
SANDIA REPORT
SAND2019-9297
Unlimited Release
Printed August 2019

XVis: Visualization for the
Extreme-Scale Scientific Computation
Ecosystem, Final Report

Kenneth Moreland, David Pugmire, David Rogers, Hank Childs, Kwan-Liu Ma, and
Berk Geveci

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology
and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc.,
for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Approved for public release; further dissemination unlimited.



Issued by Sandia National Laboratories, operated for the United States Department of Energy
by National Technology and Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

• •U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2



SAND2019-9297
Unlimited Release

Printed August 2019

XVis: Visualization for the Extreme-Scale
Scientific Computation Ecosystem, Final Report

Kenneth Moreland
Sandia National Laboratories

kmorel@sandia.gov

David Pugmire
Oak Ridge National Laboratory

pugmire@ornl.gov

David Rogers
Los Alamos National Laboratory

dhr@lanl.gov

Hank Childs
University of Oregon
hank@cs.uoregon.edu

Kwan-Liu Ma
University of California at Davis

ma@cs.ucdavis.edu

Berk Geveci
Kitware, Inc.

berk.geveci@kitware.com

Abstract

Scientific computing is no longer be purely about how fast computations can be per-
formed. Energy constraints, processor changes, and I/O limitations necessitate sig-
nificant changes in both the software applications used in scientific computation and
the ways in which scientists use them. Components for modeling, simulation, analy-
sis, and visualization must work together in a computational ecosystem, rather than
working independently as they have in the past. The XVis project provides the nec-
essary research and infrastructure for scientific discovery in this new computational
ecosystem by addressing four interlocking challenges: emerging processor technology,
in situ integration, usability, and proxy analysis. This report reviews the accomplish-
ments of the XVis project to prepare scientific visualization for Exascale computing.
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Summary

The project XVis: Visualization for the Extreme-Scale Scientific Computation Ecosys-
tem, or simply XVis for short, was a project funded by the Office of Advanced Scientific
Computing Research in the DOE Office of Science. The project ran from October 2014
to September 2017 (with some no-cost extensions for some groups). XVis was a collab-
oration between Sandia National Laboratories, Oak Ridge National Laboratory, Los
Alamos National Laboratory, Kitware, Inc., the University of California at Davis, and
the University of Oregon.

The primary purpose of the XVis project was to provide fundamental research and
development to enable scientific visualization at the Exascale. Scientific visualization
is a critical component for enabling scientific discovery through computation. This
lofty goal is well beyond the scope of any single project. Thus, the XVis project fo-
cused on changes in the Exascale supercomputer “ecosystem.” That is, how different
software and hardware components of the HPC system must change their nature, be-
havior, and, most importantly, their relationship with each other to perform efficiently
on what we expect an Exascale machine to look like. The XVis project approached this
problem by addressing four interlocking challenges: emerging processor technology,
in situ integration, usability, and proxy analysis. This executive summary briefly
reviews the results achieved for each of these thrusts.

Emerging Processor Technology

One of the biggest recent changes in high-performance computing is the increasing
use of accelerators. Accelerators contain processing cores that independently are in-
ferior to a core in a typical CPU, but these cores are replicated and grouped such that
their aggregate execution provides a very high computation rate at a much lower
power. Current and future CPU processors also require much more explicit paral-
lelism. Each successive version of the hardware packs more cores into each processor,
and technologies like hyper-threading and vector operations require even more par-
allel processing to leverage each core’s full potential.

This change in the basic nature of processor technology for HPC systems left sci-
entific visualization software in a precarious state. The parallel code designed to be
highly scalable in distributed memory systems simply will not perform well with the
fine, lighter-weight threading paradigm introduced in new processors.
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The XVis project developed techniques to enable scientific visualization on ad-
vanced processors and accelerators. Although parallel algorithm design was a signif-
icant part of this effort, the main thrust of the work was in providing more abstract
building blocks that could be applied to numerous scientific visualization features.
The main approach used was the engagement of data parallel primitives, which are a
small set of basic operations (such as prefix sum, sort, and reduce) that are optimized
to run in parallel. From these data parallel primitives we built higher level constructs
commonly encountered in scientific visualization algorithms such as topology repre-
sentations, permutation of elements, scheduling of connected structures, and finding
coincident elements.

This research in parallel algorithm techniques was encapsulated in a software
framework named VTK-m. The XVis project was careful to use well-established col-
laborative software development methods for VTK-m. Today, VTK-m has become a
critical component in DOE’s scientific visualization software stack. It plays a predom-
inant role in ECP (https://www.exascaleproject.org/), a large DOE project to
get to Exascale computing.

In Situ Integration

Although the overall computation rate of HPC systems continues to increase at an
exponential rate, the bandwidth and capacity of disk storage systems increases at a
much more moderate rate. Consequently, there is a growing divergence between the
amount of data that is generated from computation and the amount of that data that
can be captured on the storage system. At the Petascale, it is becoming the case for
many existing runs that it is not possible to save all the data required for a proper
analysis, and this problem will get much worse at the Exascale.

The way around this problem is to incorporate in situ visualization, which pro-
cesses data while it still resides in a running simulations memory without the need
to push that data to a disk storage system. We see this technology as critical at the
Exascale and spent much time in XVis addressing the problem. However, there are
many issues that make in situ visualization challenging [22].

To make in situ visualization more effective, XVis investigated ways in which we
could reduce the footprint of the visualization code and better integrate with the sim-
ulation. Together, we consider these features flyweight in situ techniques.

One important point that XVis addressed was the need in a tightly coupled vi-
sualization to be able to directly access simulation data without copying the data
from one format to another. This required the visualization code to adapt to different
memory layouts. XVis achieved this goal by introducing abstract array interface com-
ponents that could be customized for different memory layouts (for example an “array
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of structures” versus a “structure of arrays”). Such an array interface component was
built into VTK-m, which used templating parameters to allow the compiler to auto-
matically adjust an algorithm’s code to use customized data structures. XVis also
introduced similar array concepts into VTK. Using a combination of virtual methods
and template-based polymorphism, this allows VTK algorithms to give performance
close to that of raw pointers while allowing for dynamic specification of data. These
VTK classes can then be leveraged from in situ libraries like Libsim and Catalyst that
use VTK for their algorithm implementations.

XVis also partnered with several other projects to deliver in situ implementations
to multiple frameworks and science applications [2]. XVis helped integrate VTK-m
into computational science workflows implemented in projects like Legion, SENSEI,
and ALPINE. XVis also provided direct in situ support for applications in combustion,
cosmology, and fusion.

Usability

A significant disadvantage of using a workflow that integrates simulation with vi-
sualization is that a great deal of exploratory interaction is lost. All visualization
parameters must be established before the simulation starts or, at best, the user can
explore transient data that changes with the state of the simulation. Little is known
about how these limitations affect usability or a scientist’s ability to form insight.

The XVis project investigated usability of visualization with a focus on maintain-
ing usability when applying in situ visualization techniques. The XVis team ap-
proached the problem by first collaborating with application scientists to understand
their needs. The team then designed customized algorithms to extract useful infor-
mation that required less disk storage but allowed post hoc analysis. The teams then
worked with application scientists to gauge the effectiveness of the new in situ tech-
nique.

Combustion Working with the S3D combustion code and Jacqueline Chen’s re-
search group at Sandia National Laboratories, the XVis team developed specialized
techniques to characterize groups of data with probability distribution functions. Us-
ing a comprehensive visualization tool designed by XVis, combustion scientists are
able to explore these probability distribution functions, quickly find distributions rel-
evant to physical phenomena, and filter based on this information.

Cosmology Working with Salman Habib’s research group at Argonne National
Laboratory, the XVis team developed and deployed tools to make effective use of par-
allel GPU clusters to provide interactive visualization of merger tree and particle
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data. This work included improving the scalability of halo tag processing, which is
critical for interactive analysis of halo structure.

Fusion Working closely with the XGC team at Oak Ridge National Laboratory, the
XVis team analyzed the data needs of the application scientists and explored ways
to capture data. Focusing on the XGC1 and Xolotl codes, XVis applied the aforemen-
tioned flyweight in situ techniques to integrate VTK-m code into their workflow. This
collaboration lead to a new binning technique that was able to capture data from
millions of particles in a grid structure with more than 80% reduction of data while
incurring less than 1% error.

Proxy Analysis

The extreme-scale scientific-computation ecosystem is a much more complicated
world than the largely homogeneous systems of the past. There is significantly
greater variance in the design of the accelerator architecture than is typical in the
classic x86 CPU. In situ visualization also yields complicated interactions between
the simulation and visualization that are difficult to predict. Thus, the behavior ob-
served in one workflow might not be indicative of another. To address this issue,
XVis engaged in employing proxy analysis to provide simplified tools for assessing
performance on HPC systems.

The XVis project developed two visualization “mini-apps” that can be used as ex-
amples for system performance. The first mini-app, miniIsosurface, demonstrates the
creation of contours from three dimensional volumes. Contouring is one of the funda-
mental operations of scientific visualization. There are many contouring algorithms
and miniIsosurface encapsulates many of them. The second mini-app, miniGraphics,
demonstrates parallel rendering. Rendering is, naturally, fundamental for visualiza-
tion, and HPC visualization demands a parallel rendering approach. miniGraphics
encapsulates many of these parallel rendering algorithms.

During the course of XVis, independent projects also worked on similar small vi-
sualization systems. One such example is a simple in situ rendering library named
Ascent (formally Strawman), which has since become part of ECP. Ascent was also
well aligned with XVis’ proxy application goals, and hence was used for multiple mea-
surement purposes.

12



Chapter 1

Introduction

The XVis project brings together the key elements of research to enable scientific
discovery at extreme scale. Scientific computing will no longer be purely about how
fast computations can be performed. Energy constraints, processor changes, and I/O
limitations necessitate significant changes in both the software applications used in
scientific computation and the ways in which scientists use them. Components for
modeling, simulation, analysis, and visualization must work together in a computa-
tional ecosystem, rather than working independently as they have in the past. This
project provides the necessary research and infrastructure for scientific discovery in
this new computational ecosystem by addressing four interlocking challenges: emerg-
ing processor technology, in situ integration, usability, and proxy analysis.

Emerging Processor Technology One of the biggest recent changes in high-
performance computing is the increasing use of accelerators. Accelerators contain
processing cores that independently are inferior to a core in a typical CPU, but these
cores are replicated and grouped such that their aggregate execution provides a very
high computation rate at a much lower power. Current and future CPU processors
also require much more explicit parallelism. Each successive version of the hardware
packs more cores into each processor, and technologies like hyperthreading and vector
operations require even more parallel processing to leverage each core’s full potential.

XVis brings together collaborators from the predominant DOE projects for visual-
ization on accelerators and combines their respective features in a unified visualiza-
tion library named VTK-m. VTK-m will allow the DOE visualization community, as
well as the larger visualization community, a single point to collaborate, contribute,
and leverage massively threaded algorithms. The XVis project is providing the in-
frastructure, research, and basic algorithms for VTK-m, and we are working with
the SDAV SciDAC institute to provide integration and collaboration throughout the
Office of Science.

In Situ Integration Fundamental physical limitations prevent storage systems
from scaling at the same rate as our computation systems. Although large simu-
lations commonly archive their results before any analysis or visualization is per-
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formed, this practice is becoming increasingly impractical. Thus, the scientific com-
munity is turning to running visualization in situ with simulation. This integration
of simulation and visualization removes the bottleneck of the storage system.

Integrating visualization in situ with simulation remains technically difficult.
XVis leverages existing in situ libraries to integrate flyweight techniques and ad-
vanced data models to minimize resource overhead. Within our in situ visualiza-
tion tools, XVis integrates existing visualization algorithms and those incorporating
emerging processor technology. XVis also studies the latest techniques for new do-
main challenges and for post hoc interaction that reconstructs exploratory interaction
with reduced data.

Usability A significant disadvantage of using a workflow that integrates simulation
with visualization is that a great deal of exploratory interaction is lost. Post hoc
techniques can recover some interaction but with a limited scope or precision. Little
is known about how these limitations affect usability or a scientist’s ability to form
insight. XVis performs usability studies to determine the consequences of in situ
visualization and proposes best practices to improve usability.

Unlike a scalability study, which is always quantitative, XVis’ usability studies are
mostly qualitative. Our goal is not to measure user performance; rather, we want to
learn about the limitations and benefits of incorporating in situ methods in scientists
workflows. These studies reveal how the simulation, hardware, and users respond to
a particular design and setting.

Proxy Analysis The extreme-scale scientific-computation ecosystem is a much
more complicated world than the largely homogeneous systems of the past. There
is significantly greater variance in the design of the accelerator architecture than is
typical of the classic x86 CPU. In situ visualization also yields complicated interac-
tions between the simulation and visualization that are difficult to predict. Thus, the
behavior observed in one workflow might not be indicative of another.

To better study the behavior of visualization in numerous workflows on numer-
ous systems, XVis builds proxy applications that characterize the behavior before the
full system is run. We start with the design of mini-applications for prototypical vi-
sualization operations and then combine these with other mini-applications to build
application proxies that characterize the behavior of larger systems. The proxy anal-
ysis and emerging processor technology work are symbiotic. The mini-applications
are derived from the VTK-m implementations, and the VTK-m design is guided by
the analysis of the mini-applications.
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Chapter 2

Progress

The XVis research plan specified in the proposal is divided into a set of milestones
spread over the 3-year period of the project, divided among the projects research ar-
eas, and distributed among the participating institutions. Our report is similarly
organized by giving progress on each of these milestones.

2.1 Emerging Processors

Milestone 1.a, Initial VTK-m Design Provide the research and design for VTK-
m functional operation and, in conjunction with SDAV, develop an initial imple-
mentation.

The VTK-m prototype [26] is central to many of the activities in XVis. As such,
a significant portion of the work in the early part of the project is dedicated to this
milestone and remained a consistent theme throughout the project. To enable broad
sharing of the code, VTK-m is released with an open BSD 3-clause license.

We have established a central git repository hosted by Kitware. The URL
for the repository is https://gitlab.kitware.com/vtk/vtk-m. We have es-
tablished several procedures for managing the collaborative development of the
project. This includes a weekly developers meeting to coordinate and communicate,
a branchy development workflow for coordinating concurrent contributions (https:
//gitlab.kitware.com/vtk/vtk-m/blob/master/CONTRIBUTING.md), a set of
coding conventions (https://gitlab.kitware.com/vtk/vtk-m/blob/master/
docs/CodingConventions.md), and a large set of regression tests run nightly (re-
ported at https://open.cdash.org/index.php?project=VTKM). We are also
making use of the GitLab issue tracker, which helps both with tracking desired
changes and capturing design decisions.

The basic foundations for VTK-m were completed in the first year. These include
the build system, package structure, and fundamental classes. VTK-m now includes
a generic device adapter that implements the basic data parallel primitives and pro-
vides performance portability [24]. XVis provided 3 implementations for this generic
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device adapter: a CUDA device, a multi-core CPU device (using the TBB library), and
a serial device for debugging purposes.

VTK-m has a generic array interface that provides a single interface for direct
access to data of any type made possible with static templating. This generic array
interface simplifies zero-copy interfaces to other data structures. VTK-m also has a
dynamic array wrapper that helps with handling data whose type is not known until
compile time.

The data model in VTK-m is based on an arbitrary collection and combination of
cells, fields, and coordinate systems. The data model is abstract enough to flexibly rep-
resent a variety of structures but concrete enough to have clear semantics. The data
model can also adapt to arbitrary array structures allowing VTK-m to interface di-
rectly with data defined in other software packages. We have currently implemented
cell sets that represent either cells arranged in 1, 2, or, 3D structured array or un-
structured cells with explicitly defined connections. We also have implementations for
coordinate systems with either uniform axis-aligned spacing or arbitrary positions.

We have been defining and implementing a user-facing API to construct data sets
of common mesh types, including regular grids, rectilinear grids, and unstructured
grids. The goal of this API is provide an interface for users of VTK-m that masks the
complexity of the underlying representation while providing a straightforward and ef-
ficient way to create VTK-m datasets from raw data arrays, or other representations.
This includes translation from VTK datasets into VTK-m datasets, data readers, and
more.

XVis implemented the initial mechanism for building and executing worklets. The
mechanism is flexible in that it is straightforward to define new worklet algorithms,
new worklet types, and new data handling mechanisms. XVis implemented two basic
worklet patterns. The first worklet pattern is a simple map from an input array to an
output array. The second worklet pattern can specify connections between two arbi-
trary topological elements (for example from points to cells or from cells to points) to
give the worklet access to element-wide data. We have also added a generic cell shape
mechanism and basic cell-wise operations such as parametric coordinates, interpola-
tion, and derivatives.

Through XVis we designed and implemented the original “filter” interface in VTK-
m. This is a high-level API to run algorithms in VTK-m. It allows users of the toolkit
to create and manipulate data without having to learn the details of data structures
and worklet invocations. XVis provided the initial implementation of several filters
in VTK-m.

• cell average (point to cell)

• point average (cell to point)

• point elevation
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Figure 2.1. Examples of the output from the external
faces algorithm.

• Marching Cubes (on hexahedral meshes)

• vertex clustering (for grid decimation)

• clip

• external faces [14, 15]

• histogram

Additionally, experiments with using the VTK-m framework to implement other
algorithms, some of which are outside the strict scientific visualization domain, were
made — cliques [17] and computer vision [16].

XVis implemented a lightweight rendering infrastructure in VTK-m. Although
limited in functionality, VTK-m’s rendering library can be used without depending
on external features. The rendering infrastructure supports a basic but full set of
rendering features including cameras, windows, basic scene graphs, and annotations
such as axes and colorbars. In this case, the render is based wholly on parallel algo-
rithms designed within VTK-m itself. This rendering library makes it much easier to
support in situ rendering [9]. It also provides a good use case for comparing a generic
algorithm written in VTK-m with heavily optimize rendering from other libraries.
Figure 2.2 provides an example rendering from VTK-m’s rendering library.

XVis held several code sprints for the VTK-m software. The first code sprint
was hosted at Lawrence Livermore National Laboratory on September 1–2, 2015.
There were over 25 participants that represented work from many different organi-
zations including national laboratories (SNL, LANL, ORNL, LBNL, LLNL), univer-
sities (Oregon, UC Davis), and industry (Kitware, NVIDIA, Intelligent Light). The
second code sprint was hosted at Kitware, Inc. on August 2–3, 2016, and the third
code sprint was hosted at the University of Oregon on April 4–6, 2017. These events
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Figure 2.2. An example rendering from VTK-m’s ray-
casting library.

allowed us to reach out to several interested developers to get them kick started with
VTK-m development and also allowed us to make progress in several key areas of
VTK-m and its algorithms.

Our VTK-m development effort is also focused on providing documentation to
make our library accessible. We are maintaining a User’s Guide with detailed in-
formation on using the features currently available in VTK-m [23].

As the XVis project ended, the DOE’s ECP (https://www.exascaleproject.
org/) started. VTK-m has become a large part of ECP. A project under ECP is ded-
icated to increase the functionality and support VTK-m while several other projects
are relying on VTK-m to provide visualization services. We consider this one of the
larger successes of the XVis project.

Milestone 1.b Array Characterization Automatically characterize how arrays
are used and leverage that information to optimize memory hierarchy usage.
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During a design review with NVIDIA engineers we discussed the benefits of using
texture memory when accessing global arrays. On NVIDIA hardware, global memory
reads must be accessed in 32, 64, or 128 byte transactions. When a warp executes
an instruction that uses global memory, the fetches are coalesced into the minimum
number of transactions possible. If a warp is well coalesced a single 32, 64, or 128 byte
transaction will suffice, otherwise more transactions will occur causing throughput to
suffer. Texture memory is global memory backed by the L1 texture cache, allowing
for higher throughput when there is 2D locality of the memory fetches.

In VTK-m uncoalesced memory access are very common when doing any algorithm
that requires two different types of topological information, for example cells, and
points or faces and edges. To solve this problem we have implemented custom classes
that wrap all memory reads when executing on CUDA. These classes then use the
provided CUDA command ldg allowing for texture memory reads from global memory
accesses without explicitly constructing texture objects. This has resulted in a about
10% performance increase when executing Cell based algorithm that require Point
based global memory reads.

We have also studied the performance on Intel-based architecture with respect to
Array-of-Structures (AoS) versus Structure-of-Arrays (SoA). A typical array of vectors
in VTK-m is stored as an array with each component containing a Vec structure (an
AoS in this context). We found that this AoS could sometimes inhibit the engagement
of vector operations on x86 processors. However, we also found that when coupled
with loop tiling (investigated during Milestone 1.e), we could efficiently copy blocks
of the AoS to an SoA efficiently. The improved caching and vectorization hide the
overhead of the copy.

Milestone 1.c Hybrid Parallel Compare alternative models for the interaction
of shared-memory and distributed-memory parallelism within VTK-m.

In collaboration with Hamish Carr from the University of Leeds, we explored
the interaction between shared-memory data-parallelism and inter-node distributed-
memory parallelism in the context of an algorithm for computing contour trees (Reeb
graphs). Contour trees encode the topological changes that occur to the contour as
the isovalue ranges between its minimum and maximum values. They can be used to
identify the most “important” isovalues in a data set according to various metrics (e.g.,
persistence). Although topological analysis tools such as the contour tree and Morse-
Smale complex are now well established, there is still a shortage of efficient parallel
algorithms for their computation, in particular for massively data-parallel computa-
tion on a SIMD model. We developed a novel data-parallel algorithm for computing
the fully augmented contour tree using a quantized computation model. We then ex-
tended this to provide a hybrid data-parallel / distributed algorithm, allowing scaling
beyond a single GPU or CPU, and tested its scaling using Earth elevation data from
GTOPO30 across 16 nodes [5]. The original implementation used the portable data-
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parallel primitives provided by NVIDIA’s Thrust library, as well as MPI for inter-node
communication. This implementation was later ported to VTK-m.

The XVis project also collaborated with the project “A Unified Data-Driven Ap-
proach for Programming In Situ Analysis and Visualization,” led by Pat McCormick,
to evaluate the performance of the prototype integration of VTK-m with their proto-
type of Legion that they developed. Legion is a task-parallel runtime that can sched-
ule tasks using a task graph based on the dependencies between the tasks. This is
an alternative to the traditional bulk-synchronous MPI model, as used by VTK. We
successfully compiled the code produced by McCormick’s project on the Moonlight
supercomputer at Los Alamos, using GASNet, OSMesa, VTK-m, and Legion.

Milestone 1.d Additional Algorithms Develop algorithms for additional visual-
ization and analysis filters in order to expand the functionality of the VTK-m toolkit
to support less critical but commonly used operators.

In collaboration with Hamish Carr from the University of Leeds and Gunther We-
ber from LBNL, XVis helped develop and implement a new data-parallel contour tree
algorithm that does not quantize the contour values, allowing for more precise results
and less memory usage. Our shared SMP algorithm for parallel contour tree compu-
tation has formal guarantees of O(log(n) log(t)) parallel steps and O(n log(n)) work. It
employs “parallel peak pruning,” in which superarcs are created in the join tree by
identifying peaks and finding their governing saddles, and recursively pruning the
regions for each peak/saddle pair as shown in Figure 2.3. We implemented this algo-
rithm natively in OpenMP and with the Thrust library, achieving up to 10x parallel
speed up on multi-core CPUs and up to 50x speed up on NVIDIA GPUs compared
to the serial version [6]. Performance was compared to the serial sweep-and-merge
algorithm published by Carr in 2003, which was also used to verify the results. XVis
also took the algorithm developed in the collaboration and converted it to VTK-m
structures. The algorithm was subsequently released in VTK-m and demonstrated in
numerous applications as shown in Figure 2.4.

Samuel Li, a graduate student working with Chris Sewell at Los Alamos over the
summer of 2015, implemented 1D and 2D wavelet transformation worklets in VTK-
m. A set of worklets are used to support the wavelet calculation, including boundary
handling, decomposition of signals into approximation and detail coefficients, and re-
construction of the original signal from the wavelet coefficients. Coefficients resulting
from the wavelet transforms can be used for compression. The simplest strategy is
to threshold small coefficients, which has been implemented and achieves fairly good
compression. These calculations can be applied recursively to the output to obtain
better compression. This implementation of wavelet transforms uses filter banks,
which has the advantage of flexibility to support more wavelet filters. Currently it
supports four widely used wavelet filters for compression: CDF 9/7, CDF 8/4, CDF
5/3, and HAAR.
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Figure 2.3. An example of performing parallel peak
pruning on a simple terrain. From the terrain (a), a join
tree (b) and a split tree (c) record the relationship between
maxima and minima. The contour tree (d) combines both
to obtain the connectivity of contours. Branch decomposi-
tion (e) orders contour tree features hierarchically based
on importance.

Figure 2.4. Examples use cases of parallel peak prun-
ing to find contour trees: identifying individual atoms in
a molecular simulation (left), finding halos in a cosmol-
ogy simulation (center), and finding pores and pockets in
a porous material (right).
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Figure 2.5. Performance of wavelet compression (in
seconds) for VTK-m and for a CPU-specific implementa-
tion (VAPOR) for data sets ranging from 2563 to 20483.

Samuel Li minimized the number of data transfers and copies required by the
algorithm. He compared the performance and accuracy of the data-parallel VTK-m
algorithm to domain decomposition parallelization strategies as used by the wavelet
compression algorithms in VAPOR and found that the two implementations have sim-
ilar overall performance characteristics even though that have slightly different ap-
proaches to the algorithm [19] as shown in Figure 2.5. The VTK-m implementation
also allows these same worklets to run on multiple architectures, including GPUs.

Milestone 1.e Function Characterization Design methods to characterize
how functions behave and leverage this information for heterogeneous architec-
tures.

XVis investigated how different functional structures effect vectorization on Intel-
based architecture. We found that for a surprising number of function calling param-
eters, a technique called loop tiling can have dramatic impact on the efficiency of the
execution and the effectiveness of vectorization. In loop tiling for loops that iterate an
operation over some set of arrays is broken into a nested inner loop of fixed size (say
1024 items). This minor change can have surprising effect on both the compiler and
the hardware (caching and vectorization) units. Additionally, in some circumstances
we found that while engaging loop tiling we could transform the structure of data (e.g.
from AoS to SoA) without incurring a performance penalty.

This experiment was followed up by exploring the idea of adding this loop tiling to
the scheduling within VTK-m. We verified that loop tiling within the worklet schedul-
ing within VTK-m can indeed improve performance, and the optimal tiling includes
an inner loop of 512 to 1024 items. We are currently working on using this loop tiling
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and block buffering to try to optimize he vectorization that compilers can achieve. We
are integrating this work into VTK-m in such a way that none of the software that it
affects needs to be changed and are in the process of widening the performance tests.

XVis also researched how to design efficient polymorphic runtime classes that
work across numerous accelerator systems. This has been driven by the need to have
algorithms whose components can be switched at runtime such as which integrator to
use for streamlines or what function to clip by. The introduction of runtime polymor-
phism also offers VTK-m the ability to reduce binary size without compromising on
performance. The result of this research has been the discovery and application of a
pattern very similar to C function callbacks, that works on all accelerator devices, and
doesn’t compromise performance. This design has been used to improve the implicit
function support in VTK-m, and as part of a redesign of the scheduling infrastructure
in VTK-m, which resulted in significant binary size reduction.

2.2 In Situ Integration

Milestone 2.a Expand Data Models Expand visualization data models to en-
compass broader scope from new science domains.

The VTK-m data model is designed to include advanced features necessary to sup-
port in situ analysis and modern architectures and simulation codes. Specifically,
initial heterogeneous memory space support is available through the VTK-m array in-
terfaces, and this array infrastructure has zero-copy support. The VTK-m data model
supports multiple cell sets to allow mixed-topology meshes, meshes with multiple
coordinate arrays to support meshes that live in multiple coordinate systems simul-
taneously, and meshes without coordinate systems entirely. These examples were all
challenging to represent using traditional data models. It is generally more flexible
as well, allowing, for example, hybrid meshes with regular points but unstructured
cells, and overall, this can result in greater efficiency.

Milestone 2.b Post Hoc Interaction Implement three algorithms that use
extreme-scale features such as non-volatile memory or knowledge of commu-
nication efficiencies.

The first algorithm XVis investigated involves using SSDs to do more effective
compression by considering temporal compression. SSDs are appearing increasingly
often on leading-edge supercomputers. Following the “in situ reduction+post hoc”
paradigm in collaboration with Hank Childs’ Early Career award, we wanted to ex-
plore the opportunities available from having significantly more memory for storing
data. In particular, using that memory to store multiple time slices and then com-
pressing the data to take advantage of temporal coherence. Our experiments specif-
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ically focused on wavelet compression. While wavelet compression typically operates
on one time slice at a time (3D data), our study also included multiple time slices (4D
data). Our findings showed that the 4D approach could take advantage of temporal
coherency, and, for all metrics studied, the benefits were approximately a factor of
two improvement [20].

The second algorithm XVis investigated involves understanding the performance
limits of VTK-m’s data-parallel primitives approach. We have considered both surface
rendering and volume rendering and have observed performance comparable with
community standards. This work concluded that significant improvements can be
made on GPU’s when accessing GPU-specific memory (such as texture memory). This
finding was a contributor in the expansions of VTK-m’s memory management.

The third algorithm XVis investigated was particle advection. This algorithm par-
ticularly plays into the post hoc interaction paradigm via extraction of Lagrangian
flows, which depends on particle advection. This in situ reduction operator was a key
finding of Childs’ Early Career work. Particle advection is particularly a challenging
algorithm with respect to communication, since it requires hybrid parallelism, i.e.,
both paralelism within a node (via VTK-m) and parallelism across nodes (via MPI).
Prior to XVis, Childs did significant work on considering hybrid parallel solutions for
particle advection [4, 7]. The key outcome from this work was to consider how to
do a portably performant algorithm. This occurred due to a collaboration between
Pugmire, Childs, and others, which was published at EGPGV [31]. (This work is
referenced again in Milestone 4.c.)

Milestone 2.c Flyweight In Situ Provide flyweight in situ visualization tech-
niques into a feature-rich, general-purpose library.

XVis investigated using non-standard memory layouts for arrays and data struc-
tures. As a first step towards this goal, we developed the MappedDataArray and
MappedDataSet classes, which allow for custom memory layouts. After further eval-
uation, our conclusion was the overhead introduced by the abstraction used in this
approach is too high. We developed and integrated the next generation version of this
framework including the classes AOSDataArrayTemplate and SOADataArrayTem-
plate into VTK. This design depends on template-based polymorphism, and gives us
performance that is close to using raw pointers while attaining the objective of allow-
ing tight coupling of VTK in situ with simulations. The updated design allows for
things such as constant value arrays, implicit point arrays, and other efficient data
model concepts that VTK-m also has.

XVis also demonstrated the integration of VTK-m into the SENSEI and ALPINE
in situ frameworks. Both of these frameworks aim to provide general purpose
lightweight in situ capability. SENSEI aims to facilitate the instrumentation of simu-
lation codes for in situ processes while supporting a diverse set of frameworks includ-
ing Catalyst [1], Libsim and ADIOS. In addition, it provides an interface that can be
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Figure 2.6. Demonstration of live visualization and
control of a simulation running on Titan. At left is the
output of the visualization on the client in ParaView. At
right is a picture of the live demostration given on the
show floor at SC15.

integrated with VTK-m for a lightweight in situ solution. It has been demonstrated
to scale to thousands of MPI ranks.

As part of our collaboration with NVIDIA we developed a prototype that demon-
strated VTK-m integration inside VTK and ParaView Catalyst for in situ analysis at
Supercomputing 2015 shown in Figure 2.6. The prototype used the PyFr simulation
running on 256 nodes of Titan. The entire operation from simulation computation, vi-
sualization algorithms such as IsoSurface, to rendering happened completely on the
GPUs and required no memory copies of PyFr simulation data.

This work was later scaled up to a signficant portion of Titan using 5000
GPUs [38]. To aid the researchers in producing the most relevant images we designed
a in situ pipeline that allowed for the simulation to dictate where to place any num-
ber of cameras, and what visualization algorithms should those cameras capture. The
production run used multiple cameras tracking different areas of the simulation with
each camera rotating through different visualization algorithms. Figure 2.7 shows
some of the visualization captured from these large-scale runs.

Milestone 2.d Data Model Application Explore application of new data mod-
els to novel architectures appropriate to in situ.

XVis explored the integration of VTK-m in situ with several applications running
on DOE LCFs. These have included several fusion codes and a computational seismol-
ogy code. Efforts have been focused on understanding the scientific workflows being

25



Figure 2.7. Flow over a Low Pressure Turbine Lin-
ear Cascade simulation by PyFR, visualized with VTK-m,
Paraview, and Catalyst. The image shows the isosurface
of the pressure gradient.

used by these applications. This better allows us to target machine architectures and
analysis products for use in situ to help scientists understand their simulations. We
have focused these efforts on two SciDAC fusion simulation codes: XGC1 and Xolotl.
XGC1 is a particle in cell code used to study plasmas in fusion tokamak devices, par-
ticularly in the edge region. Xolotl is a new code that is being used to study the
interaction with the tokamak wall.

VTK-m was used for test and production runs of Xolotl for in situ monitoring and
visualization. We also explored the use of light-weight visualization services to do
analysis and visualization for XGC1 in an in transit setting [11, 12]. We used the
ADIOS middleware system along with the DataSpaces and DIMES transport meth-
ods for data movement. The VTK-m services include the calculation of blobby turbu-
lence around the edge and bulk velocity derived from the particle data. In this later
example, we are tracking individual particle paths to derive a time varying vector
field. This vector field, which is a significantly reduced representation of the particles
makes it possible for much more frequent output for post-hoc analysis and visualiza-
tion.

Milestone 2.e Memory Hierarchy Streaming Develop streaming out-of-core
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versions of key visualizations and analysis algorithms to efficiently use deep mem-
ory hierarchies within in situ applications.

XVis experimented with the use of the STXXL library from Karlsruhe Univer-
sity for streaming data from disk into main memory and into accelerator memory for
isosurface and KD-tree construction algorithms. We have also prototyped the combi-
nation of such external-memory algorithms with our distributed wrapper for Thrust
as a first step towards enabling these algorithms to operate on data that is both dis-
tributed across nodes and too large on each node to fit into memory.

XVis then implemented basic support for streaming data through the GPU directly
in VTK-m. A custom array handle class, ArrayHandleStreaming, wraps a standard
array handle and provides an interface of one block at a time. A custom dispatcher,
DispatcherStreamingMapField, operates similarly to the standard DispatcherMap-
Field. It uses the function interface infrastructure to iterate through all input array
handles to transfer data from the control to the execution environment. When it does
this, it also wraps all input and output array handles with an ArrayHandleStreaming
class and then loops through the desired number of blocks by appropriately setting
the parameters of the ArrayHandleStreaming class and calling the scheduler. Since
all the output data cannot reside in the execution environment memory simultane-
ously, it also loops through the output array handles at the end of the iteration for
each block to synchronize the execution environment with the control environment.
These custom array handle and dispatcher classes allow a VTK-m developer to eas-
ily run basic field map worklets when all the data will not fit on the GPU. We have
also implemented a StreamingScanInclusive method in the DeviceAdapterAlgorith-
mGeneral class, which wraps the input and output array handles with an Array-
HandleStreaming and iterates through each block, applying the last result from the
previous block to the first element of the next block, and performing the inclusive scan
within each block by calling the ScanInclusive method for the active device adapter.

In follow-on work Chris Sewell and Li-Ta Lo at LANL in collaboration with Tom
Fogel from NVIDIA have implemented Unified Memory support for NVIDIA’s Pascal
GPUs. This enables VTK-m to seamlessly process datasets larger than GPU mem-
ory. We explored several different memory cache policies for performance tuning. A
preliminary performance benchmark shows a range of 1x–4x performance impact de-
pending on the complexity of the visualization operation.

Milestone 2.f Interface for Post Hoc Interaction Define an abstract VTK-m
interface for extreme-scale, implement a prototype for the interface, and exercise
the prototype with the algorithms chosen for Milestone 2.b.

The algorithms chosen for Milestone 2.b were wavelet compression, rendering,
and Lagrangian flow. In each case, it turned out that no post hoc interaction interface
was needed. In general, the issue is that the in situ reduction phase is producing
a much smaller data set, and so the extracts produced by VTK-m can be accessible
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without significant computational power (and thus is accessible from existing tools).
This finding, while obvious in retrospect, came about by implementing VTK-m reduc-
tion operations, and then seeing the resulting extracts be used by existing projects.
Consider the three algorithms. For wavelet compression, the result is a hierarchical
data set on disk. These data sets are readily processed by existing wavelet-based soft-
ware, such as VAPOR, who are careful to limit the amount of data being processed
at any given time (and thus have less of a need to maximize computational power).
For rendering, the result is an image. In particular, our efforts through this project
led to VTK-m having a very performant renderer, which was subsequently incorpo-
rated into the Ascent in situ library (the deployment vehicle for ECP), and became the
basis of Ascent’s routines to generate Cinema databases. Cinema, the preferred tech-
nology for consuming image databases, is also not computationally bounded — the
work is in generating the images in situ, but not in post hoc reconstruction. Finally,
for Lagrangian flow, the work is again in producing the extract, since the post hoc
interaction with Lagrangian basis flows is mostly a search problem (finding the right
basis flows) as opposed to a computational problem (interpolating between a handful
of basis flows is not computationally expensive).

Milestone 2.g Data Model Array Characterization Extend the data model to
support array characterizations from Milestone 1.b for supporting heterogeneity.

We have completed this milestone by having the data model subsume the work
done in Milestone 1.b. The array characterizations done in Milestone 1.b were imple-
mented in device specific ways inside the ArrayHandle classes, which is the basis for
the data model. These include texture memory support for CUDA and the Array of
Structures / Structure of Arrays for the TBB execution environments.

Milestone 2.h Flyweight In Situ-VTK-m Integration Fully integrate VTK-m ex-
ecution and data models (from Milestones 1.a, 2.a, and 2.d) with flyweight in situ
(from Milestone 2.c) and demonstrate its application.

VTK-m has been integrated into SENSEI. We have developed a contour analysis
module in SENSEI and have demonstrated its functionality with the mini apps in-
cluded in SENSEI. Additional filters can now be exposed in SENSEI by developing
simple analysis modules. All of our work has been included in the upstream SENSEI
repository.

Milestone 2.i Fault Tolerant Primitive Functions Develop fault tolerant ver-
sions of key data-parallel primitives (such as scan, transform, reduce, etc.) used
by VTK-m algorithms in order to transparently provide a level of resiliency within in
situ applications.
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The initial prototype was implemented to catch bad alloc errors and retry with the
streaming array handle. This code has been integrated into the Resilient branch of
the VTK-m repository. In pursuing this initial prototype, we found that the scope of
this milestone was much broader than originally described, and would require more
extensive R&D than was originally scoped. Thus, we focused our research efforts on
the remaining milestones.

2.3 Usability

Milestone 3.a Develop Techniques to be Studied Identify existing and new
visualization techniques to be studied. Revise existing ones and implement new
ones as needed.

XVis pursued two independent studies. In one study, we aim to evaluate the us-
ability of VTK-m for realizing visualization operations. We initially implemented two
volume rendering algorithms, ray-casting and cell projection, in Dax because VTK-m
was not yet ready to support these features [36].

In the second study, XVis developed in situ visualization technologies that will be
used in our proposed usability studies. The first technology that we have been de-
veloping, which we call Ximage, is based on our former work Explorable Images. We
have extended Ximage to support image-space feature extraction and tracking [41].
The other technology we are developing is for supporting the need to study particle
and field data together. We have developed a new data framework, which combines
both the Eulerian and Lagrangian reference frames into a joint data format. By re-
organizing Lagrangian information according to the Eulerian simulation grid into
a “unit cell” based approach, we can provide an efficient out-of-core means of sam-
pling, querying, and operating with both representations simultaneously. We also
extend this framework to generate multi-resolution subsets of the full data to suit the
viewer’s needs and provide a fast flow-aware trajectory construction scheme [35]. We
are presently studying the effectiveness of this framework.

Milestone 3.b Prepare Usability Studies Identify participants and meet to dis-
cuss goals for the visualization and analysis tasks. Collect user data sets and design
each user study according to code and hardware settings.

With help from the XVis project, a University of Oregon student (James Kress) re-
located to Oak Ridge lab to embed with the XGC team in order to complete this mile-
stone. This allowed us to evaluate their entire visualization and analysis pipeline and
determine which pieces can be done in situ, which can be done post hoc, and which
can be either way. James Kress conducted over twenty interviews to understand the
XGC team’s data needs [12]. This study has included physicists, computational scien-
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tists, and computer scientists. Information obtained ranges from predicted data sizes
to desired visualization and analysis operations. This information was then used to
consider in situ feasibility. The desired visualization and analysis operations were
grouped into approximately five equivalence classes, and we are doing performance
modeling for these classes, grounded by real-world experiments on Oak Ridge’s su-
percomputers.

Milestone 3.c Start Usability Studies Conduct pilot studies with algorithms
and participants identified in Milestones 3.a and 3.b.

In the area of combustion, XVis worked with Dr. Jackie Chen’s research group at
Sandia National Labs. We developed analysis and visualization tools to streamline
their current workflow and solve new analysis problems as identified by the domain
scientists [42]. We completed the development of a scalable histogram-based particle
selection scheme which couples both in situ and post processing analyses [28].

Spatially distributed histograms (probability distribution functions) are generated
in situ using a set of modules developed at UC Davis. These probability distributions
are generated using the full resolution simulation data and can be leveraged in post
processing to aid certain analysis tasks. We have been working on investigating how
we can use these modules to best interface with the S3D combustion simulation in
an unobtrusive manner. Not only must these modules match the scalability of the
simulation, scientists need to be able to easily make modifications to the code based
on their most recent needs. We completed scalability tests in large scale production
runs.

On the post processing side of things, XVis developed a comprehensive visualiza-
tion software shown in Figure 2.8 that can utilize the in situ generated histograms to
make real time particle selections from large scale datasets [40]. Users can select spa-
tial regions based on desired distributions in the histograms which in turn extracts
particle subsets (which were spatially sorted in situ) for later analysis. We have been
making detailed design decisions based on a close collaboration with the domain sci-
entists and their analysis needs. We have designed this software (including UI, data
management, etc.) so that it can be easily be used by the scientists with little to no
modification to their usual workflow.

In the area of cosmology, XVis worked with Dr. Salman Habib’s research group at
Argonne National Laboratory to develop and deploy an interactive visualization tool
that can effectively use the parallel GPU clusters available to them [29, 30]. We have
developed GPU accelerated, parallel rendering methods for interactive visualization
of both the particle data and merger tree data [37]. We have also incorporated a few
quantitative analysis functionalities [34].

Part of this work included improving the scalability of halo tag processing. Halo
tags are critical for interactive analysis of halo structure, but we must first associate
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Figure 2.8. A screenshot of the post hoc visualization
tool for visualizing probability density functions (PDFs)
generated in situ. On the left are three slice views of the
spatially distributed PDFs as well as a zoomed in view of
a PDF of interest. Selected PDFs are highlighted and are
used to query simulation particles as shown on the right.

halo tags with their particles in the 3D spatial domain. We have also improved the
handling of temporal data in order to facilitate both command line (server-side) and
GUI (client-side) use and have integrated a phase-space mesh rendering method [32].
The first deployment of this interactive visualization facility at Argonne has been
completed and is ready for subsequent usability studies to be carried out with full
participation of the scientists.

Milestone 3.d Continue Usability Studies Continue studies of Milestone 3.c.

In supporting the combustion simulations, the XVis project has completed initial
usability tests for the in situ modules. Although our own tests have been successful
in showing the scalability of our tools, more evaluation was needed to test the ease at
which the domain scientists can invoke or modify our routines as well as their ability
to handle the large variety of chemical cases that the S3D simulation can produce.
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Feedback from the scientists have identified certain key functionalities that would
improve usefulness of the software, such as adding the ability to dynamically modify
distribution generation parameters while the simulation is in progress. These new
components have been added to the in situ modules, which are now fully deployed
and integrated within the S3D simulation.

XVis also worked on improving the post processing visualization software based on
feedback from the domain scientists. We have completed initial usability tests with
our domain collaborators to evaluate the ease at which they can use the software
and how successful it is in identifying desired trends in the data. We have identified
and carefully documented requested improvements to the user interface, interaction
techniques, visual depictions of the results, and analysis functionalities [33].

For the cosmology application, XVis worked on improving the functionality of the
recently deployed interactive visualization facility. Recent trips to Argonne National
Laboratory to meet with domain experts have provided additional insight into how
scientists can effectively use these new tools. We have identified key areas of im-
provement, which focus on the interface design and the ways users can interact with
each of the data views, and have been modifying our software accordingly.

Milestone 3.e Apply Usability Studies Conduct a review session with each
scientist team on usability study results from Milestone 3.d. Refine the design and
implementation of techniques and workflow according to lessons learned.

In our previous work for this milestone, we interviewed stakeholders from the
XGC team about their data needs, and documented the findings in a workshop pub-
lication. One key finding from the study was how this team is forced to decide which
data to keep and which data to throw away.

This has led XVis to participating in a new algorithm for this team. Specifically,
XGC produces significant numbers of particles, each with velocity data. The number
of particles is larger than could/should be stored to disk, and so we investigated a
method for binning the particles onto a mesh. An important thrust to this research
was determining tradeoffs between mesh size, number of particles considered, and the
integrity of analyses using the binning (rather than the original data) [10]. Studies
shows that the reduced data was able to represent visualizations like Poincarè plots
with little error, as shown in Figure 2.9.

For the combustion application, we have applied additional improvements to the
post processing visualization software based on feedback from the scientists and our
usability tests from the previous milestones. The continuous use of our analysis and
visualization tools have validated the effectiveness of using in situ generated distribu-
tion functions to the scientists. This has now motivated them to request new analysis
tools to explore the statistical properties found within the distributions in more de-
tail. While the current tools will continue to be improved in an iterative fashion, these
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Figure 2.9. At left: Boxplots of the differences in area
of a Poincarè plot generated from full resolution particle
data and a Poincarè plot generated from the binned vector
field data for one studied mesh size. At right: The corre-
sponding Poincarè plot for the test using 300M particles.
Reduced data are shown in black and the original resolu-
tion data are shown in blue. This test represents an error
of approximately 1% represented in 89 MB, reduced from
500 GB of original particle data.

new tools with become a key part of our continued collaboration with this scientific
team. We have also found ways to generalize the techniques of building probability
density functions and visualizing them post hoc to other science domains [27].

For the cosmology application, we have also been working on additional improve-
ments to the interactive visualization and analysis tools. Recent evaluations of the
deployed system’s performance, as well as discussions with domain experts, are al-
lowing us to target specific end-user hardware and architecture types to improve the
efficiency of our analysis tools. Furthermore, we have received new requests to fa-
cilitate communication and data flow between our tools and other software packages
that are commonly used by the domain scientists. Our future collaboration with this
scientific team will continue to improve the way our tools can seamlessly fit into their
normal analysis workflow.

33



2.4 Proxy Analysis

Milestone 4.a Initial Mini-App Implementation An initial implementation of
mini-applications based on visualization and in situ workloads.

Working with Intel engineers, XVis implemented two early mini-apps to study
the ability to parallelize common visualization algorithms using multithreading and
CPU SIMD vector extensions. We implemented multiple structured and unstructured
grid contouring (Marching Cubes, and Marching Tetrahedra) algorithm variations to
determine what approach performs better.

This original code was eventually reworked into a self-contained contouring mini-
app named miniIsosurface [3]. The modifications include a reworking of this origi-
nal implementation to improve clarity of the code and guarantee correctness while
still utilizing full compute resources. miniIsosurface now includes additional paral-
lel implementations of the marching cube algorithm and currently have one serial,
three OpenMP, one MPI, and one Kokkos-based implementations. In additional to
the Marching Cubes algorithm, we have implemented the Flying Edges algorithm,
which tends to outperform the Marching Cubes algorithm. We have developed Fly-
ing Edges implementations that runs in serial, runs using OpenMP, and runs on the
NVIDIA GPU (using the Thrust library).

Additionally, XVis produced a parallel rendering mini-app named miniGraphics.
More specifically, miniGraphics demonstrates sort-last parallel rendering, which is
the most common in HPC applications [21]. A sort-last parallel rendering process can
be split into two parts: a rendering part that happens locally on a node using data
available on that node, and an image compositing part that takes the locally gener-
ated images and blends them together. The framework for miniGraphics provides sep-
arate implementations for the rendering and the image compositing functions so that
they may be mixed to measure different rendering effects. The initial work includes
simple reference implementations for both. Future work includes making example
rendering that employs OpenGL/GLFW and example compositing using IceT. These
implementations provide more industry-standard implementations of rendering and
compositing.

XVis also used the Ascent in situ visualization framework. Ascent is a lightweight
framework which is part of the Alpine project, and is designed to help explore the in
situ analysis and visualization needs of simulation code teams running on supercom-
puters. Ascent contains a thin data model that allows a simulation code to provide
the semantics for data and then wrap the data in the VTK-m data model. Ascent also
ships with several different simulation mini-apps. We have implemented an isosur-
face functionality in Ascent as well as rendering [13], and run several of the simula-
tion mini-apps as test cases. We have also integrated the ADIOS middleware into the
Ascent framework which allows us to experiment with both in situ, and in transit sce-
narios. Using the ADIOS middleware, the mini-apps in can generate self-describing
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data using the ADIOS Visualization Schema. These data, along with operations to
be performed on the data, are written with the ADIOS middleware. We have cre-
ated several simple visualization services that are based on VTK-m that can ingest
the data from the ADIOS stream, and perform the specified operations on the data.
These experiments have been performed for in situ, in transit and post-hoc scenarios.

Milestone 4.b Validate Mini-App Characteristics Validate behavior and re-
source usage of mini-applications against that of real applications and generate
performance/resource models.

XVis explored the characteristics of the Marching Cubes mini-app (developed as
part of Milestone 4.a) with the Oxbow suite. These early investigations show similar-
ities and differences with the EAVL version of the algorithm. For example, in terms
of instruction mix both have a high proportion of integer operations (about 40%) and
memory operations (about 25%), but algorithmic choices resulted in different trade-
offs between branch operations and memory movement operations. In memory band-
width behavior, both had similar read bandwidths, but a noticeable difference in write
bandwidths. This preliminary data is shown in Table 2.1.

Table 2.1. Performance comparison between mini-app
and EAVL (predecessor to VTK-m).

Instruction Mix (%) Memory Bandwidth
BrOps IntOps MemOps Moves Read Read Write Write

B/Cycle MS/s B/Cycle MS/s

Mini-app 20.35 40.06 27.60 11.01 0.07 240.76 0.02 63.18
EAVL 8.76 38.99 24.62 27.12 0.10 283.92 0.04 109.62

XVis then performed subsequent analysis using tools from the Oxbow suite to
compare the marching cubes implementation in both VTK and VTK-m. As shown in
Table 2.2, the instruction mix for both the VTK-m and VTK implementations of the
marching cubes algorithms are roughly the same.

Table 2.2. Performance comparison between VTK-m
and VTK.

Application Instruction Mix (%)
BrOps IntOps FpOps MemOps Moves

VTK 15.0 35.5 0.3 35.8 13.2
VTK-m 12.9 33.9 .2 38.6 14.1

We have also engaged with the TAU performance tools group at the University
of Oregon to study the usage of their suite of tools for performance analysis. The
TAU suite of tools has the advantage of a lower-barrier of entry and the ability to
obtain performance information from both CPU and GPU codes. We have created
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Figure 2.10. Particle advection in fusion simulation:
Streamlines generated from the magnetic field in a fu-
sion simulation. The magnetic field is one of the primary
drivers in generating fusion in a plasma. Streamlines are
a common way of understanding the nature of this mag-
netic field.

some test applications for performance analysis that include volume rendering, ray
casting, marching cubes, streamlines, and external face extraction. Using TAU, we
were able to locate a bottleneck in the marching cubes algorithm during a normal cal-
culation step. The insights into the performance of the code using TAU have enabled
the VTK-m team to identify a work around for this performance bottleneck.

Milestone 4.c Architectural Studies Use the mini-applications, simulation, and
experiments to perform studies of behavior on future architectures, including per-
formance, memory hierarchy usage, and heterogeneous component use.

We are currently studying the performance of the particle advection filter func-
tionality on a variety of different architectures [31] such as that shown in Figure 2.10.
The hardware we are targeting include the Titan supercomputer at ORNL, the Rhea
analysis cluster at ORNL, and the test bed for Summit at ORNL. We are targeting
both CPU and GPU implementations, as well as studying the scalability as a function
of number of cores on CPU implementations. We are testing both a particle advec-
tion algorithm, which will be used for applications like FTLE, as well as a streamline
algorithm where particle paths are recorded.

One focus of our studies is the portability of particle advection algorithms in VTK-
m, and how they compare to hand-tuned implementations for both CPU and GPU.
In order to study the portability, we have run a large series of tests on the VTK-
m implementation (for both CPU and GPU), and a previously published hardware
specific implementation (for both CPU and GPU). The tests that we have run include a
wide variety of workloads, including both numbers of particles, duration of advection,
and types of vector fields. Table 2.3 summarizes our initial findings. Each workload,
denoted Wi, is run on a number of different GPUs. The File column denotes the
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type of vector field, the CUDA Code columns denote the timings for the hardware-
specific particle advection implementation, and the VTK-m Comparison columns list
the speed-up factors for the VTK-m implementation. A factor of > 1× indicates that
VTK-m is faster.

Table 2.3. Speedup of particle advection in VTK-m on
GPUs.

CUDA Code VTK-m Comparison
File K20X K80 P100 K20X K80 P100

W1

Astro 0.8s 0.3s 0.8s 1.4× 0.6× 2.2×
Fusion 0.8s 0.3s 0.8s 1.4× 0.6× 2.2×
Thermal 0.8s 0.3s 0.8s 1.4× 0.5× 2.1×

W2

Astro 0.9s 0.3s 0.8s 1.3× 0.6× 2.1×
Fusion 0.9s 0.3s 0.8s 1.4× 0.6× 2.1×
Thermal 0.9s 0.3s 0.8s 1.3× 0.6× 2.1×

W3

Astro 3.4s 2.0s 2.4s 2.3× 2.1× 4.1×
Fusion 3.4s 1.8s 2.2s 2.2× 1.9× 3.8×
Thermal 3.3s 1.8s 2.2s 2.2× 2.0× 3.8×

W4

Astro 6.7s 5.1s 3.6s 1.3× 1.8× 2.0×
Fusion 8.8s 6.8s 4.4s 1.6× 2.4× 2.5×
Thermal 8.8s 6.8s 4.5s 1.7× 2.4× 2.5×

W5

Astro 14.4s 13.0s 6.4s 0.4× 0.6× 0.5×
Fusion 64.0s 54.7s 25.7s 1.6× 2.2× 1.9×
Thermal 56.1s 49.2s 23.2s 1.4× 2.0× 1.7×
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Chapter 3

Professional Activities

During its 3 years, the XVis project was very active in the research community. This
chapter lists the publications and other professional activities performed during this
time.

3.1 Publications

The following citations are a comprehensive list of the publications made possible in
total or in part because of the XVis project.

[1] ParaView Catalyst: Enabling In Situ Data Analysis and Visualization. Utkarsh
Ayachit, Andrew Bauer, Berk Geveci, Patrick O’Leary, Kenneth Moreland,
Nathan Fabian, and Jeffrey Mauldin. In: Proceedings of the First Workshop on
In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization
(ISAV 2015). Nov. 2015, pp. 25–29. DOI: 10.1145/2828612.2828624.

[2] In Situ Methods, Infrastructures, and Applications on High Performance
Computing Platforms. Andrew C. Bauer, Hasan Abbasi, James Ahrens, Hank
Childs, Berk Geveci, Scott Klasky, Kenneth Moreland, Patrick O’Leary, Venka-
tram Vishwanath, Brad Whitlock, and E. Wes Bethel. In: Computer Graphics
Forum 35.3 (June 2016), pp. 577–597. DOI: 10.1111/cgf.12930.

[3] Isosurface Visualization Miniapplication. Daniel Bourgeois, Michael Wolf,
and Kenneth Moreland. Tech. rep. SAND2018-2780O. Sandia National Lab-
oratories, 2018. URL: https : / / cfwebprod . sandia . gov / cfdocs /
CompResearch/docs/proceedings/ccr17.pdf#page=141.

[4] GPU Acceleration of Particle Advection Workloads in a Parallel, Distributed
Memory Setting. David Camp, Hari Krishnan, David Pugmire, Christoph
Garth, Ian Johnson, E. Wes Bethel, Kenneth I. Joy, and Hank Childs. In: Pro-
ceedings of EuroGraphics Symposium on Parallel Graphics and Visualization
(EGPGV). Girona, Spain, May 2013, pp. 1–8.
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[5] Hybrid Data-Parallel Contour Tree Computation. Hamish Carr, Christopher
Sewell, Li-Ta Lo, and James Ahrens. In: Proceedings of the Computer Graphics
and Visual Computing Conference. Sept. 2016. DOI: 10.2312/cgvc.20161299.

[6] Parallel Peak Pruning for Scalable SMP Contour Tree Computation. Hamish
Carr, Gunther Weber, Christopher Sewell, and James Ahrens. In: Proceedings
of the IEEE Symposium on Large Data Analysis and Visualization (LDAV). Oct.
2016. DOI: 10.1109/LDAV.2016.7874312.

[7] Particle Advection Performance over Varied Architectures and Workloads.
Hank Childs, Scott Biersdorff, David Poliakoff, David Camp, and Allen D.
Malony. In: IEEE International Conference on High Performance Computing
(HiPC). Goa, India, Dec. 2014, pp. 1–10. DOI: 10.1109/HiPC.2014.7116900.

[8] The future of scientific workflows. Ewa Deelman, Tom Peterka, Ilkay Altintas,
Christopher D Carothers, Kerstin Kleese van Dam, Kenneth Moreland, Man-
ish Parashar, Lavanya Ramakrishnan, Michela Taufer, and Jeffrey Vetter. In:
International Journal of High Performance Computing Applications 32.1 (Jan.
2018), pp. 159–175. DOI: 10.1177/1094342017704893.

[9] In Situ Visualization of Radiation Transport Geometry. Mark Kim, Tom Evans,
Scott Klasky, and David Pugmire. In: Proceedings of the In Situ Infrastruc-
tures for Enabling Extreme-Scale Analysis and Visualization (ISAV). Nov. 2017,
pp. 7–11. DOI: 10.1145/3144769.3144770.

[10] Binning Based Data Reduction for Vector Field Data of a Particle-In-Cell
Fusion Simulation. James Kress, Jong Choi, Scott Klasky, Michael Churchill,
Hank Childs, and David Pugmire. In: ISC Workshop on In Situ Visualization
(WOIV). June 2018.

[11] Preparing for In Situ Processing on Upcoming Leading-edge Supercomput-
ers. James Kress, Randy Michael Churchill, Scott Klasky, Mark Kim, Hank
Childs, and David Pugmire. In: Supercomputing Frontiers and Innovations 3.4
(2016). DOI: 10.14529/jsfi160404.

[12] Visualization and Analysis Requirements for In Situ Processing for a Large-
Scale Fusion Simulation Code. James Kress, David Pugmire, Scott Klasky, and
Hank Childs. In: Workshop on In Situ Infrastructures for Enabling Extreme-
Scale Analysis and Visualization (ISAV). 2016.

[13] Optimizing Multi-Image Sort-Last Parallel Rendering. Matthew Larsen, Ken-
neth Moreland, Chris Johnson, and Hank Childs. In: Proceedings of the IEEE
Symposium on Large Data Analysis and Visualization (LDAV). Oct. 2016. DOI:
10.1109/LDAV.2016.7874308.

[14] External Facelist Calculation with Data-Parallel Primitives. Brenton Lessley,
Roba Binyahib, Robert Maynard, and Hank Childs. In: Eurographics Sympo-
sium on Parallel Graphics and Visualization (EGPGV). June 2016. DOI: 10.
2312/pgv.20161178.
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[15] Techniques for Data-Parallel Searching for Duplicate Elements. Brenton Less-
ley, Kenneth Moreland, Matthew Larsen, and Hank Childs. In: IEEE Sympo-
sium on Large Data Analysis and Visualization (LDAV). Oct. 2017. DOI: 10.
1109/LDAV.2017.8231845.

[16] DPP-PMRF: Rethinking Optimization for a Probabilistic Graphical Model Using
Data-Parallel Primitives. Brenton Lessley, Talita Perciano, Colleen Heinemann,
David Camp, Hank Childs, and E. Wes Bethel. In: Proceedings of IEEE Sympo-
sium on Large Data Analysis and Visualization (LDAV). Berlin, Germany, Oct.
2018, pp. 34–44. DOI: 10.1109/LDAV.2018.8739239.

[17] Maximal Clique Enumeration with Data-Parallel Primitives. Brenton Lessley,
Talita Perciano, Manish Mathai, Hank Childs, and E. Wes Bethel. In: IEEE
Symposium on Large Data Analysis and Visualization (LDAV). Oct. 2017. DOI:
10.1109/LDAV.2017.8231847.

[18] High Performance Heterogeneous Computing for Collaborative Visual Anal-
ysis. Jianping Li, Jia-Kai Chou, and Kwan-Liu Ma. In: SIGGRAPH Asia Visual-
ization in High Performance Computing. Nov. 2015. DOI: 10.1145/2818517.
2818534.

[19] Achieving Portable Performance For Wavelet Compression Using Data Par-
allel Primitives. Shaomeng Li, Nicole Marsaglia, Vincent Chen, Christopher
Sewell, John Clyne, and Hank Childs. In: Proceedings of EuroGraphics Sym-
posium on Parallel Graphics and Visualization (EGPGV). June 2017, pp. 73–
81. DOI: 10.2312/pgv.20171095.

[20] Spatiotemporal Wavelet Compression for Visualization of Scientific Simula-
tion Data. Shaomeng Li, Sudhanshu Sane, Leigh Orf, Pablo Mininni, John
Clyne, and Hank Childs. In: IEEE International Conference on Cluster Com-
puting (CLUSTER). Honolulu, HI, Sept. 2017, pp. 216–227. DOI: 10.1109/
CLUSTER.2017.15.

[21] Comparing Binary-Swap Algorithms for Odd Factors of Processes. Kenneth
Moreland. In: IEEE Symposium on Large Data Analysis and Visualization
(LDAV). To appear in. Oct. 2018.

[22] The Tensions of In Situ Visualization. Kenneth Moreland. In: IEEE Computer
Graphics and Applications 36.2 (Mar. 2016), pp. 5–9. DOI: 10.1109/MCG.
2016.35.

[23] VTK-m User’s Guide (Version 1.1). Kenneth Moreland. Tech. rep. SAND 2018-
0475 B. Sandia National Laboratories, 2018.

[24] Visualization for Exascale: Portable Performance is Critical. Kenneth More-
land, Matthew Larsen, and Hank Childs. In: Supercomputing Frontiers and
Innovations 2.3 (2015). DOI: 10.14529/jsfi150306.

[25] Formal Metrics for Large-Scale Parallel Performance. Kenneth Moreland and
Ron Oldfield. In: ISC High Performance. June 2015, pp. 488–496. DOI: 10.
1007/978-3-319-20119-1_34.
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[26] VTK-m: Accelerating the Visualization Toolkit for Massively Threaded Archi-
tectures. Kenneth Moreland, Christopher Sewell, William Usher, Li-Ta Lo,
Jeremy Meredith, David Pugmire, James Kress, Hendrik Schroots, Kwan-Liu
Ma, Hank Childs, Matthew Larsen, Chun-Ming Chen, Robert Maynard, and
Berk Geveci. In: IEEE Computer Graphics and Applications 36.3 (May 2016),
pp. 48–58. DOI: 10.1109/MCG.2016.48.

[27] Scalable Visualization of Time-varying Multi-parameter Distributions Using
Spatially Organized Histograms. Tyson Neuroth, Franz Sauer, Weixing Wang,
Stéphane Ethier, Choong-Seock Chang, and Kwan-Liu Ma. In: IEEE Trans-
actions on Visualization and Computer Graphics 23.12 (Dec. 2017), pp. 2599–
2612. DOI: 10.1109/TVCG.2016.2642103.

[28] Scalable Visualization of Discrete Velocity Decompositions Using Spatially
Organized Histograms. Tyson Neuroth, Franz Sauer, Weixing Wang, Stéphane
Ethier, and Kwan-Liu Ma. In: IEEE Symposium on Large Data Analysis and
Visualization (LDAV). Oct. 2015. DOI: 10.1109/LDAV.2015.7348073.

[29] An Integrated Visualization System for Interactive Analysis of Large, Hetero-
geneous Cosmology Data. Annie Preston, Ramyar Ghods, Jinrong Xie, Franz
Sauer, Nick Leaf, Kwan-Liu Ma, Esteban Rangel, Eve Kovacs, Katrin Heit-
mann, and Salman Habib. In: Proceedings of IEEE PacificVis. Apr. 2016. DOI:
10.1109/PACIFICVIS.2016.7465250.

[30] Integrated explorer for cosmological evolution. Annie Preston, Franz Sauer,
Ramyar Ghods, Nick Leaf, Jinrong Xie, and Kwan-Liu Ma. In: IEEE Scientific
Visualization Conference (SciVis). Oct. 2015. DOI: 10.1109/SciVis.2015.
7429499.

[31] Performance-Portable Particle Advection with VTK-m. David Pugmire, Ab-
hishek Yenpure, Mark Kim, James Kress, Robert Maynard, Hank Childs, and
Bernd Hentschel. In: Eurographics Symposium on Parallel Graphics and Visu-
alization (EGPGV). June 2018, pp. 45–55. DOI: 10.2312/pgv.20181094.

[32] Spatio-Temporal Feature Exploration in Combined Particle/Volume Refer-
ence Frames. Franz Sauer and Kwan-Liu Ma. In: IEEE Transactions on Vi-
sualization and Computer Graphics 23.6 (Feb. 2017), pp. 1624–1635. DOI: 10.
1109/TVCG.2017.2674918.

[33] Audience-Targeted Design Considerations for Effective Scientific Storytelling.
Franz Sauer, Tyson Neuroth, Jacqueline Chu, and Kwan-Liu Ma. In: IEEE
Computing in Science and Engineering 18.6 (2016), pp. 68–76. DOI: 10.1109/
MCSE.2016.100.

[34] A Combined Eulerian-Lagrangian Data Representation for Large-Scale Ap-
plications. Franz Sauer, Jinrong Xie, and Kwan-Liu Ma. In: IEEE Transactions
on Visualization and Computer Graphics 23.10 (Oct. 2016), pp. 2248–2261. DOI:
10.1109/TVCG.2016.2620975.
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[35] Visualization Techniques for Studying Large-Scale Flow Fields from Fusion
Simulations. Franz Sauer, Yubo Zhang, Weixing Wang, Stéphane Ethier, and
Kwan-Liu Ma. In: Computing in Science and Engineering 18.2 (Mar. 2016),
pp. 68–77. DOI: 10.1109/MCSE.2015.107.

[36] Volume rendering with data parallel visualization frameworks for emerging
high performance computing architectures. Hendrik A. Schroots and Kwan-
Liu Ma. In: SIGGRAPH Asia Visualization in High Performance Computing.
Nov. 2015, 3:1–3:4. DOI: 10.1145/2818517.2818546.

[37] Parallel Distributed, GPU-Accelerated, Advanced Lighting Calculations for
Large-Scale Volume Visualization. Min Shih, Silvio Rizzi, Joseph Insley,
Thomas Uram, Venkatram Vishwanath, Mark Hereld, Michael E. Papka, and
Kwan-Liu Ma. In: Proceedings of the IEEE Symposium on Large Data Analysis
and Visualization (LDAV). Oct. 2016. DOI: 10.1109/LDAV.2016.7874309.

[38] Towards Green Aviation with Python at Petascale. Peter Vincent, Freddie
Witherden, Brian Vermeire, Jin Seok Park, and Arvind Iyer. In: Proceedings
of the International Conference for High Performance Computing, Networking,
Storage and Analysis. Nov. 2016. DOI: 10.1109/SC.2016.1.

[39] Fast Uncertainty-driven Large-scale Volume Feature Extraction on Desktop
PCs. Jinrong Xie, Franz Sauer, and Kwan-Liu Ma. In: IEEE Symposium on
Large Data Analysis and Visualization (LDAV). Oct. 2015. DOI: 10 . 1109 /
LDAV.2015.7348067.

[40] In Situ Generated Probability Distribution Functions for Interactive Post Hoc
Visualization and Analysis. Yucong Chris Ye, Tyson Neuroth, Franz Sauer,
Kwan-Liu Ma, Giulio Borghesi, Aditya Konduri, Hemanth Kolla, and Jacque-
line Chen. In: Proceedings of the IEEE Symposium on Large Data Analysis
and Visualization (LDAV). Oct. 2016, pp. 65–74. DOI: 10.1109/LDAV.2016.
7874311.

[41] In Situ Depth Maps Based Feature Extraction and Tracking. Yucong Ye, Yang
Wang, Robert Miller, Kwan-Liu Ma, and Kenji Ono. In: IEEE Symposium on
Large Data Analysis and Visualization (LDAV). Oct. 2015. DOI: 10 . 1109 /
LDAV.2015.7348065.

[42] Scalable Parallel Distance Field Construction for Large-Scale Applications.
Hongfeng Yu, Jinrong Xie, Kwan-Liu Ma, Hemanth Kolla, and Jacqueline H.
Chen. In: IEEE Transactions on Visualization and Computer Graphics 21.10
(Oct. 2015), pp. 1187–1200. DOI: 10.1109/TVCG.2015.2417572.

3.2 Chairs

1. Tutorials Chair, International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), Hank Childs, November 12–17, 2017.
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2. Papers Co-Chair, In Situ Infrastructures for Enabling Extreme-scale Analysis
and Visualization (ISAV), Kenneth Moreland, November 12, 2017.

3. Papers Co-Chair, Large Scale Data Analysis and Visualization (LDAV), Kenneth
Moreland, October 2, 2017.

4. Symposium Co-Chair, Large Scale Data Analysis and Visualization (LDAV),
Hank Childs, October 23, 2016.

5. Papers Chair, International Symposium on Graph Drawing & Network Visual-
ization (GD), Kwan-Liu Ma, September 25–27, 2017.

6. Papers Co-Chair, IEEE Information Visualization (InfoVis), Kwan-Liu Ma, Octo-
ber 23–28, 2016.

7. Papers Co-Chair, Large Scale Data Analysis and Visualization (LDAV), Kenneth
Moreland, October 23, 2016.

8. Papers Co-Chair, EuroVis, Kwan-Liu Ma, June 6–10, 2016.

9. Workshop Co-Chair, The 10th Workshop on Ultrascale Visualization, Kwan-Liu
Ma, SC15, November 16, 2015.

10. Papers Co-Chair, Large Scale Data Analysis and Visualization (LDAV), Hank
Childs, October 25–26.

3.3 Committees

1. Program Committee, IEEE Big Data, Kwan-Liu Ma, December 11–14, 2017.

2. Program Committee, ACM SIGGRAPH ASIA Symposium on Visualization
(SOV17), Kenneth Moreland, November 27–30, 2017.

3. Best Papers Committee, ACM SIGGRAPH ASIA Symposium on Visualization
(SOV17), Kwan-Liu Ma, November 27–30, 2017.

4. Program Committee, Visualization Showcase SC17, Kenneth Moreland,
November 12–17, 2017.

5. Papers Co-Chair, In Situ Infrastructures for Enabling Extreme-scale Analysis
and Visualization (ISAV), Kenneth Moreland, November 12, 2017.

6. Program Committee, Pacific Graphics, Kwan-Liu Ma, October 16-19, 2017.

7. Program Committee, IEEE Scientific Visualization (SciVis), David Pugmire, Oc-
tober 1-6, 2017.
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8. Program Committee, IEEE Scientific Visualization (SciVis), Hank Childs, October
1-6, 2017.

9. Best Papers Committee, IEEE Scientific Visualization (SciVis), Kwan-Liu Ma, Oc-
tober 1-6, 2017.

10. Program Committee, IEEE Conference on Visual Analytics Science and Tech-
nology (VAST), Kwan-Liu Ma, October 1-6, 2017.

11. Best Papers Committee, IEEE Conference on Visual Analytics Science and
Technology (VAST), Kwan-Liu Ma, October 1-6, 2017.

12. Steering Committee, Large Scale Data Analysis and Visualization (LDAV),
Kwan-Liu Ma, October 2, 2017.

13. Program Committee, Large Scale Data Analysis and Visualization (LDAV),
Hank Childs, October 2, 2017.

14. Steering Committee, IEEE Symposium on Visualization for Cyber Security
(VizSec), Kwan-Liu Ma, October 2, 2017.

15. Program Committee, IEEE Conference on Software Visualization (VISSOFT),
Kwan-Liu Ma, September 18–19, 2017.

16. Program Committee, IEEE Cluster 2017, David Pugmire, September 5-8, 2017.

17. Program Committee, IEEE Cluster 2017, Hank Childs, September 5-8, 2017.

18. Program Committee, EG/VGTC Conference on Visualization (EuroVis), Ken-
neth Moreland, June 12–16, 2017.

19. Program Committee, Eurographics Symposium on Parallel Graphics and Vi-
sualization (EGPGV), Kenneth Moreland, June 12–13.

20. Steering Committee, IEEE PacificVis, Kwan-Liu Ma, April 18–21, 2017.

21. Program Committee, SPIE Visualization and Data Analysis (VDA), Hank Childs,
January 29–February 2, 2017.

22. Program Committee, 12th International Symposium on Visual Computing
(ISVC), Kenneth Moreland, December 12–14, 2016.

23. Program Committee, ACM SIGGRAPH ASIA 2016 Symposium on Visualization
(SA16VIS), Kwan-Liu Ma, December 5–8, 2016.

24. Program Committee, In Situ Infrastructures for Enabling Extreme-scale Analy-
sis and Visualization (ISAV), Kenneth Moreland, November 13, 2016.

25. Program Committee, In Situ Infrastructures for Enabling Extreme-scale Analy-
sis and Visualization (ISAV), Hank Childs, November 13, 2016.
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26. Program Committee, Visualization Showcase SC16, David Pugmire, November
2016.

27. Program Committee, Cooperative Design, Visualization, and Engineering
(CDVE), Kwan-Liu Ma, October 24–27.

28. Program Committee, IEEE Scientific Visualization (SciVis), Kenneth Moreland,
October 23–28, 2016.

29. Program Committee, IEEE Symposium on Visualization for Cybersecurity
(VizSec), Kwan-Liu Ma, October 24, 2016.

30. Steering Committee, IEEE Symposium on Visualization for Cyber Security
(VizSec), Kwan-Liu Ma, October 24, 2016.

31. Program Committee, IEEE Large Data Analysis and Visualization (LDAV),
Christopher Sewell, October 23, 2016.

32. Program Committee, IEEE Large Data Analysis and Visualization (LDAV), Kwan-
Liu Ma, October 23, 2016.

33. Program Committee, Graph Drawing & Network Visualization, Kwan-Liu Ma,
September 19–21, 2016.

34. Program Committee, IEEE Cluster, Kenneth Moreland, September 12–16, 2016.

35. Program Committee, EuroVis, Kenneth Moreland, June 6–10, 2016.

36. Program Committee, Eurographics Symposium on Parallel Graphics and Vi-
sualization (EGPGV), Kenneth Moreland, June 6–7, 2016.

37. Program Committee, Eurographics Symposium on Parallel Graphics and Vi-
sualization (EGPGV), Hank Childs, June 6–7, 2016.

38. Program Committee, IEEE Pacific Visualization (PacificVis), Hank Childs, April
20–23, 2016.

39. Program Committee, IEEE Conference on Multimedia and Big Data (BigMM),
Kwan-Liu Ma, April 20–22, 2016.

40. Program Committee, IEEE BigDataService, Kwan-Liu Ma, March 29–April 1,
2016.

41. Program Committee, Workshop on Emotion and Visualization (EmoVis), Kwan-
Liu Ma, March 10, 2016.

42. Program Committee, SPIE Visualization and Data Analysis, Hank Childs, Febru-
ary 16–18, 2016.

43. NSF III 2016 Review Panel, Kenneth Moreland.
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44. Program Committee, ACM/IEEE Supercomputing, Hank Childs, November 15–
20, 2015.

45. Program Committee, Visual Performance Analysis (SC workshop), Hank
Childs, November 20, 2015.

46. Program Committee, IEEE Scientific Visualization (SciVis), Kenneth Moreland,
October 25–30, 2015.

47. Program Committee, IEEE Scientific Visualization (SciVis), Hank Childs, October
25–30, 2015.

48. Steering Committee, IEEE Symposium on Visualization for Cyber Security
(VizSec), Kwan-Liu Ma, October 26, 2017.

49. Program Committee, IEEE Cluster, Kenneth Moreland, September 8–11, 2015.

50. Program Committee, Eurographics Symposium on Parallel Graphics and Vi-
sualization (EGPGV), Kenneth Moreland, May 25–26, 2015.

3.4 Presentations and Other Outreach

1. Big Data Visualization, Keynote Speaker, Kwan-Liu Ma, Taiwan Data Science
Conference, Taipei, Taiwan, November 11, 2017.

2. Visualization for Scientific Discovery and Storytelling, Invited talk, Kwan-Liu
Ma, Oak Ridge National Laboratory, Tennessee, August 24, 2017.

3. In Situ Processing: Opportunities, Challenges, and Instantiations, Hank
Childs, ISC High Performance Conference, Frankfurt, Germany, June 2017.

4. State of the Art for In Situ Visualization, Keynote, Hank Childs, IXPUG Work-
shop on Software-Defined Visualization, Austin, TX, May 2017.

5. Audience Targeted Exploratory and Explanatory Visualization, Keynote
Speaker, Kwan-Liu Ma, Spring Conference on Computer Graphics (SCCG),
Czech Republic, May 15-17, 2017.

6. In Transit Visualization of Full and Reduced Simulation Data on HPC Platforms,
Invited Talk, David Pugmire, Parallel CFD Conference, Glasgow Scotland, May
2017.

7. Emerging Topics in Visual Analytics, Keynote, Kwan-Liu Ma, PacificVAST,
Seoul, South Korea, April 18, 2017.

8. Data Visualization, Invited lecture, Kwan-Liu Ma, UC Davis Medical School,
Sacramento, CA, February 8, 2017.
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9. Visualization for the Public, Invited talk, Kwan-Liu Ma, University of Tokyo,
Tokyo, Japan, December 19, 2016.

10. Big Data Visualization, Invited Talk, Kwan-Liu Ma, Fuji Xerox, Yokohama,
Japan, December 15, 2016.

11. Introduction to Data Visualization, Invited Lecture, Kwan-Liu Ma, Keio Univer-
sity, Yokohama, Japan, December 13, 2016.

12. Audience-Targeted Visualization Designs for Effective Storytelling, Invited
talk, Kwan-Liu Ma, Keio University, Yokohama, Japan, December 8, 2016.

13. Visualization for You, Keynote Speech, Kwan-Liu Ma, Australian Conference
on Human-Computer Interaction (OzCHI), Tasmania, Australia, November 30,
2016.

14. Exascale Visualization and In Situ Processing, Invited lecture, Hank Childs,
University of Tennessee, Knoxville, TN, September 2016.

15. In Situ Processing: Opportunities, Challenges, and Instantiations, Invited talk,
Hank Childs, Smoky Mountains Computational Sciences and Engineering Con-
ference, September 1, 2016.

16. In Situ Processing: Opportunities, Challenges, and Instantiations, Invited talk,
Oak Ridge National Laboratory, Oak Ridge, TN, August 2016.

17. Visualization: A Tool for Data Exploration and Storytelling, Invited lecture,
Kwan-Liu Ma, Hokudai University, Hokkaido, Japan, August 9, 2016.

18. Visualization and Analysis Services for Extreme Scale Computing, Invited lec-
ture, David Pugmire, Rutherford Appleton Laboratory, UK, July 2016

19. Visualization and Analysis Services for Extreme Scale Computing, Invited lec-
ture, David Pugmire, Oxford University, UK, July 2016

20. Visualization and Analysis Services for Extreme Scale Computing, Invited lec-
ture, David Pugmire, Swansea University UK, July 2016

21. Visualization and Analysis Services for Extreme Scale Computing, Invited lec-
ture David Pugmire, Daresbury Laboratory, UK, July 2016

22. Visualization and Analysis Services for Extreme Scale Computing, Invited lec-
ture David Pugmire, University of Leeds, UK July 2016

23. Scientific Visualization for the Public, Invited talk, Kwan-Liu Ma, Hanzhou Low
Carbon Science & Technology Museum, Hangzhou, China, July 8, 2016.

24. Visualization: An Exploratory and Explanatory Tool, Invited talk, Kwan-Liu
Ma. International Symposium on Visual Computing, Hangzhou, China, July 7,
2016.
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25. Recent Advances in Visualization Research, Invited seminar, Kwan-Liu Ma,
National Chiao Tung University, Hsinchu, Taiwan, June 29, 2016.

26. Big-Data Visualization Techniques for Studying Behaviors, Connections, and
Evolution, Invited Talk, Kwan-Liu Ma, Institute of Statistical Science, Academia
Sinica, Taipei, Taiwan, June 17, 2016.

27. Visualization: An Essential Tool for Scientific Discovery and Storytelling, In-
vited talk, Kwan-Liu Ma, Pacific Science Congress, Academia Sinica, Taipei,
Taiwan, June 16, 2016.

28. Visualization: A Tool for Exploration and Storytelling, Invited talk, Kwan-Liu
Ma, Biophotonics Seminar, UC Davis, June 2, 2016.

29. Visualizing Extreme Scale CFD Simulations, Plenary speech, Kwan-Liu Ma, Par-
allel CFD 2016 Conference, May 11, 2016.

30. Visualization: A Tool for Data Exploration and Storytelling, Invited talk, Kwan-
Liu Ma, Taipei Medical University, Taiwan, April 28, 2016.

31. The In Situ Terminology Project, Hank Childs, Department of Energy Computer
Graphics Forum (DOECGF), April 28, 2016.

32. Recent Advances in Visualization Research, Invited talk, Kwan-Liu Ma, Insti-
tute of Sociology, Academia Sinica, Taiwan, April 27, 2016.

33. Big Data Visualization, Invited talk, Kwan-Liu Ma, Summit Forum on Big Data
Visualization, Fudan University, Shanghai, China, April 14, 2016.

34. Visualization Toolkit: Improving Rendering and Compute on GPUs, Presenta-
tion, Robert Maynard, GPU Technology Conference, April 2016.

35. Adapting the Visualization Toolkit for Many-Core Processors with the VTK-m
Library., Presentation, Christopher Sewell and Robert Maynard, GPU Technol-
ogy Conference, April 2016.

36. Exascale Visualization: What Will Change, Invited talk, Hank Childs, National
Center for Atmospheric Research, Boulder, CO, March 2016.

37. Topics in Visualization, Invited talk, Institute for Visualization and Interactive
Systems, Kwan-Liu Ma, University of Stuttgart, Germany, March 11, 2016.

38. Exploratory and Explanatory Visualization, Keynote speech, Kwan-Liu Ma, 3rd
EMBO Conference on Visualizing Biological Data (VIZBI), March 9, 2016.

39. Exascale Visualization: What Will Change., Invitied talk, National Center for
Atmospheric Research, Boulder, CO, March 2016.

40. XVis, VTK-m, and the ECP, Kenneth Moreland, Data/Vis Panel for the Exascale
Computing Initiative Project, February 19, 2016.

49



41. Data Visualization, Invited talk, Kwan-Liu Ma, Medical Health Informatics,
UCDMC, Sacramento, CA, November 25, 2015.

42. VTK-m: Building a Visualization Toolkit for Massively Threaded Architectures,
Invited presentation, Ultrascale Visualization Workshop, November 2015.

43. Visualization and High Performance Computing, Kwan-Liu Ma, Keynote
speech, Symposium on Visualization in HPC, SIGGRAPH Asia, November 2,
2015.

44. Advanced Concepts and Strategies for Visualizing Large-Scale, Complex
Simulation Data, Kwan-Liu Ma, Invited Talk, International Computational Ac-
celerator Physics Conference (ICAP), October 14, 2015.

45. Exascale Visualization: Get Ready for a Whole New World, Hank Childs, In-
vited talk, International Computing for the Atmospheric Sciences Symposium
(iCAS2015), Annecy, France, September 2015.

46. VTK-m, Jeremy Meredith, FASTMath PI Meeting, September 2015.

47. New Techniques for Visualizing Large-Scale Scientific Data, Kwan-Liu Ma, In-
vited talk, Software Center for High Performance Numerical Simulation, Chi-
nese Academy of Engineering Physics, Beijing, China, September 2, 2015.

48. VTK-m Code Sprint, LLNL, September 1-2, 2015.

49. VTK-m Overview, Kenneth Moreland, VTK-m Code Sprint, September 1, 2015.

50. Trends and Advanced Concepts for Scientific Visualization, Kwan-Liu Ma,
Keynote speech, China Scientific Data Conference, August 26, 2015.

51. VTK-m: Accelerating the Visualization Toolkit for Multi-core and Many-core
Architectures, Christopher Sewell, et al., SciDAC PI Meeting (poster), July
2015.

52. VTK-m, Kenneth Moreland, DOECGF, April 2015.

53. Hands-on Lab: In-Situ Data Analysis and Visualization: ParaView, Catalyst
and VTK-m, Marcus Hanwell and Robert Maynard, GTC Lab, March 2015.

54. Visualization Toolkit: Faster, Better, Open Scientific Rendering and Compute,
Robert Maynard and Marcus Hanwell, GTC Presentation, March 2015.

55. Roadmap for Many-Core Visualization Software in DOE, Jeremy Meredith,
GTC Presentation, March 2015.
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