The World’s First Petascale ARM Supercomputer

Experiences Scaling a Production Arm Supercomputer to Petaflops and Beyond

Kevin Pedretti for the Astra Team

POCs: Jim Laros (Platform), Kevin Pedretti (Software Stack), Si Hammond (Apps)

jhlaros@sandia.gov, ktpedre@sandia.gov, sdhammo@sandia.gov
It Takes an Incredible Team...

- DOE Headquarters:
 - Thuc Hoang
 - Mark Anderson
- Sandia Procurement
- Sandia Facilities
- Incredible Sandia Team
- Colleagues at LLNL and LANL
 - Mike Lang
 - Rob Neely
 - Mike Collette
 - Alan Dayton
 - Trent D’Hooge
 - Todd Gamblin
 - Robin Goldstone
 - Anna Pietarila Graham
 - Sam Gutierrez
 - Steve Langer
 - Matt Leininger
 - Matt Legendre
 - Pat McCormick
 - David Nystrom
 - Howard Pritchard
 - Dave Rich
 - And loads more ...

- HPE:
 - Mike V. and Nic Dube
 - Andy Warner
 - Erik Jacobson
 - John D’Arcy
 - Steve Cruso
 - Lori Gilbertson
 - Meredydd Evans
 - Cheng Liao
 - John Baron
 - Kevin Jameson
 - Tim Wilcox
 - Charles Hanna
 - Michael Craig
 - Patrick Raymond
 - And loads more ...

- Cavium/Marvel:
 - Giri Chukkapalli (now NVIDIA)
 - Todd Cunningham
 - Larry Wikelius
 - Raj Sharma Govindaiah
 - Kiet Tran
 - Joel James
 - And loads more...

- ARM:
 - ARM Research Team!
 - ARM Compiler Team!
 - ARM Math Libraries!
 - And loads more...
It Takes an Incredible Team...
Outline

• Astra Overview

• ATSE Software Stack

• Recent Application Results

• Conclusion – HPC on Arm, are we there yet?
ASC Test Beds

- Small testbeds (~10-100 nodes)
- Breadth of architectures Key
- Brave users

Vanguard

- Larger-scale experimental systems
- Focused efforts to mature new technologies
- Broader user-base
- Not production, seek to increase technology and vendor choices
 - DOE/NNSA Tri-lab resource

ATS and CTS Platforms

- Leadership-class systems (Petascale, Exascale, ...)
- Advanced technologies, sometimes first-of-kind
- Broad user-base
- Production use

Vanguard Program: Advanced Technology Prototype Systems

Astra is the first Vanguard Platform
Astra Node Architecture

- **2,592** HPE Apollo 70 compute nodes
 - Cavium Thunder-X2 Arm SoC, 28 core, 2.0 GHz
 - 5,184 CPUs, 145,152 cores, 2.3 PFLOPs system peak
 - 128GB DDR Memory per node *(8 memory channels per socket)*
 - Aggregate capacity: 332 TB, Aggregate Bandwidth: 885 TB/s
- Mellanox IB EDR, ConnectX-5
- HPE Apollo 4520 All-flash storage, Lustre parallel file-system
 - Capacity: 990 TB (usable)
 - Bandwidth 244 GB/s
Astra System Architecture

- 36 compute racks
 (9 scalable units, each 4 racks)
- 2592 compute nodes
 (5184 TX2 processors)
- 3 IB spine switches
 (each 540-port)
Vanguard-Astra: Timeline

725 Facility Build and Final Preparation

- **RFP Development**
 - 20 Dec 2017: RFP Released
 - 8 Feb 2018: RFP Responses
 - 21 Feb 2018: Review and Selection

- **Negotiations, SOW Development**
 - 1 June 2018: Contract Awarded
 - 24 August 2018: L2 Milestone Completed
 - 4 Sept 2018: 1st Hardware Delivered
 - 28 Sept 2018: Final Hardware Delivered

- **System Integration**
 - 11 Oct 2018: Installation Completed
 - 15 Oct 2018: Facility Completed
 - 23 Oct 2018: First Large-scale Runs (1022)
 - 1 Nov 2018: HPL Submission 1.529 PF (2238)

- **Cont. System Integration and Stabilization**
 - 1 Nov 2018: L2 Milestone Completed
 - 1 Feb 2019: HPL: #156 @ 1.758 PFlops/s on 2428 nodes (up from #204)
 - 25 Feb 2019: Open Network Access
 - 6 May 2019: Restricted Network Access
 - 4 Sept 2019: L2 Milestone Completed

- **June 2019 Top500**
 - HPL: #156 @ 1.758 PFlops/s on 2428 nodes (up from #204)
 - HPCG: #29 @ 90.92 TFlop/s on 2385 nodes (up from #38)

- **Friendly Users**
 - 8 Jan. 2019

- **Open Network Access**
 - 25 Feb. 2019

- **Restricted Network Access**
 - 6 May 2019

- **Classified Network Access**
 - Oct. 2019

- **L2 Milestone**
 - Sept 4th 2019

- **June 2019 Top500**
 - HPL: #156 @ 1.758 PFlops/s on 2428 nodes (up from #204)
 - HPCG: #29 @ 90.92 TFlop/s on 2385 nodes (up from #38)
Real-Time System Monitoring Has Been Key

- Tools: {BMC, PDU, Syslog, TX2MON} + TimescaleDB + Grafana
Outline

• Astra Overview

• ATSE Software Stack

• Recent Application Results

• Conclusion – HPC on Arm, are we there yet?
Astra Collaboration with HPE’s HPC Software Stack

HPE’s HPC Software Stack

• **HPE**:
 • HPE Cluster Manager
 • HPE MPI (+ XPMEM)

• **Arm**:
 • Arm HPC Compilers
 • Arm Math Libraries
 • Allinea Tools

• **Mellanox-OFED & HPC-X**
• **RedHat 7.x for aarch64**
HPCM Provides Scalable System Management for Astra

- **HPCM**: HPE Performance Cluster Manager
 - Merger of HPE CMU with SGI Icebox stack
 - New product at time of Astra deployment
- **Collaboration resulted in new capabilities**
 - Support for hierarchical leader nodes for non Icebox clusters (aka “Flat Clusters”)
 - **Demonstrated boot of 2592 nodes in < 10 min**
 - Resilient leader node failover
 - Scalable BIOS upgrades and configuration
 - Ability to deploy TOSS images (Tri-lab Operating System Stack)

Diagram:
- **HPCM Management Node**
- **Gluster image store, NFSroot exported by Leaders to Compute Nodes**

- **Leaders**: Leader 1, Leader 2, Leader 3, Leader 4, Leader 5, Leader 6, Leader 7, Leader 8, Leader 9
 - 288 Nodes each
TOSS Provides Robust Base OS for Astra / ARM

• TOSS: Tri-lab Operating System Stack (Lead: LLNL, LANL, SNL)
 • Targets commodity technology systems (model: vendors provide HW, labs provide SW)
 • Red Hat 7 based; x86_64, ppc64le, and aarch64
 • ~4K packages on all archs, 200+ specific to TOSS
 • Partnership with RedHat with direct support

• Astra-related activities
 • Lustre enablement and bringup
 • Added support for Mellanox OFED InfiniBand stack, needed for advanced IB features
 • Debugged Linux Kernel issues on Arm, scale of Astra revealed bugs not previously seen
 • Kworker CPU hang – fix was in Linux upstream, but not in RedHat. Patch added to TOSS Linux kernel.
 • Sys_getdents64 oops – rare hang at job cleanup / exit. Actively debugging with RedHat + Marvell + HPE + Mellanox
ATSE is an Integrated Software Environment for ASC Workloads

• Advanced Tri-lab Software Environment
 • User-facing programming environment co-developed with Astra
 • Provides a common set of libraries and tools used by ASC codes
 • Integrates with TOSS and the vendor software stack
 • Derived from OpenHPC package recipes, similar look and feel
 (add uarch optimizations, static libraries, -fPIC, add missing libs)

• FY19 Accomplishments
 • Deployed TOSS + ATSE at transition to SRN (May’19)
 • Developed ATSE 1.2 with support for 2x compilers and 2x MPIs:
 {GNU7, ARM} x {OpenMPI3, HPE-MPI}
 • Built Trilinos and many ASC apps with ATSE
 • Packaged ATSE containers and tested up to 2048 nodes

• Future Directions
 • Migrate to Spack Stacks build
 • Add support for SNL adv. arch testbeds
 • Collaboration with RIKEN on McKernel
Containerized SPARC HIFiRE-1 on Astra

In job script:

```bash
mpirun \
    --map-by core \
    --bind-to core \
    singularity exec atse-astra-1.2.1.simg
    container_startup.sh
```

container_startup.sh

```bash
#!/bin/bash
module purge
module load devpack-gnu7
./sparc
```

Early Results: SPARC on Astra, 56 MPI processes per node

<table>
<thead>
<tr>
<th>Nodes</th>
<th>Trials</th>
<th>Native (seconds)</th>
<th>Container (seconds)</th>
<th>% Diff vs. Native</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>2</td>
<td>8164</td>
<td>8169</td>
<td>+ 0.1%</td>
</tr>
<tr>
<td>256</td>
<td>3</td>
<td>4473</td>
<td>4505</td>
<td>+ 0.7%</td>
</tr>
<tr>
<td>512</td>
<td>3</td>
<td>2634</td>
<td>2636</td>
<td>+ 0.1%</td>
</tr>
<tr>
<td>1024</td>
<td>1*</td>
<td>1827</td>
<td>1762</td>
<td>- 3.6%</td>
</tr>
<tr>
<td>2048</td>
<td>2</td>
<td>1412</td>
<td>1429</td>
<td>+ 1.2 %</td>
</tr>
</tbody>
</table>

Points:
- Supporting SPARC containerized build & deployment on Astra
- Enables easy test of new or old ATSE software stacks
- Near-native performance using a container
- Testing HIFiRE-1 Experiment (MacLean et al. 2008)

Supercontainers POC: Andrew J Younge – SNL
Outline

• Astra Overview

• ATSE Software Stack

• Recent Application Results

• Conclusion – HPC on Arm, are we there yet?
Applications ported during open and restricted phases:
- SNL: SPARC, EMPIRE, SPARTA, Xyce, NALU, HOMME-X, LAMMPS, CTH, Zapotec
- LANL: FLAG, PARTISN, VPIC
- LLNL: ALE3D, Ares, PF3D

Utilized ATSE provided software stack and modules
- Early work on ATSE using testbeds helped to iron out some initial issues
- Performance results vary, in some cases Trinity Haswell/CTS-1 are faster, others are slower
- Astra shows good scalability out to 2,048 nodes
- Early indications are that still room for improvement in compilers and math libraries (subject of continuing Astra projects)
<table>
<thead>
<tr>
<th></th>
<th>CTS1</th>
<th>Trinity</th>
<th>Sierra</th>
<th>Astra</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINPACK FLOP Rates</td>
<td>Broadwell</td>
<td>Haswell</td>
<td>KNL</td>
<td>POWER9</td>
</tr>
<tr>
<td>Perf</td>
<td>1.09 TF/s</td>
<td>~0.86 TF/s</td>
<td>~2.06 TF/s</td>
<td>~1 TF/s</td>
</tr>
<tr>
<td>Rel</td>
<td>1.00X</td>
<td>0.79X</td>
<td>1.89X</td>
<td>0.91X</td>
</tr>
<tr>
<td>Memory Bandwidth</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(STREAM) (per Node)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perf</td>
<td>~136 GB/s</td>
<td>~120 GB/s</td>
<td>~90 GB/s / ~350 GB/s</td>
<td>~270GB/s</td>
</tr>
<tr>
<td>Rel</td>
<td>1.00X</td>
<td>0.88X</td>
<td>0.66X / 2.57X</td>
<td>1.99X</td>
</tr>
<tr>
<td>Power (Max TDP, per Node)</td>
<td>120W x 2 = 240W</td>
<td>135W x 2 = 270W</td>
<td>~250W</td>
<td>190W x 2 = 380W</td>
</tr>
<tr>
<td>Rel</td>
<td>1.00X</td>
<td>1.13X</td>
<td>1.04X</td>
<td>1.58X</td>
</tr>
</tbody>
</table>

Guidance figures, used peak values for benchmarks and TDP
SPARC CFD Simulation Code

- SPARC is Sandia’s latest CFD modeling code
 - Developed under NNSA ATDM Program
 - Written to be threaded and vectorized
 - Uses Kokkos programming abstractions
 - Approximately 2-3M lines of code for binary (including Trilinos packages, mostly C++, tiny bit of Fortran)

- Mixture of assembly and solve phases

- Successfully compiles with GCC and Arm HPC compilers on Astra

- Results show performance with Arm HPC compiler varies from 0.5% faster than GCC to 10% slower
 - This seems to be consistent across our code portfolio at present
Similar performance of Trinity-Haswell and Astra (MPI Only, performance is within 10% except for XL blob meshes which were run on fewer nodes for Astra)

- Similar scaling behavior between platforms
• CTH uses significant number of Fortran features (mixture from FORTRAN-IV to Fortran-90)
 • Large complex code which is extremely well trusted by analysts, known to be challenging with Fortran compilers on new platforms
• Successfully compiles with Arm Flang (used for these results) and ATSE-GCC installs
HOMME (Climate)

- Climate modeling code which is partially developed at Sandia (ASCR)
 - Known to drive components and third parties libraries very hard (frequently the first to find issues during porting)
 - Strong driver for improvements in Trillinos solver libraries across DOE platforms
- Good scalability (want to see near straight lines if possible)
- Recent SMT-2 results are around 10% faster

Work by Oksana Guba and HOMME Team
Outline

- Astra Overview
- ATSE Software Stack
- Recent Application Results

Conclusion – HPC on Arm, are we there yet?
HPC on Arm, are we there yet? ... Yes

- Basic HPC components supported and demonstrated @ scale
 - InfiniBand, UCX, MPI, Lustre, Linux, SLURM, ...
- Compilers and math libraries work sufficiently well to get codes running
- Performance competitive with leading alternatives
- Offerings from a range of integrators
HPC on Arm, are we there yet? ... Yes

- Basic HPC components supported and demonstrated @ scale
 - InfiniBand, UCX, MPI, Lustre, Linux, SLURM, ...
- Compilers and math libraries work sufficiently well to get codes running
- Performance competitive with leading alternatives
- Offerings from a range of integrators

- SVE not proven yet, lack of accelerator options (changing)
- Performance not tuned in many packages / kernels yet
 - Need threaded and vectorized versions of kernels
- Still need work on profilers, debuggers, and memory correctness
- Lacking of standards for performance counters + power/energy
Exceptional Service in the National Interest