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Summary. Automatic differentiation (AD) is useful in transient sensitivity analysis oben-
putational simulation of a bipolar junction transistor subject to radiation damafg used
forward-mode AD, implemented in a new Trilinos package called Sa¢cadompute analytic
derivatives for implicit time integration and forward sensitivity analysiac&lo addresses
element-based simulation codes written in C++ and works well with forwemndigvity anal-
ysis as implemented in the Trilinos time-integration package Rythmos. TWarfdsensitivity
calculation is significantly more efficient and robust than finite differeg.cin
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1 Introduction

One of the primary missions of Sandia National Laboratories is certifyingstifety, secu-
rity, and operational reliability of the USA's nuclear weapons stockpile.ifportant as-
pect of this mission is qualifying weapon electronic circuits for use in abnabfe.g., fire)
and hostile (e.g., radioactive) environments. In the absence ofgnoded testing and with
the decommissioning of fast pulse neutron test facilities such as the Sanldied Reactor
(SPR), emphasis has been placed on using computational modelingrandti®on as a pri-
mary means for electrical system qualification. To further this objecBamdia has been de-
veloping computer codes to simulate individual semiconductor deviakslantronic circuits
subject to damage resulting from radioactive environments. In sechicbor devices, this ra-
diation damage creates displaced “defect” species that can move lthitweigevice, capture
and release electronic charge, and undergo reactions. Modeling afeteist physics intro-
duces many uncertain parameters into the computational model, andatintibthe model
with existing experimental data reduces the uncertainty in these paranietds paper we
discuss transient parameter sensitivity analysis of a bipolar junctionstanéBJT) subject

T Sandia is a multiprogram laboratory operated by Sandia Corporationgckheed Mar-
tin Company, for the United States Department of Energy under ConbBeAC04-
94AL85000. This document is released as SAND2007-7767C.
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to radiation damage. The computed sensitivities provide information ddeda derivative-

based optimization method to calibrate the model, and also give detailed iarwlyse ra-

diation damage mechanisms and their relative importance to device parfoe metrics, to
guide future model improvements. The semiconductor device andimadaefect physics are
implemented in a large-scale finite element code called Charon, devedd@zhdia, which
uses the Trilinos solver collection [8] for linear solvers, preconditioneaslinear solvers,
optimization, time integration, and automatic differentiation. Transient seitisis are com-

puted using a forward sensitivity method implemented in the Trilinos time iniegrpackage
Rythmos, with state and parameter derivatives computed via automagceditiation using
the Trilinos package Sacado.

Much of the foundation for this work has been discussed previous|ywHgre our ap-
proach for computing derivatives in large-scale element-based apiphs like Charon was
presented. In that paper we discussed the implementation details aodverte of comput-
ing state Jacobians and Jacobian-transpose products on a simpletimmd#fusion problem,
using the C++ AD tools Fad [3] and Rad [6]. Here we report on the agjiicaf that approach
to the full radiation defect semiconductor device physics model impléaden Charon and
extend it to include parameter derivatives, observation functions andiémt sensitivities. In
Sect. 2, we review the element-level approach for computing derdstivlarge-scale appli-
cations. The automatic differentiation tools Fad and Rad have been imatggonto a new
AD package called Sacado and have become part of Trilinos. We diguagpackage in more
detail in Sect. 3. The transient sensitivity approach as implemented in tieo3mpackage
Rythmos is discussed in Sect. 4, and the radiation defect physics faptilarjunction tran-
sistor is presented in Sect. 5. Finally, we discuss the transient sensitiaitysanof the BJT
in Sect. 6, comparing the overall performance of the approach to &-blac style finite dif-
ference method. We found the intrusive approach using AD and fdrtk@nsient sensitivities
to be significantly more efficient and robust than the finite-differengeageh. The Trilinos
packages discussed here, including Sacado and Rythmos, are laviailatilinos 8.0 [1].

2 Differentiating Element-Based M odels

Here we provide a brief overview of the approach for computing déixies of element-based
models published previously [4]. In general we are interested in mdHats(possibly af-
ter some spatial discretization) can be represented as a large systéferehtial algebraic
equations
) f(x,x,P,t)_O, 0<t<T 1)
a(p,t) = g(x(t),x(t), p,1),
wheret € R is time, x,x € R" are the state variables and their time derivatiyes, R™ are
model parameters argl: R2"™+1 _ Rl is one or more observation functions. Typically we
refer to f : R2™+1 _, R" as the global residual arglas the reduced observation. For the
purposes of this paper, we think ofas possibly very large, on the order of millions, whihe
is reasonably small, on the order of 100 dnd on the order of 1 to 10. For element-based
models,f can be decomposed as the sum

N
f(x,x p.t) = _ZQF% (R, RX, pt) (2)

over a large number of elemenis taken from a small sefec} of element functions :
RZWH+M1 _, R where eachy is at most a few hundred. Here we are using the term “ele-
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ment” in a generic sense not restricted to finite-element models. The esfric R™ *" and

Qi € R"™*" map global vectors to the local element domain and range spacestiesiye

Typically g has a similar decomposition. As discussed in [4], for systems that gratials
discretization of a set of PDEs, one must distinguish between interior ptertteat are de-
composed as above and boundary elements that have some othieb@ebdary conditions
applied. The extension of (2) to include boundary conditions is straigtsiatand will not be
treated here. For implicit time integration and transient sensitivity analyséshwst compute
the following derivatives, which have corresponding decompositiciassiement derivatives:

of of N ./ da  de of N oe
0GB = (G +p TR S-S A ©

for given scalarex and 3. As discussed in [4], computing the element derivatives in (3) is
well suited to automatic differentiation because they involve relatively fewpeddent and
dependent variables, do not involve a large number of operatiodsj@not require parallel
communication. Moreover the complexity of the AD calculation is indepenafethe number

of elements.

3 Automatic Differentiation with Sacado

In previous work [4], the feasibility and efficiency of computing the elatderivatives (3) in
the C++ finite-element simulation code Charon using the AD tools Fad [3Ratt[6] was
discussed. Since that work, we have made AD tools based on Fad dridt&a new package
called Sacado that is now part of the Trilinos collection. This packagddqeswperator over-
loading for forward, reverse, and Taylor mode automatic differentiaiinC++ codes. The
forward mode tools are based on Fad and use expression templa&ffidency, but have
been completely redesigned to support a more flexible software desiyjnomformance to
the C++ standard. The new tools use the same interface as Fad, allo@pigndeplacement
for Sacado. The reverse mode tools are essentially a repackagirgaigimal Rad, but also
provide enhanced debugging modes and better support for passiables (variables which
are really constants but are declared to be an AD type, see [4] for velsg tire a nuisance for
Rad). The Taylor mode is a simple but efficient univariate Taylor patyiabimplementation
that uses handles instead of expression templates. All tools are templgiethtid nesting
AD types for computing higher derivatives.

As discussed in [4], our approach for applying these AD types to apigiitaodes is to
template the C++ code that computes the element functgmsd to instantiate this tem-
plated code on the AD types. At the start of each element computationgiwen derivative
calculation, a preprocess operator is used to map the global solutionrs/gaad X to the
local element spacd’(mapping from Eg. (2)) and initialize the corresponding AD type for
the independent variables. Then the template instantiation of the elemetibfufor this AD
type is called to compute the element derivative. Finally a post-procesatop extracts the
derivative values (from either independent or dependent variaejgsnding on the AD type)
and sums them into the global derivative obje&@sntapping). The manual part of the dif-
ferentiation process is contained within these preprocess and posisprogerators, and new
operators must be defined each time new AD types are added to theHmvdever the physics
and its finite element discretization is contained within the templated elemetitiuse,, and
therefore the process of differentiating new physics is completely atimma
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Ideally the interface between the pre/post-process operators andneliemetions would
be the only place in the code where templated code must be called frotemmtated code,
but in practice there are numerous such places. To encapsulate thfadaetand facilitate
easy addition of new AD types, a template manager and iterator are ptdvjd8acado to
store the different instantiations of templated application code classes@madver them in
a type-independent way. The ideas of template meta-programminge{2ked to implement
this cleanly. Also, analysis tools such as sensitivity computations and optiiomzaquire an
application code interface to set, retrieve, and compute derivatives egflect to parameters.
However, application codes rarely provide such an interface andftiher8acado provides a
simple parameter library class to facilitate computing parameter derigatiyéD.

All of these tools have been incorporated into Charon to enable computdtfoat and
second derivatives with respect to both state variables and paramisedéscussed in [4],
this approach is highly intrusive to the application code and has requireificit software
engineering to incorporate into Charon. While complicated and certainlplack-box, we
have found this approach highly effective for computing derivativelarge-scale, parallel,
evolving physics application codes, both in terms of the computationabfdlsé derivative
calculations [4] and the human time required to develop and maintain the$mge incorpo-
rating Sacado into a large-scale application code is as much (if not nuvej the software
engineering to support the templating than the AD itself, Sacado providaalaane dimen-
sional finite element application called FEApp to demonstrate these toolsamdgees.

4 Transient Sensitivity Analysiswith Rythmos

The Rythmos package in Trilinos implements selected explicit and implicit timgritien
solvers based on the IDA package [9]. In this study, we employed iableforder, vari-
able step-size backward-difference time integrator (BDF) to solve theliwdtiae state equa-
tions (1) and the forward sensitivity problem
of [ ox of [ ox of 0
ﬂ(é‘p>+0><(0p)+0p_ 7

A . 0<t<T (4)
0§ 0dgox dgox  dg

op oxdp oxdp dp’
given appropriate initial conditions. Rythmos uses a highly modular objéetted infras-
tructure based on the abstract numerical algorithm approach of Thyrhere the sensitivity
equations in (4) are formulated as a single implicit ODE and solved usingpestelass that
also solves the forward state equations (1). A small amount of codintinzode is used to ef-
ficiently implement thestaggered corrector forward sensitivity method [5], where each (non-
linear) state time step is solved to completion before the (linear) sensitivity tepeguation
is solved for the update to the sensitiviti®g/ dp. The observation functiog and the reduced
sensitivityd§/dp are then computed at the end of each time step using an observer subclas
An error control scheme based on local truncation error estimategioget to control errors
on the states, but error control for the sensitivitiedx/dp is not currently implemented (in
the future this limitation will be removed). The Trilinos package NOX [1] seltlee implicit
BDF time step equations, and numerous direct and iterative linear salvdnsreconditioners
provided by Trilinos can be used to solve the resulting linear systems atieqa through a
single abstract interface provided by the Trilinos package Stratimiko&illy, the Sacado
AD classes are used to efficiently provide accurate partial derivadif/gdx, of /dx, of /dp,
dg/ 0%, dg/ 0%, anddg/dp for the Rythmos forward state and sensitivity solver code.
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(b)

Fig. 1. Scanning electron microscope image of an NPN BJT (a) and diagrara efifiter (E),
base (B), and collector (C) regions (b). The simulation domain is a 9rfon slice (white
vertical line) below the emitter contact with contacts at each end and a tenthedded in
the strip representing the base contact.

5 Radiation Defect Semiconductor Device Physics

We are interested in applying the transient sensitivity analysis techniquesdestin the pre-
vious section to computational models of semiconductor devices subjeatittion damage.
In this section we provide a brief description of the radiation defect sexdiector device
physics implemented in the physics code Charon developed at Sangigdai an NPN
bipolar junction transistor (BJT) shown in Fig. 1(a). Modeling this physiaguite detailed
and due to space constraints not all aspects of the model nor its impleioeimeCharon are
discussed (more details can be found in [7]). As shown in Fig. 1(b}J&iB a device with
three electrical contacts referred to as the emitter (E), base (B), dedtoo (C). Each contact
is attached to the boundary of a region of the device where the silicon lattscld®n mod-
ified by the introduction of impurities to produce an abundance of fredretex (N-doping)
in the emitter and collector regions or holésdoping) in the base region [12]. Charged car-
riers (electrons and holes) flow through the device as dictated by theiefétt in the body
and the electric potential or carrier flux prescribed at the contacts. Whisvice is exposed
to a radiation environment, the radiation interacts with the device’s lattice maaedamay
“knock out” an atom within the lattice, leaving a vacancy (a void) and an ititiefqfree
material atom), referred to as a Frenkel pair. These vacancies tamstitials (collectively re-
ferred to as defect species) can carry charge, move througtedethice, and interact through
various reactions such as capture/release of electrons/holes antbiration. The diffusion
and transport of carriers and defect species are governed byltheihg partial differential
equations [12]:

ﬂ-(x\zmw) = (pn+cizﬁﬁ> ®)

on

0 (—unnOy 4 DpOn) = E—’_R” (6)
7
aY;

O-(YOY+DyOY) = 2L +Ry, i=1,...,N ®)

o
wherey is the scalar electric potential,and p are the electron and hole concentrationss
the concentration of defect specideri =1,....N, Z is the integer charge number of defect
specied, C is the static doping profile} is the minimal Debye length of the devidgy is
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Table 1. Sample of the 84 defect reactions and corresponding parametdmniCé refers
to the parameter number in Fig. 2. Superscripts denote charge Matefgrs to a vacancy,
BV to a boron-vacancy compleRV to a phosphorous-vacancy complexto the reaction
cross-section andE to the reaction activation energy.

# Reaction Parameter VaILMa # Reaction Parameter Value
13 e +V- >V~ o 3.0e-164/ 46 e +PVO— pVO o 1.5e-15
14V~ —e +V- AE 0.09 |79 ht4+v— —=VO o 3.0e-13
15V e +V— o  3.0e-1683 VvVt —ht+VO AE 0.05

16 e +VO-v- o 24e-1483 VvVt —ht4+VO o 3.0e-15

40e +BV+ —BVO g 3.0e-14109h* +PV~ — PVO (o) 3.9e-14

the generation and recombination term for spegieand Dy and i are the diffusivity and
mobility coefficients for species

The generation/recombination terRs, Rp, Ry, i = 1,...,N are a sum of source terms
arising from the defect reactions. We are primarily interested in cadeéeet reactions such
asX™ — X™1 1 e~ that contribute a source term of the form

Rymi1 = aAXmexp(%) , 9)

where g is the reaction cross-sectiod is a constantAE is the activation energy is
Boltzmann’s constant and is the lattice temperature. Hed¢ represents a defect species
and superscripts denote charge state. The corresponding sounctteahe capture reaction
X™1 e~ — X™Mhas the same form as (9), but with zero activation energy. Similar remctio
for release and capture of holas are also included. For the problem of interest, there are
a total of 84 carrier-defect reactions among 35 defect speciesvdffi¢hese reactions along
with their activation energy and cross-section values are summarizexbla T.

Equations (5-8) are discretized in Charon using a Galerkin finite-elemettiod with
two-dimensional bilinear basis functions on quadrangle mesh cells agahdine upwind
Petrov-Galerkin (SUPG) stabilization [10, 11]. To keep the problem siasanable, we chose
only to simulate a pseudo one-dimensional vertical strip (9x0.1 micranytin the BJT as
shown in Fig. 1(b) — a full two-dimensional simulation would require almouteek of com-
puting time on 1000 processors. Dirichlet boundary conditions for thetredepotential are
applied at each end of the strip, representing the emitter and collectoctraad also at the
emitter-base junction to represent the base contact. The resulting grdiffarential equa-
tions are then integrated forward in time using Rythmos, as discussed iretfieys section.
Forward mode AD in Sacado is used to differentiate the finite-elemenuadsduations: we
used the approach described in Sect. 2 to compute the Jacobian andchatdsss for the
implicit time integration methods, as well as to compute the analytic derivatiithgespect
to reaction cross-sections and activation energies for each time steqguaed for transient
sensitivity analysis.

For comparison to experimental data, the electric current at the batscts computed as
the net carrier flux through the contact and supplies the observatiotidag. This calculation
naturally decomposes into a set of element computations that can brewtifi¢ed via AD in
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a manner similar to that discussed in Sect. 2 to compute the requisite paritatides in (4)
for sensitivity analysis.

6 Analysisof a Radiation Damaged BJT

There is significant uncertainty in the defect reaction cross-sectiomethdtion-energy pa-
rameters that can be reduced by calibrating the computational simulatamsagexisting)
experimental data. To this end, we applied the transient sensitivity metbhogsded in Sect. 4
to the BJT model from Sect. 5 to compute sensitivities of the electric cuaktite base
contact with respect to all 126 defect reaction parameters, for lageinus derivative-based
optimization method to calibrate the model. Dirichlet boundary conditions oelbctric po-
tential ¢ are applied at all three contacts, with values of —0.589 (emitter), O Ylaask10.21
(collector). Zero Dirichlet boundary conditions are also applied at thitemnand collector
contacts for vacancies, and silicon and boron interstitials. Natural oyrabnditions for
carriers and all other defect species are applied throughout thedbourA radiation pulse

is simulated by applying a transient source term for generation of Freyaies and elec-
tron/hole densities (ionization), as shown in Fig. 3(a). We ran the transémsitivity calcu-
lation over a time interval 0f0, 1], using Rythmos’s adaptive step-size, variable-order BDF
method with an initial time step size of 18 and relative and absolute error tolerances of
1073 and 10°° respectively. The variable-order method was restricted to a fixed ofde
(backward-Euler method) because Charon exhibited unphysiddbéeas with higher-order
methods that currently we have not been able to eliminate. The implicit timeegtggtions
were solved by NOX using an undamped Newton method with a weightedrreat-square
update-norm tolerance of 16. The Newton and sensitivity linear systems were solved by
AztecOO using preconditioned GMRES with a tolerance of2iNewton) and 1012 (sensi-
tivity) and Ifpack’s RILU(2) preconditioner with one level of overldfhe calculation was run
on Sandia’s Thunderbird cluster using 32 processors with a discretizzti2 70 mesh nodes
and 39 unknowns per node (108,030 total unknowns). Scaled séiestof the base current
with respect to all parameters at early and late times after the radiation gnglsshown in
Fig. 2, along with transient sweeps of two of the dominant sensitivities in3fim. For each
parameter, the scaled sensitivity is given(lpy1)(dl /dp) wherep is the parameter valuéjs
the (base) current, ardl /dp is the transient sensitivity. A simulation without sensitivities but
with identical configuration otherwise requires approximately 105 minutegraputing time,
whereas the transient sensitivity calculation for all 126 sensitivities topkoapmately 931
minutes. Note that because the forward sensitivity solver currently clmeisnplement error
control for the sensitivities (as described in Sect. 4), we found by tridlexror the tighter
1012 inear solver tolerance was necessary to compute the sensitivities stably.

The primary goal for computing these sensitivities is for later use in avatére-based
optimization method for model calibration. However the relative sensitivifisplayed in
Fig. 2 also provide important qualitative information by clearly demonsigatihich are the
dominant parameters and that only a small fraction of the 126 parasrieg®e non-trivial
sensitivities. This suggests that an optimization over the 10-15 domineapters would
likely be just as successful as over the full set, reducing the cost ahtukel calibration. It
also suggests the physics associated with these parameters would lbgargetif refinement
of the computational model proved necessary.

The typical approach at Sandia for obtaining this sensitivity informationr@utth non-
invasive finite-difference methods. However given the small mageguad many of the pa-
rameters (see Table 1), it is unclespriori what reasonable perturbation sizes would be. We
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Fig. 2. Scaled transient base current sensitivities at early and late times of ThdeBice
with respect to the cross-section and activation energy parametesti@ges are scaled to
(p/1)(dl /dp) wherep is the parameter valué,s the base current, arl /dp is the unscaled
sensitivity.
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Fig. 3. (a) Frenkel pair (vacancies and silicon interstitials) and ionization (elettote) den-

sity source term simulating a radiation pulse (solid curve) and resultingduseent (dashed
curve). (b) Transient history of (unscaled) sensitivities 16 andd® fFig. 2. Unscaled sensi-
tivities are shown because the currépiasses through zero creating a singularity in the scaled
sensitivity.

compared computing sensitivities using first-order finite differencing ¢odirect method in
Rythmos and found, not surprisingly, that the Rythmos approach wa$ fiaster and more
robust. In Table 2, the magnitude of the relative difference in the basentisensitivity with

respect to parameter 16 between Rythmos and first-order finite diffieiggis shown at several
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Table 2. Magnitude of relative difference in base current sensitivities betwaghnios and
first-order finite differencing, at several times and with several fidifference perturbation
sizese, for parameter 16. Here is the relative perturbation size, the absolute perturbation
size is¢|p|, wherep is the value of the parameter (2.4e-14). The absolute difference in all
sensitivities is of the order £ao 10",

Time €=109 =101 =102 £¢=103% £=10% €=10° £=10°

104 2.7769 0.2219 0.2425 0.3137 0.3143 0.3179 0.3539
102 0.0888 0.0218 0.0094  0.0118 0.0123 0.0123 0.0124
102 0.0659 0.0433 0.0520 0.0625 0.0979 0.4599 4.0786
101 0.0971 0.2159 0.0392 0.0543 0.0528 0.0501 0.0573
100 02724 0.0766 0.1288 0.1602 0.1647 0.1673 0.0681

times for several relative finite-difference perturbation sizes. Galyespeaking, the finite-
difference value is not terribly sensitive to the perturbation size, buetlseno clear single
choice that would yield good accuracy for all time points. The difficulty witmputing these
sensitivities using finite differencing is that parameter perturbations endagations in time-
step sizes that add noise to the sensitivity calculation. This noise can ledsoltightening
the time integrator error tolerances, but this may come at consideratiigoadl computa-
tional cost. Clearly computing sensitivities in this way is hard to make robusthacan be
critical when embedded in a transient optimization calculation. Moreoeenpating sensi-
tivities by finite differencing for this problem is drastically more expens@emputing all
126 sensitivities via first-order finite differences would take roughl¥p@3,minutes (about 9
days) of computing time on 32 processors, compared to 931 minutesthsidirect approach
in Rythmos. There are three reasons for this difference in cost, alhsitegrfrom the fact that
each finite-difference calculation requires a full time integration: all okthsitivities during
the early portion of the time integration are zero (which require no workHersensitivity
linear solves), because the sensitivity equations are linear, they onliyeemne linear solve
per time step instead of a full Newton solve, and finally the sensitivity lindaesdypically
require significantly fewer linear solver iterations than the Newton linearesofeurrently it
is unclear why this is the case).

7 Concluding Remarks

We have described the transient sensitivity analysis of a computationabsiom of a bipolar
junction transistor subject to radiation damage, work that is a step towalttteahsient opti-
mization for model calibration. The combination of AD, as implemented in &ve Trilinos

package Sacado, and the forward sensitivity method in the Trilinos timeratiteg package
Rythmos provided efficiency and robustness.

In the future we plan to embed these sensitivity calculations in transient optiornizalgo-
rithms (provided by MOOCHO, another new Trilinos package) for fulld@lacalibration and
parameter estimation. For this to succeed, controlling the accuracy cfiiséigity computa-
tions is critical; such control is virtually impossible with finite differencing. Text step is to
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implement full error control on the sensitivity equations. Applying theecontrol strategies
already in Rythmos to the sensitivity equations should be straightforward.

Typically for an optimization over a parameter space of the size studied(h26), one

would expect an adjoint sensitivity approach using reverse-mode Alietmore efficient.
While Sacado does provide a reverse-mode capability, this approadid &iso require an
adjoint-enabled time integrator in Rythmos, which has not yet been conygleigemented.
In the future we do plan to implement adjoint sensitivities in Rythmos, leuwegaBacado for
local adjoint sensitivities of the model to further speed up the model aililor problem.

References

10.

11.

12

. Trilinos packages Sacado, Rythmos, NOX, Thyra, Stratimikos, A¢Peand Ifpack are

available at the Trilinos web sitet t p: //tri | i nos. sandi a. gov

. Abrahams, D., Gurtovoy, A.: C++ Template Metaprogramming. igaia-Wesley, Boston

(2005)

. Aubert, P., Di @sag, N., Pironneau, O.: Automatic differentiation in C++ using expres-

sion templates and application to a flow control problem. Computing and ldatian
in Sciences8, 197-208 (2001)

. Bartlett, R.A., Gay, D.M., Phipps, E.T.: Automatic differentiation ef#Ccodes for large-

scale scientific computing. In: V.N. Alexandrov, G.D. van Albada, . RMsloot, J. Don-
garra (eds.) Computational Science — ICCS 200#ture Notes in Computer Science,
vol. 3994, pp. 525-532. Springer, Heidelberg (2006)

. Feehery, W.F,, Tolsma, J.E., Barton, P.l.: Efficient sensitigitylysis of large-scale

differential-algebraic systems. Appl. Numer. Ma#5(1), 41-54 (1997)

. Gay, D.M.: Semiautomatic differentiation for efficient gradient catagions. In: H.M.

Bucker, G. Corliss, P. Hovland, U. Naumann, B. Norris (eds.) Autii2ifferentiation:
Applications, Theory, and Tools, Lecture Notes in Computational Sciandé€Engineer-
ing. Springer (2005)

. Hennigan, G.L., Hoekstra, R.J., Castro, J.P., Fixel, D.A.di8hd.N.: Simulation of neu-

tron radiation damage in silicon semiconductor devices. Tech. Rep. 2A0ID7157,
Sandia National Laboratories (2007)

. Heroux, M., Bartlett, R., Howle, V., Hoekstra, R., Hu, J., Kolda,L'Ehoucq, R., Long,

K., Pawlowski, R., Phipps, E., Salinger, A., Thornquist, H., Tuman&., Willenbring,
J., Williams, A., Stanley, K.: An overview of the Trilinos package. ACMaiis. Math.
Softw. 31(3) (2005)

. Hindmarsh, A.C., Brown, P.N., Grant, K.E., Lee, S.L., Sarlfa, Shumaker, D.E., Wood-

ward, C.S.: Sundials: Suite of nonlinear and differential/algebraicteusolvers. ACM
Trans. Math. Softw31(3), 363—-396 (2005)

Hughes, T.J.R., Franca, L.P., Balestra, M.: A new finite eléfoemulation for compu-
tational fluid dynamics: V. Cicumventing the Babuska-Brezzi conditiostakle Petrov-
Galerkin formulation of the Stokes problem accomodating equal orderpwitgion.
Computer Methods in Applied Mechanics and Enginee&@&g35—99 (1986)

Hughes, T.J.R., Franca, L.P., Hulbert, G.M.: A new finite elgrfgmulation for compu-
tational fluid dynamics: VIII. the Galerkin/least-squares method foreative-diffusive
equations. Computational Methods Applied Mechanics and Engineg8ng73-189
(1989)

. Sze, S.M.: Physics of Semiconductor Devices, 2nd edn. Wileyr& §981)



