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# The Sensitivity Analysis Story

SAND2010-4561C

Our problem of interest has 4 inputs and 8 outputs

Outputs (responses) have different properties:
— monotonic vs. nhon-monotonic
— smooth vs. discontinuous
— noisy vs. clean

Input
Parameters
We examine different SA techniques:

LHS, LP-Tau } sampling The Model

PCE } stochastic expansion
Response
Metrics

SDP, ACOSSO, DACE } surrogates
@ Sandia
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We compute sensitivity indices and compare them
to exact values; in particular, we examine
performance with respect to sampling resolution
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The Application Space Story

SAND2010-4561C

Hyperbolic Conservation Laws are
PDEs that describe the conservation
of mass, momentum, and energy.

— Constitutive relations describing
specific materials are also required.

Reality

I Physics, Mathematics

— This combination is a mathematical Governing Equations
model of reality. o F ,
i . . Constitutive Relations
We use algorithms to obtain discrete
equations from the mathematical Algorithms, Discretization
model, and solve the discrete
equations using a computer. Numerical Model

— Such simulations provide
approximate numerical solutions
to the mathematical model. @ i)
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%i What we get from Sensitivity Analysis

of Computer Simulations
e wang
{ Reality }

Input
Parameters
Physics, Mathematics
< . .
Governing Equations
The Model +
Constitutive Relations
Algorithms, Discretization
Response
Metrics

o
@ Numerical Model
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These models and analyses are an attempt
to quantify variability of a physical system.

“Perfect”

High

(Full Factorial)

Low
(LHS)

SAND2010-4561C

Sampling Resolution

>

Impossible
in practice

o

Rarely
possible...

/ " Improbable

g @0

———————— Metamodels, PCE -------- g
! : [J THaR
/ / . Laboratory
~ Experiments
' >
Physics Fidelity
Simulation Model Math Model “Nature”

(ALEGRA code)

(PDE+Solution)

)

Sandia
National
Laboratories



o i Why Sensitivity Analysis?

e Sensitivity Analysis is a way to rank input variables according to
their importance relative to the uncertainty in model output.

e \We can determine variables that are important for optimization
or UQ, which variables to gather more data on, or which
variables to control in an experiment.

® Local: local linear or under-resolved behavior can be misleading.

® Global: can be computationally expensive—meta-modeling can
help.

f(X1) f(X1) local global

<
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We conduct sensitivity analyses with DAKOTA.

( DAKOTA

optimization, sensitivity analysis,
parameter estimation,

L uncertainty quantification

Input
parameters

Response
metrics

http://dakota.sandia.gov/

Computational Model (simulation)
Black box: any code: mechanics, circuits,
high energy physics, biology, chemistry

e DAKOTA can automate typical “parameter variation” studies with a generic interface
to simulation software and advanced methods.

e UQ methods in DAKOTA include:

— Sampling (LHS, quasi-MC, classical experimental designs, OAs, VBD)

— Reliability methods (FORM, SORM, AMV+, etc.)

— Dempster-Shafer Evidence Theory

— Stochastic expansion methods: Polynomial chaos, stochastic collocation
— Epistemic-aleatory nested approaches @ Sandia
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Correlation and Variance-Based Decomposition
(VBD) are global sensitivity characterizations
of uncertainty in model outputs Y.

e Goal: to assess inputs over a hypercube of interest.

e Correlation analysis identifies the strength and direction of
a linear relationship between input and output.

e VBD identifies the fraction of the variance in the output that can be
attributed to an individual variable alone or with interaction effects.

— Main effect sensitivity S; is the Var [E(Y‘x.)l
: L X; !
fraction of the uncertainty in Y that Si = Vl 7
can be attributed to input x; alone =ty
— Total effect index T, is the fraction of the E[Var(Y‘x )}
uncertainty in Y that can be attributed to Tl = Var 7y ! 'd';/'ve?gggg
x; and its interactions with other variables i) these ideas
— Calculation of §; and T, requires the evaluation of m-dimensional

integrals, approximated by Monte-Carlo sampling. x= (s X s Xy oeees Xpr) |

__________________________

— Computationally intensive, as replicated sets of samples are evaluated:
N samples and D inputs— evaluation of N x (D + 2) samples. @ Santia
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#i How sensitivity indices are g _ Var(E(Y | X))

calculated i Var(Y)

e Full Factorial:
— Take n values of each input variable X;; the number of samples are a full

tensor product of n samples in each input variable, N = n¢
— For each particular value of X, ca.lculate EY|X, =x,)
the average over the other X; variables.
— Calculate the variance of this
expectation (variance over n values)
e Approximation in Sensitivity Analysis in Practice (Satelli et al. 2004):
— Calculate two independent sample matrices, A and B, with d
(number of inputs) columns and n rows . C.is constructed by
taking the it column of A and substituting it into B.

Var(E(Y| X,))

— Y, Yg and Y, are the vectors of responses = Y, oY

from evaluating the simulator at the N

sample values in A, B, or C. estimated var(Y) = (%Y Y)-f’
— Total samples is (2+d)*n
— Requires that n is of order thousands o \no YY) - f°

for accuracy " estimated var(Y) @ pai
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ﬁance-Based Decomposition: a notional example.

* Main effects indices §; identify the fraction of uncertainty in the output
attributed to X; alone

e Total effects indices T; corresponds to the fraction of the uncertainty
attributed to X; and its interactions with other variables
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Meta-models (Response Surfaces) provide an

alternative to sampling-based VBD.

e Build the meta-model using some of the data
— This is feasible for moderately high dimensional data

e Calculate additional matrices to be analyzed using the meta-model
and compute VBD indices

e Meta-models can also be used, e.g., to generate confidence
intervals of the computed indices (measure of convergence)

* There are different approaches to constructing these surrogates:
e Stochastic expansions (polynomial chaos, stochastic collocation)
e “Regression” surfaces (regression and smoothing)

Sandia
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# Stochastic Expansion Methods provide one

alternative to sampling-based VBD.

e Stochastic expansion methods — Polynomial Chaos Expansion (PCE)
or Stochastic Collocation (SC) — produce functional representations
of stochastic variability.

e Sudret” (i) demonstrated that the sensitivity indices are explicit
functions of the stochastic expansion, and (ii) derived the PCE case.

— NOTE: Once the PCE is obtained, sensitivity indices are calculated
explicitly, i.e., without sampling

e Tang$ derived the sensitivity indices as analytic functions of SC.
e Both of these techniques have been implemented in DAKOTA.

e This approach is very efficient, since the calculation of sensitivity
indicies does not require more function evaluations in addition to
those used to construct the stochastic expansions.

* Sudret, B., “Global Sensitivity analysis using polynomial chaos expansion,” Rel. Engr. & Syst. Safety, 93, pp. 964—979 (2008).

$Tang, G., laccarino, G., Eldred, M.S., "Global Sensitivity Analysis for Stochastic Collocation Expansion," paper AIAA-2010-2922

in Proceedings of the 12th AIAA Non-Deterministic Approaches Conference, Orlando, FL, 12—15 April 2010. @ ﬁgtn_dia |
lona
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~ Generalized Polynomial Chaos Expansions
#approximate the response with a spectral projection

using orthogonal polynomial basis functions.

* Expand the response R in terms of prescribed basis functions Y

Yo(&1) Yol 1

&1

&a

& -1

— — — ~— ~—

N (

— Wy
R = annzpn(g) such that !
n= (

| | | A | A I |
| | A | A I |

§182

1) a(&2) &1 etc.

eight function

=

— The coefficients «, are fit to the data

e This approach is nonintrusive by estimating the coefficients a, using:
— Sampling (expectation) — Point collocation (regression)

— Tensor-product quadrature — Smolyak sparse grid quadrature

e Wiener-Askey Generalized PCE is an “optimal” form of this method.

— Key idea: use a set of basis functions i, (§) that are related to the
assumed underlying distribution, leading to exponential convergence

— E.g., the set of Legendre polynomials P, (&), orthogonal on [-1,1] with

weight function unity, are the optimal basis for a uniform distribuh@] Santia
National
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Other response surface models provide
alternatives to sampling-based approaches.

e SDP = State-Dependent Parameter Regression

— SDP modeling* is a class of non-parametric smoothing, first suggested by Young$, that
is similar to smoothing splines and kernel regression approaches but is performed
using recursive (non-numerical) Kalman filter and associated fixed interval smoothing.

— Good for additive models, and flexibile in adapting to local discontinuities, strong
non-linearity, and heteroskedasticity.

e ACOSSO = Adaptive COmponent Selection and Smoothing Operator

— ACOSSOT is a multivariate smoothing-spline approach (COSSO%) that is augmented by
a weighted (wj), scaled (A) penalty function:

F= min| 3 (5os) + 2 3, P

— ACQOSSO is thought to perform best for a reasonably smooth underlying response.

D = # inputs

e DACE = Design and Analysis of Computer Experiments
— Gaussian Process emulator for the data

§ Young, P. C. “The identification and estimation of nonlinear stochastic systems,” in T Storlie, C.B., Bondell, H.D., Reich, B.J., Zhang, H.H., “Surface estimation, variable
Nonlinear Dynamics and Statistics, A. |. Mees et al., eds., Birkhauser, Boston (2001). selection, and the nonparametric oracle property,” Stat. Sinica, to appear (2010).
* Ratto, M., Pagano, A,, Young, P. C., “State dependent parameter meta-modelling 1 Y. LinY., and H. Zhang, H., “Component selection and smoothinff oSandia
and sensitivity analysis,” Comput. Phys. Comm., 177, pp. 863—876 (2007). spline analysis of variance models,” Ann. Stat., 34, pp. 2272-2 e)ational
SAND2010-4561C Laboratories



# Hyperbolic conservation laws form the basis of

many computational physics investigations.

e Hyperbolic conservation laws are the PDE form of balance laws.
— For example, the conservation of mass, momentum and energy

* The general form of these equations is given by:

ﬁ? _______
State LU—# d1vrf(U)= 0 x € QC Eﬁd, t =0
ot ‘\ Flux function

d n
— Thestate U(x,f): H xN—=N is the array of conserved quantities
— There may be additional constraints or source terms on the RHS
— Appropriate initial and boundary conditions must also be given

* These equations admit complicated solutions with discontinuities.

— For example, shock waves are governed by equations of this form

* Here, we consider the conservation laws that govern the 1-D
equations for compressible fluid flow.

SAND2010-4561C @

Sandia
National
Laboratories



V

} An archetypal case for 1-D compressible flow is

the experimental “shock tube” configuration.

e For 1-D compressible, inviscid, non-heat-conducting flow,
the state U and flux f are given by

U = [p, pu, pET' f = lpu, pu2+p, pEu+pul'

e
= ( \
where FE = e+ | ll/tzi Specific internal enm Specific kinetic energy

_____

* An example is an experimental shock tube for gas dynamics.

— Conservation laws = PDEs. pO '
— Constant, uniform initial =0
conditions.

— For t> 0, the solution is given | -
by a set of self-similar (i.e., - po -
functions of x/t only) waves : 2 !

Diaphragm Position
* This is a specific case of the so-called Riemann problem.

Sandia
National
SAND2010-4561C Laboratories
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What is the “Riemann Problem”?

* 1D gas dynamics equations: U, + f,.(U) = 0
U = [p, pu, pE]' f = lpu, pu+p, pEu+pu]'
with a an ideal gas EOS: P = p(p,e) = (y-Dpe )

Constitutive model
e RPs* are the canonical IVP, with two constant G.F. Bernhard Riemann

initial states, leading to standard SOIULONS: . yestest mathommmen - poter Lox

Velocity

Density
Pressure

. SE

Position Position Position Position
— Canonical wave structures: Rarefaction, , Shock

*This is a generalization of the concepts introduced by Riemann in “Uber die Fortpflanzung ebener Luﬂw‘@ n

ndia
endlicher Schwingungsweite”, Abh. Kénig. Gesell. Wiss. Géttingen, Math.-phys. Klasse, 8, pp. 43-65 ( National
SAND2010-4561C
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}I The Riemann problem can have very different
solutions, depending on the initial conditions.

® There are five basic
solutions for the 1D
gas dynamics
equations with an
ideal gas EOS*.

— These depend on the
relative pressures and
velocities in the ICs

® S =Shock
C = Contact
R = Rarefaction
V = Vacuum/Void

*R. Menikoff, Applications of Non-
Reactive Compressible Fluids,

LANL Report LA-UR-01-273 (2001)
SAND2010-4561C
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} We focus on sensitivity analysis for a single
problem, related to the well-known Sod shock tube.

(1.0, 1.0,0.0,1.4), 0sx<0.5 “Left’

e |nitial state: (o,p,u,y) = .
(o.p.10,y) {(0.125,1.0,0.0,1.4), 0.5<x<1.0 “Right’

* Fix the left state; vary the right state; consider fixed #;,,, = 0.2

® The solution structure varies significantly Shock

near the initial
) 2 Rarefaction
point (). /

] L
e Evaluate the 5 10
0 .
PN n N Rarefaction
Q : :
sensitivity near £ : ,
that point. b= Rarefaction
eT0]
E |
| Shock 05 o\Ra refaction X
Shock Right Velocity Shock |
Sod G., : “A Survey of Several Finite Difference Methods for Systems of Nonlinear m ﬁgtnigﬁal
SAND2010-4561C Hyperbolic Conservation Laws”, J. Comput. Phys., 27, pp. 1-31 (1978). Laboratories



e fix the final time and the left state, but vary
both the right state and a numerical parameter.

:;m'

Input Why?
N le Initial pressure on right Uncertainty in initial condition
é 3 X, Initial velocity on right Uncertainty in initial condition
X Polytropic index y on right Uncertainty in material model
X, CFL parameter: ¢, At/Ax Numerical parameter

e From the self-similar nature of the solution, only one state need
be varied, not both: hence, we vary only values on the right.

. . L .
e Higher pressure, higher y — 2o 3 | Nominal
. - H
higher sound speeds and faster g g High'y
Wave propagation 0.5 1 15 0 0.5 1 1.5
> v ,
e 0<CFL<1 — stable Hon 3 o Nominal
S o 0 o High CFL
CFL > 1 — unstable a° & .

) ’ Sandia
0 05 1 15 0 05 1 15 National
SAND2010-4561C Laboratories
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} Most of our responses are from probes

® A probe measures some quantity
at some location

— We measured at one location on the
left and two on the right of the initial
interface location

— We record the value at the end of the
simulations, t=0.2

X=0.35
Y5, Y6, Y7

X=1.16
Y2,Y3,Y4

X=1.4
Y1

Sandia
National
SAND2010-4561C Laboratories
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# We consider specific characteristics of the

solution as the output variables.

Output Why?

F Y, Specific internal energy, x =1.4  Coupled physics
% J Y, Massdensity, x=1.16 Wave speed
= Y; Kinetic energy, x =1.16 Physics diagnostic

. Y, Timeof1stAp,x=1.16 Experimental diagnostic
£ Y. Mass density, x = 0.35 Wave speed
~ | Y, Kinetic energy, x =0.35 Physics diagnostic

- Y, Time of 18t Ap, x =0.35 Experimental diagnostic

Y, CPUtime Computational diagnostic

e Shock-Physics analysts think of the problem in these terms

Sandia
National
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# Y1:SIEatx=1.4
Output surface slice for the Exact Model

® Y1 is a simple output we
use as a test

Y1: SIE-exact u=0.00625, cfi=1.195 X1, X3 varying
X2 fixed

® No waves reach this
probe location so the SIE
remains at its initial value

— The initial value is a
function of X1 and X3 only

50 p
4wt

30 }
SIE 50 |

50
45
40
35
30
25
20
15
10

10 f

12
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P 4 ' Y2: patx=1.16

Output surface slices for the Exact Model

Y2: p-ex u,=0.00625, cfl=0.805 X1, X3 varying
X2 fixed
Flat plateaus indicate no " okt o
waves have reached this \
location |

0.8

Y2: p-ex y,=1.405, cfl=0.805 X1, X2 varying
X3 fixed

0.136
0.128
012 f
0.112
0.104

Sharp jumps indicate shocks

0.8

- ' ' Sandia
National
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| ' Y2: patx=1.16

Output surface slices for the Exact Model

Y2: p-ex y,=1.205, cfl=0.805 Y2: p-ex y,=1.405, cfl=0.805 Y2: p-ex y,=1.595, cfl=0.805
0.136 0.136 0.136
p 0128 0135 p 0128 0135 p 0128 0135
0.12 0.12 0.12
0.13 0.13 0.13
0.112 0.112 0.112
0.104 0.125 0.104 0.125 0.104 0.125
0.12 0.12 0.12
0.115 0.115 0.115
0.8 0.8 0.8
0.9 0.9
b 1 e 1
11 11
0.2 0.2 . 0.2
1.2 o2 0.1 0 0.1 01 0 0.1 1.2 o2 0.1 0 0.1

u,

. . X1, X2 varyi
X3 increasing ) hed

Y2: p-ex u=-0.24375, cf=0.805 Y2: p-ex u;=0.00625, cfl=0.805 Y2: p-ex u=0.24375, cfl=0.805
0.135 0.135 0.135
0.136 013 0.136 013 0.136 013
0128 0125 0128 0125 0.128 0.125
P P P
0.12 0.12 0-12 0.12 012 0.12
0.112 0.112 0.112
.11 11 11
0.104 0115 0.104 0115 0.104 0115
16 16
15 15
08 1.4 08 14 08
T "
Py 1.1
o 12 o2
X1, X3 varying

X2 increasing

X2 fixed

Sandia
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Y3: uatx=1.16
Output surface slices for the Exact Model

Y3: uZ-ex y,=1.205, cfl=0.805 ¥3: u%-ex y,=1.405, cfl=0.805 Y3: u-ex y,=1.595, cfl=0.805
0.12 0.12 0.12
o 0.1 0.12 > 0.1 0.12 2 0.12
U 0.08 01 U 0.08 01 u 01
0.06 - 0.06 y :
004 0.08 004 0.08 0.08
0,02 0.06 0.02 0.06 0.06
0 0.04 0 0.04 0.04
0.02 0.02 0.02
0 0 0
08 08
0.9 0.9
P P 1
1.1
2 . 2
2 o % 01 0 2 o % 01 0
.

X1, X2 varying

X3 |nCreaS|ng | X3 fixed

¥3: uP-ex u,=-0.24375, cfl=0.805 Y3: u?-ex u,=0.00625, cfl=0.805 Y3: u?-ex u,=0.24375, cfl=0.805

0.12 0.12
041 0.1
0.08 0.08
0.06 0.06
u? 004 u? 0.04
0.02 0.02
0 0
X1, X3 varying

X2 inCI‘eaSing | X2 fixed

Sandia
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| ' Y4:t, atx=1.16

Output surface slices for the Exact Model

Y4: t,-ex y,=1.205, cfl=0.805 Y4: 1,,-ex 1,=1.405, cfl=0.805 Y4: 1,,-ex 7,=1.595, cfl=0.805
—
02 p—— .
g, 01 0.2 & 0.2 t, 0.2
018 0.19 : 0.19 0.19
o.17 0.18 0.18 0.18
016 0.17 017 0.17
0.15 : ! !
0.16 0.16 0.16
0.15 0.15 0.15
0.8
0.9
P 1
11 . .
1.2 ” o o 0.1 0.2 . = " ] . } -~ = - ]
up v .
X3 . . X1, X2 varying
t g — X3 fixed
Plateaus:

Simulations end
at t=0.2.

Y4: t,-ex u=-0.24375, cfl=0.805 Y4:1,-ex u=0.24375, cfl=0.805

—
/‘//
0.2 0.2 0.2

0.2 \\ 0.19 02 0.19 0.19
0.19 0.18 0.19 0.18 0.18
ty 0.8 017 t 0.8 017 ty 0.17
0.17 0.16 0.17 0.16 0.16
0.16 0.15 0.16 0.15 0.15

0.15 0.15

16
15
0.8 14 0.8

' ' _ T e
X2 increasing ) o3 varvine
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i We simulate this problem with the
ALEGRA multi-physics code.

Shock and Multi-physics HEDP Theory and ICF Target Design Overview

e The ALEGRA suite of applications models shock and
high energy environments for solids, fluids, and
plasmas using a multi-material arbitrary
Lagrangian-Eulerian (ALE) multi-physics
methodology.

e  ALEGRA applications run on large, parallel,
message-passing architectures in 2-D and 3-D
geometries.

ALEGRA Applications
e  Armor Design and Analysis
e Shaped Charges & Explosively Formed Penetrators
e  Railgun Design and Analysis
e  Magnetohydrodynamics (MHD)
e  Z-pinch, Inertial Confinement Fusion
e |sentropic Compression Experiments/Magnetic Flyers

20 40

Experiment
"I ALEGRA =5

730

Current (MA)
s
n
o
Velocity (km/s)

-
o

n n 0
| 23 2.4 25 26 2

- - Time x 1.e-6 (s) ! San[lia
L. ) ; PN ; icH ignal
SAND20104561C Isentropic Compression: Magnetic Flyer Predicti Fa%:?ratories
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# The underlying equations in ALEGRA are

related to hyperbolic conservation laws.

e The fundamental equations are statements of conservation laws:

State 0" U ______________
+ div f(U) = SU eQC W
&t f'( ")‘ -—g———)-\

F/ux function Source term
— Depending on the physics modeled, the state U may include, e.g.:
o Internal state variables from material strength models
o Magnetic field quantities for MHD simulations

— These are discretized on a hexahedral mesh in the Arbitrary Lagrangian-
Eulerian framework, amenable to general meshing and remapping.

* The gas dynamics equations of this study are the simplest
“nonlinear physics” equations that are an intrinsic part of
the full suite of models in ALEGRA.

* This study is a prototype for the future analysis of more
complicated, physics-rich problems. @Sandia

National
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ol ' Y1:SIEatx=1.4

Output surfaces for the Simulation Model

Exact Y1: SIE-exact u,=0.00625, ofi=1.195 X1, X3 varying
Model X2 fixed
* Y1 is independent of X4. o

40

30
SIE 54

10

® For Y1, the exact model
and the simulation model

are iden ﬁcal. Simulation Y1: SIE-sim ,=0.00625, cfl=1.195 X1, X3 varying
Model X2, X4 fixed

1.2

50
wl
30
SIE

10

12
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P ' Y2: patx=1.16

Output surface slices for the Simulation Model

Surface is nosier, noise
increases with X4

Y2: p-ex y,=1.405, cfl=0.805 Y2: p-sim y,=1.405, cfl=0.805 : p-sim y,=1.405, cfl=1.195

o O p 012 p 012 0.135
.12 .12 12
4 4 0.13
0.112 1112 112
0.104 0128
.12 112 0.12
11 11 0.115
r 1 T

0.8
0.9

pr 1
11 \
1.2

Simulation Model
X4 =0.805

0.2
. 0
-0.2 0.1 u

imulation Model X1, X2 varying
X4 =1.195 X3, X4 fixed

Exact
Model

Shocks are not
as sharp

® Compared to the Exact Model, most simulation Model

response surfaces show only mild differences @ Santia

National
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# ¥Y3: u? atx = 1.16
Output surface slices for the Simulation Model

¥3: uZ-ex y,=1.595, cfl=0.805 ¥3: uZ-sim y,=1.595, cfl=0.805 Y3: uZ-sim y,=1.595, cfl=1.195

0.08
0.06
0.04
0.02

0 0.1 0.2

Exact Simulation Model Simulation Model X1, X2 varying
Model X4 =0.805 X4 =1.195 X3, X4 fixed

e Some simulation Model response surfaces show
significant differences in values

Sandia
National
SAND2010-4561C Laboratories
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Y4:t, atx=1.16

Jj ; Output surface slices for the Simulation Model

Y4: t,-ex y,=1.595, cfl=0.805 Y4:,,-sim v,=1.595, cfl=0.805

0.2

0.19
0.18
017
0.16

Simulation Model
X4 =0.805

® In a few cases, Simulation Model
response surfaces show a different
topology than the Exact Model

SAND2010-4561C

Right Pressure

P N
/m
(@)
o)

Y4:t,-sim y,=1.595, cfl=1.195

0.2 *’ﬁ? D g
S - Y
017 “ 2’; 5 : ' 0.18
N i
1-11.2 o2 - : T:’\ﬁ;
Simulation Model X1, X2 varying
X4 =1.195 X3, X4 fixed

1 SCS >< RCR

o / \
RCS

O-1 -0.5 0 0.5 1

Right Velocity
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}I Y8: CPU time

e Y8 (CPU time) has no analog in the Exact Model

® Expectations:
— Linear dependence on X4 (cfl number)

— Weak, indirect dependence on the other inputs through
wave speeds

— Dominated by strong random noise

— Not clear that results for different SA techniques should
match
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V

i These outputs have different characteristics.

Outputs
A

SR P A B B N A

SAND2010-4561C

Final Right SIE

Final Right p

Final Right KE
Right Ap time

Final Left p
Final Left KE
Left Ap time
CPU time

Monotonicity

Monotonic

Nom-monggonic
NoM-monggonic

NoM-monggonic
NoM-monggonic
NoM-monggonic

Nom-monggonic
Nof-Monggonic

Continuity
Continaons
DISCONTINUOUS
DISCONTINUOUS
DISCONTINUOUS
DISCONTINUOUS
DISCONTINUOUS
DISCONTINUOUS

DISCONTINUOUS

“SNR”
CLEAN
NOISY
NOISY
NOISY
NOISY
NOISY
NOISY
NOISY

)
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A
} The physics suggests that certain outputs

should be relatively sensitive to certain inputs.

Inputs — X, X, X X,
Init. Right p Init. Right u Init. Right y CFL
le Final Right SIE STRONG | STRONG

Y, Final Right p SOME STRONG SOME weak

. | Y5 Final Right KE SOME STRONG SOME weak
:§. p Y, Right Aptime STRONG SOME STRONG weak
O | Y, Final Left p weak SOME weak weak
Y, Final Left KE weak SOME weak weak

Y, Left Aptime SOME weak SOME weak

Y, CPU time ~ : SOME
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SAND2010-4561C Laboratories



}i What we get from Sensitivity Analysis

of Computer Simulations

Input !
Parameters Reality

Physics, Mathematics
< . .
Governing Equations
The Model +
Constitutive Relations
I Algorithms, Discretization
Response
Metrics
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What we|show to

Numerical Model }




Backup Slides
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} The sampling implementation of VBD

can be computationally demanding.

e Requires N x (D + 2) function evaluations, where D is the
number of input variables and N is the number of samples.

— Common practice: N should be at least a few hundred to
obtain reasonably accurate variance estimates.

"z I
Xll e o o XD]
X12 e o o XD2
Xl3 e o o XD3

leN XDN/

Sample 1

SAND2010-4561C

a I
Xll o e o XDl
X12 o e o XD2
X13 o e o XD3

\XIN XDN/

Sample 2

Column Swap>

g B
Xll oonXil e e o XD]
Xlz-..Xiz ...XDz
Xl3-o.Xi3 -ooXD3

\XlN' XN ..XDN/

Sample I

)
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-~ ’
# A simple example shows the effect of stochastic

expansion versus sampling for VBD sensitivity indicators.

Lots of
evaluations

Very few |

evaluations |

* We calculate the main effect sensitivity ) X,
indices S, i =1, 2, for the function: J=x 2
VBD
Approach | Func Evals S$1 S2
LHS 400 0811961 | 0.188291 _
LHS 4000 0815006 | 0.195046, | —{ et
\ LHS 400000 0809877 | 0.190123
PCE 4 038 0.2
PCE 16 0.810127 | 0.189873
PCE &4 0.810127 0.189873\>_{Preuy
SC — . 4 0.8 02 good!
SC 16 0810127 | 0.189873
SC 64 0810127 | 0.189873
TRUE 0.810127 0.189873<—{5:f:;

* Of course, there is overhead to set up the expansions.

— The bigger the problem, the greater the advantage for SE...

SAND2010-4561C
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Stochastic Collocation with Lagrange interpolation
uses interpolants for the basis functions.

* Instead of estimating coefficients for known basis
functions, form interpolants for known coefficients

maiq m;

N,
R = Z'erj(ﬁ) L = Z Z r
j=1

Jl 1 .]7,—1

Go) (L5 @0 L)

Same as forming

Form sparse interpolant using sum of tensor producE\{the sparse grid
Key concept: use the same Gauss points/weights from the orthogonal

polynomials for specified input PDFs‘\{GiVes the same exponential

convergence rates!

Advantages relative to PCE:
— Simpler (no expansion order)
— Adapts to integration approach/collocation pts
Disadvantages relative to PCE:
— Needs structured data sets: quadrature/sparse
grid, no random sampling sets (as in PCE)

SAND2010-4561C

N,
MR = E riw;
j=1

N,
2 . 2, 2
Or = r;w; — MR
j=1 7
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PCE/SC Expansions:

';,7
Tensor Product Quadrature

* Numerical integration: tensor-product quadrature:

my

J=1

£ (&) =) ul&)w

2
J

— Evaluate response at every combination
of 1-D integration rules

— Weights for each point are product of
1-D weights
— Scales as m"

— 1-D Gaussian rule of order m exactly
integrates any polynomial up to order 2m — 1

— Assuming RY; of order 2p, select m=p + 1

SAND2010-4561C

T
b i

Clenshaw-

(@)

urtis tensor-prod
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PCE/SC Expansions

; ; Numerical Integration with Smolyak Sparse Grids

(W, n

Z (A“ & -

li|<w+n

- (X Ai " )

for

L]
[ ]
[
[ ]
0.*?”
[ ]
[ ]
°
LN ]

2D Clenshaw-Curtis sparse grid

(less optimal, more nesting)
SAND2010-4561C

2D Gauss-Legendre sparse grid
(more optimal, less nesting)

3D Clenshaw-Curtis sparse grid
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\

Performance of traditional (total-order) PCE

g(x) = =% x,, X, are LogN(1, 1/2) with p, , = 0.3

| | —&— quad m = 1-11, 10* CDF samples
1 |~ quadm=1-11, 10° CDF samples
! | —+— quad m = 1-11, 10° CDF samples

) o | | —&— pt colloc ratio = 2, 10* CDF samples
g T~ S 1 | 7 ptcolloc ratio = 2, 10° CDF samples
2 % | | —+—ptcolioc ratio = 2, 10° CDF samples
g & ~— exp samples, p = 10, 10* CDF samples
8 \. exp samples, p = 10, 10° CDF samples

— 1 exp samples, p = 10, 10° CDF samples
sparse w = 0-4, 10% CDF samples
sparse w = 0-4, 10° CDF samples
sparse w = 0-4, 10° CDF samples

super-algebraic :
convergence (numerical ]
integration and regression) |

4 5

10 10° 10° 10 10 :
SANL Simulations lories



