, the sensitivity analysis results, in Figure 6.14, show
that the significant model parameter is the initial yield strength, Y0. The calibration results
in Figure 6.15 clearly show that only Y0 was informed by the data.
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6.4 Model selection results

The results of this model selection study are presented in Figure 6.1. All the models were
assumed to be equally likely to start. All methods of approximating the model evidence
produced the same final result in terms of which model was more likely to have produced
the observational data. For this particular study, the ZA model was determined to be most
probable, followed by SGL and finally JC. Bayesian model selection tends to select for the
most constrained model that can best explain the data. One can argue that ZA has the
most theoretical basis, followed by SGL, while JC is entirely empirical. This result is thus in
agreement with the idea that Bayesian model selection will tend to select the most “physical”
model.

On the other hand, in Figures 6.6, 6.12, and 6.17, we see that the ZA model was the
closest to reproducing the ‘kink’ in the data, starting at 4e-5 seconds. This could be the
reason that the ZA model was considered most probable. It would be interesting to repeat
this study, omitting the 4e-5 seconds data point, to determine how much the outlier affected
the final result. The process of Bayesian calibration minimizes misfit with all available data,
so it is important to be conscientious the quality of data used for such calibrations.
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Figure 6.1. Prior (uniform) and posterior probabilities for
each model. Each color indicates a different method of ap-
proximating the model evidence, used to compute the poste-
rior model probabilities. The different methods are described
in Chapter 3.
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6.5 Conclusion

The results of this model selection study indicate that ZA may be most appropriate for
representing the time-dependent behavior of depth-of-penetration in high-strain-rate, high-
temperature impacts such as the experiment in [2]. It should be noted, however, that the
prior distributions used for the model parameters were not necessarily accurate descriptions
of the underlying parameter uncertainty. Even so, it is certainly worth considering ZA for
such applications in the future.

The result of the Bayesian calibrations for this study reduced the initial yield strength in
all three models, consistent with the reported value of 1.45 GPa in [2], which indicates that
HzB steel is softer than other hardened steels that appear in the ALEGRA material libraries.
Parameter values for ZA and SGL were not available for HzB steel in the ALEGRA material
libraries prior to this study, so their calibrated values may be useful for future modeling
efforts.

Broadly speaking, Bayesian model selection provides an intuitive, systematic way to cal-
ibrate and select between models. Calibration of model parameters is done in a systematic,
automatic way, as part of the model selection process, once appropriate uncertainty represen-
tations are chosen for model parameters and data. Because the uncertainty representations
affect the final outcome of the model selection process, care should be taken to have as ac-
curate representations of uncertainty as possible. The results of the model selection provide
relative weights for each model that can be used for model averaging, if desired.

Overall, Bayesian model selection provides a framework for calibrating and selecting the
best in a collection of models to represent a phenomenon, while accounting for uncertainties
in the process. One should note, however, that current model selection paradigms do not
evaluate extrapolative ability, besides implementing Occam’s razor. A predictive validation
of the chosen model is still advisable, if the model will need to extrapolate outside of the
situation in which it was calibrated. These ideas are discussed in detail in [10].
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A [GPa] B [GPa] n C m

Prior mean values 1.50 0.569 0.22 0.003 1.17
Posterior mean values 1.44 0.565 0.22 0.003 1.17

Table 6.1. Prior vs. posterior mean parameter values for
JC.

c0 [Pa] c1 [Pa] c3 [K−1] c4 [K−1] c5 [Pa] N

Prior mean values 5.00e+7 1.80e+9 1.50e-3 4.50e-5 1.20e+9 6.20e-1
Posterior mean values 4.98e+7 1.49e+9 1.67e-3 4.48e-5 1.68e+9 6.10e-1

Table 6.2. Prior vs. posterior mean parameter values for
ZA.

Y0 [Pa] β n Ymax G0 [Pa] A [Pa−1] B [K−1]

Prior mean values 1.45e+9 2.0 5.0e-1 2.5e+09 7.18e+10 2.06e-11 3.15e-04
Posterior mean values 1.41e+9 2.0 4.99e-1 2.50e+09 7.14e+10 2.05e-11 3.14e-04

Table 6.3. Prior vs. posterior mean parameter values for
SGL.
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Figure 6.2. Sobol indices for JC.
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Figure 6.3. Prior vs. posterior distributions for JC.
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Figure 6.4. Posterior MCMC chains for JC.
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Figure 6.5. Joint marginal samples of the posterior distri-
bution for JC model parameters.
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Figure 6.6. Mean and 95% confidence interval for the
depth of penetration as a function of time after Bayesian
calibration.
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Figure 6.7. Initial d.o.p before any calibration compared
to the mean d.o.p. after Bayesian calibration of JC model
parameters.
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Figure 6.8. Sobol indices for ZA.
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Figure 6.9. Prior vs. posterior distributions for ZA.
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Figure 6.10. Joint marginal samples of the posterior dis-
tribution for ZA model parameters.

45



Figure 6.11. Posterior MCMC chains for ZA.
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Figure 6.12. Mean and 95% confidence interval for the
depth of penetration as a function of time after Bayesian
calibration.
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Figure 6.13. Initial d.o.p before any calibration compared
to the mean d.o.p. after Bayesian calibration of ZA model
parameters.
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Figure 6.14. Sobol indices for SGL.
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Figure 6.15. Prior vs. posterior distributions for SGL.
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Figure 6.16. Joint marginal samples of the posterior dis-
tribution for SGL model parameters.
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Figure 6.17. Mean and 95% confidence interval for the
depth of penetration as a function of time after Bayesian
calibration.
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Figure 6.18. Initial d.o.p before any calibration compared
to the mean d.o.p. after Bayesian calibration of SGL model
parameters.
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Figure 6.19. Posterior MCMC chains for SGL.
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Appendix A

Variance-based global sensitivity
analysis

There are many approaches to sensitivity analysis, but the approach taken here is to use
global, variance-based sensitivity analysis as first described by Sobol in [18]. An explanation
of the technical details that provides some intuition is provided in [14] The basic concept is
this: if we consider our model output O(θ) as a function of uncertain variables θ, the output
will vary with the uncertain parameters. One measure of variation caused by one parameter
θi is

Vθi
[
Eθ∼i [O|θi]

]
.

The inner expression represents fixing the parameter θi and taking the average over all
possible values of the other parameters (i.e. all θj where j 6= i). Then the outer expression
represents taking the variance over all possible values of θi.

The so-called “main effects” Sobol index Si is defined as

Si =
Vθi
[
Eθ∼i [O|θi]

]
V [O]

and can be seen as a measure of the amount that variations in θi alone contribute to the
total variance in O.

The other Sobol index that is commonly used in practice is the “total effect” index,
defined as

Ti = 1−
Vθ∼i

[
Eθi [O|θ∼i]

]
V [O]

=
V [O]− Vθ∼i

[
Eθi [O|θ∼i]

]
V [O]

The second equality is perhaps more enlightening as to what this index is communicating.
In analogy to the previous discussion,

Vθ∼i
[
Eθi [O|θ∼i]

]
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is the variance in O induced by varying all the model parameters except θi. Then subtracting
that quantity from the total variance leaves behind the contribution to variance from varying
θi alone as well as varying θi along with model parameter with which it is correlated.

Both measures provide a description of the percent of the variation in O that is induced
by each model parameter. The observable O in this paper is the depth of penetration of a
tungsten rod into a steel plate as a function of time. One can compute the Sobol indices as
defined above by doing a parameter study such as the LHS sampling described in 4.2 and
using surrogates as described also in 4.2 to approximate the variances. This was done for the
ZA model, for each depth of penetration at each observation time, as shown in Figure 6.8.
The depth of penetration as a function of time was most sensitive to model parameters c1
and c3 and c5 parameters, which are associated with initial yield strength, thermal softening,
and work hardening. This information could be useful in many ways, but two specifically
will be discussed here.

A.1 Sensitivity analysis for dimension reduction

If one is attempting to calibrate a set of model parameters, it can be useful to know which
parameters a quantity of interest (QOI) or observable is sensitive to. If the quantity of
interest (e.g. the depth of penetration as a function of time) is only sensitive to two out of
five of the model parameters, one can fix the parameters to which it is insensitive at their
nominal values and proceed with calibrating only those which were deemed significant.

For the models considered in this paper this isn’t crucial, but when one begins consider-
ing models with a high level of parametrization, traditional optimization methods and UQ
methods would begin to struggle. In such a context, sensitivity analysis can be an incredibly
useful tool in identifying on which model parameters to focus calibration efforts.

A.2 Sensitivity analysis for experimental design

On the other hand, one may wish to know what sort of data is required to best inform a
parameter. In this scenario, sensitivity analysis can be used to identify which observable
quantities are sensitive to the parameter of interest. For instance, as shown in Figure 6.2,
it would not be helpful to use depth of penetration as a function of time to determine the
exponents in the JC model, because the depth of penetration was not sensitive to their
variations. Obviously, physical intuition and expert guidance on which parameters will be
informed by which experiments is preferred, but sensitivity analysis can help to fill the gaps
when such knowledge is unavailable.
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