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- /‘} Overview

Each of the following techniques are useful for a variety of
things, but consider these informal definitions for the present
context:

e Uncertainty quantification is determining the probability
distribution of an output given a model and probability
distributions of uncertain inputs

. is UQ with attribution

e Code verification is learning about your numerical methods
through careful numerical experiments and exact solutions

How can we use these together? Is that even possible?

Sandia
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Overview

Reality of Interest
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> The Sensitivity Analysis Story

e Qur problem of interest has 4 inputs and 4 outputs

e Qutputs (responses) have different properties:
— monotonic vs. non-monotonic
— smooth vs. discontinuous
— noisy vs. clean

Input
Parameters

e We examine different SA techniques:
LHS, LP-Tau } sampling The Model
PCE } stochastic expansion

SDP, ACOSSO, DACE } surrogates

e We compute sensitivity indices and compare
them to exact values; in particular, we examine
performance with respect to sampling resolution

Response
Metrics

SAND 2012-2563C Lahoratories



}/ Verification and Validation
The Apptication-Space Story

e Hyperbolic Conservation Laws are
PDEs that describe the conservation
of mass, momentum, and energy.

Reality

— Constitutive relations describing

specific materials are also required. I Physics, Mathematics

— This combination is a mathematical Governing Equations

model of reality. *
Constitutive Relations

e We use algorithms to obtain discrete
equations from the mathematical IAIgorithms, Discretization
model, and solve the discrete
equations using a computer. Numerical Model

— Such simulations provide
approximate numerical solutions o
noia

to the mathematical model. National
SAND 2012-2563C Laboratories
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> hat we get from Sensitivity Analysis
of Computer Simulations

Input
Parameters
Physics, Mathematics
< ) .

Governing Equations
The Model +

Constitutive Relations

I Algorithms, Discretization
Response
Metrics
Sandia
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_— hat we get from Sensitivity Analysis
of Computer Simulations

Input _
Parameters Reality

Physics, Mathematics
< . .
Governing Equations
The Model +
Constitutive Relations

What we ShOW tOday IAIgorithms, Discretization
Response .
{ Numerical Model ]
Sandia
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/ We conduct sensitivity analyses with DAKOTA.

DAKOTA
optimization, sensitivity analysis,

Input

parameters

parameter estimation,
uncertainty quantification ' |
Response DAROTA
metrics

Computational Model (simulation)

Black box: any code: mechanics, circuits,
high energy physics, biology, chemistry

http://dakota.sandia.gov/

e DAKOTA can automate typical “parameter variation” studies with a generic interface
to simulation software and advanced methods.

e UQ methods in DAKOTA include:

Sampling (LHS, quasi-MC, classical experimental designs, OAs, VBD)
Reliability methods (FORM, SORM, AMV+, etc.)

Dempster-Shafer Evidence Theory

Stochastic expansion methods: Polynomial chaos, stochastic collocation

Epistemic-aleatory nested approaches ml

SAND 2012-2563C Lahoratories



i We simulate this problem with the
ALEGRA multi-physics code.

Shock and Multi-physics HEDP Theory and ICF Target Design Overview

e The ALEGRA suite of applications models shock and
high energy environments for solids, fluids, and
plasmas using a multi-material arbitrary
Lagrangian-Eulerian (ALE) multi-physics
methodology.

e  ALEGRA applications run on large, parallel,
message-passing architectures in 2-D and 3-D
geometries.

ALEGRA Applications
e Shaped Charges & Explosively Formed Penetrators
e  Magnetohydrodynamics (MHD)
e Z-pinch, Inertial Confinement Fusion
e |sentropic Compression Experiments/Magnetic Flyers

Current (MA)
3
m
X
©
D
3.

[} e,

23 2.4 25 2.6 27
Time x 1.e-6 (s)

Isentropic Compression: Sarldial
Magnetic Flyer Prediction vs. Exp’ t Miational
SAND 2012-2563C & y P Laboratories
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.} Hyperbolic conservation laws form the basis of
many computational physics investigations.

e Hyperbolic conservation laws are the PDE form of balance laws.
— For example, the conservation of mass, momentum and energy

* The general form of these equations is given by:

_/_?"‘. d
State LU"+ d1V{f(U)= 0 XEQCH, t=0
ot \ Flux function

— The state U(x,?): R R—R" is the array of conserved quantities
— There may be additional constraints or source terms on the RHS
— Appropriate initial and boundary conditions must also be given

* These equations admit complicated solutions with discontinuities.
— For example, shock waves are governed by equations of this form

* Here, we consider the conservation laws that govern the 1-D
equations for compressible fluid flow. i

SAND 2012-2563C Lahoratories
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/_} An archetypal case for 1-D compre55|ble flow is
the experimental “shock tube” configuration.

e For 1-D compressible, inviscid, non-heat-conducting flow,
the state U and flux f are given by

T
= [p, pu, pET' f = lpu, pu>+p, pEu+pu]
_k,
where E = 6 + 1l/t2 Specific internal enm Specific kinetic energy

_____

* An example is an experimental shock tube for gas dynamics.

— Conservation laws = PDEs. 0

P =
— Constant, uniform initial N =0
o, . =
conditions. S |
vy
B L o
Fort >0, the sol.utl.on |§ given © /-> -
by a set of self-similar (i.e., - - po
functions of x/t only) waves - 2 : }
Diaphragm Position

* This is a specific case of the so-called Riemann problem. r_
SAND 2012-2563C G] P



What is the “Riemann Problem”?

* 1D gas dynamics equations: U, + f,(U) = 0
U = [p, pu, pE]' f = lpu, pu+p, pEu+pul’
plpe) = (r-Dpe 428

with a an ideal gas EOS: /p

Constitutive model

e RPs* are the canonical IVP, with two constant G.F. Bormhard Riemann

initial states, leading to standard sOlUtIONS: ... ... mathemcor - poter Lox

Velocity

Density
| ___Z ]
Pressure

. SE

Position Position Position Position
— Canonical wave structures: Rarefaction, , Shock

*This is a generalization of the concepts introduced by Riemann in “Uber die Fortpflanzung ebener Luftyreae

endlicher Schwingungsweite”, Abh. Kénig. Gesell. Wiss. Géttingen, Math.-phys. Klasse, 8, pp. 43—65
SAND 2012-2563C
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e Riemann problem can have very different
solutions, depending on the initial conditions.

® There are five basic
solutions for the 1D
gas dynamics
equations with an
ideal gas EOS*.

— These depend on the
relative pressures and
velocities in the ICs

® S =Shock
C = Contact
R = Rarefaction
V = Vacuum/Void

*R. Menikoff, Applications of Non-

Reactive Compressible Fluids,

LANL Report LA-UR-01-273 (2001)
SAND 2012-2563C
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We focus on sensitivity analysis for a single
problem, related to the well-known Sod shock tube.

o Initial state: (pp.uy) =410 1:0,00.1.4), 0=x<05 “Left”
- WPIRT)79(0.125,1.0,0.0,1.4), 0.5<x<1.0 “Right”

* Fix the left state; vary the right state; consider fixed ¢, = 0.2

® The solution structure varies significantly Shock
near the initial

2

Rarefaction

point (e).
Q L
e Evaluate the 5 10
sensitivity near & Rarefaction
. o ¢
that point. = Rarefaction
(o]0]
E il
__ Shock 1 0\Rarefacﬁon NI
Shock Right Velocity Shock o
Sod G., : “A Survey of Several Finite Difference Methods for Systems of Irl1|l rlational

SAND 2012-2563C Nonlinear Hyperbolic Conservation Laws”, J. Comput. Phys., 27, pp. 1-31 (1978).
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e,

g /-ﬂ(/'e fix the final time and the left state, but vary
both the right state and a numerical parameter.

Input Why?
N le Initial pressure on right Uncertainty in initial condition
é 3 X, [Initial velocity on right Uncertainty in initial condition
X Polytropic index y on right Uncertainty in material model
X, CFL parameter: ¢, At/Ax Numerical parameter

e From the self-similar nature of the solution, only one state need
be varied, not both: hence, we vary only values on the right.

. . L .

e Higher pressure, higher y — o S ' Nominal
higher sound speeds and faster § § High y
wave propagation o C e

> L | .
* 0<CFL<1 — stable s S o Nominal
< bt 0.92 HI h CFL

CFL>1 — unstable 8" £ U -

° 0 0.5 1 1_5h ml.
SAND 2012-2563C o o5 1 18
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Most of our responses are from probes

e A probe measures some quantity
at some location

— We measured at one location on the
left and two on the right of the initial
interface location

— We record the value at the end of the
simulations, t=0.2

X=0.35
Y5, Y6, Y7

X=1.16
Y2,Y3,Y4

X=14
Y1

Sandia
SAND 2012-2563C Lahoratories
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. o ¢
- 3™ \We consider specific characteristics of the
| solution as the output variables.

Output Why?

f Y, Specificinternal energy, x =1.4 Coupled physics
g, J Y, Massdensity, x=1.16 Wave speed
= Y; Kinetic energy, x =1.16 Physics diagnostic

. Y, TimeoflsAp,x=1.16 Experimental diagnostic
£ | Y, Mass density, x = 0.35 Wave speed
— | Y, Kinetic energy, x =0.35 Physics diagnostic

=Y, Time of 15t Ap, x =0.35 Experimental diagnostic

Y, CPUtime Computational diagnostic

e Shock-Physics analysts think of the problem in these terms

Sandia
SAND 2012-2563C Lahoratories



Y2: patx=1.16
Output surface slices for the Exact Model

=2

Y2: p-ex u,=0.00625, cfl=0.805 X1, X3 varying
X2 fixed

0.135

Flat plateaus indicate no Yy "
waves have reached this \
location ]

Y2: p-ex y,=1.405, cfl=0.805 X1, X2 varying
X3 fixed
o Sharp jumps indicate shocks

12 0.2 -0.1

Sandia
SAND 2012-2563C Lahoratories
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| ' Y2: patx=1.16

Output surface slices for the Exact Model

Y2: prex y,=1.205, cfl=0.805 Y2: prex y,=1.405, cfl=0.805 Y2: prex y,=1.595, cfl=0.805
0.136 0.136
p 0128 0.135 0 0.135 p 0128 0.135
012 012
013 013 013
0.112 0.112
0108 0.125 0.125 0108 0.125
012 012 012
0.115 0.115 0.115
08
09
P 1
1.
2 ) 2
0.2 -0.1 0 01 o 12 0.2 -0.1 0 01 o
. u . u
X3 . . X1, X2 varying
8 — X3 fixed
Y2: p-ex u,=-0.24375, cfl=0.805 Y2: p-ex u,=0.00625, cfl=0.805 Y2: p-ex u,=0.24375, cf=0.805
0.135 0.135 0135
0.136 013 0136 013 013
0128 0.125 0128 0.125 0.125
P .12 .12
0 012 0 012 012
0112 0112
0108 0.115 0108 0.115 0.115
16 16
15 15
08 14 08 14

X1, X3 varying
X2 fixed

@ i
MNational )
SAND 2012-2563C Laboratories

X2 increasing




Y4:t, at x =1.16

Output surface slices for the Simulation Model

Y4: t,ex ,=1.595, cfl=0.805 Y4: t,,-sim y,=1.595, cfl=0.805

02 ’_’/44\’{/\\;}*‘\[\’ =
02 G = 0z
0.19 018 S8 0.19
0.18 o.17 4 0.18
017 016 2 017
’ 0.15 g ’
0.16 0.16
0.15 0.15

08

0.9

Simulation Model
X4 =0.805

Exact
Model

In a few cases, Simulation Model
response surfaces show a different

topology than the Exact Model

SAND 2012-2563C
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0.16
015

—
=9
A =% W st

Y4: t,,-sim y,=1.595, cfl=1.195
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Simulation Model X1, X2 varying
X4 =1.195 X3, X4 fixed

Right Pressure

/m
(@)
=

G

RCR

-0.5 0

Right Velocity

0.5
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Scatterplots of model outputs give
some insights into the distributions.

Init. Right p Init. Right u Init. Right y CFL

e Some outputs
appear insensitive:

— Y, variation with X,

e Some trends in the
data are clear:

— Y, variation with X; --

— Y, variation with X, -----7]

0.27

e \V/BD sensitivity Y, |

0181

indices quantify
this behavior...

awn Ndd awnodviydy I 1ysy jeurd 0 ysiy [euly 31S Y31y |euly

SAND 2012-2563C



K . . .
n A)rrelahon and Variance-Based Decomposition

- > (VBD) are global sensitivity characterizations
of uncertainty in model outputs Y.

e Goal: to assess inputs over a hypercube of interest.

e Correlation analysis identifies the strength and direction of
a linear relationship between input and output.

e VBD identifies the fraction of the variance in the output that can be
attributed to an individual variable alone or with interaction effects.

— Main effect sensitivity S, is the Varx.[E(Y‘xi)l
fraction of the uncertainty in Y that Si = !
can be attributed to input x; alone V) ‘

— Total effect index 7, is the fraction of the E[Var(Y‘x ')l ¥ ,
uncertainty in Y that can be attributed to Tl = —1 'a'\e/'\}jgggld
x; and its interactions with other variables Var(¥) these ideas

— Calculation of §; and T, requires the evaluation of m-dimensional

_________________________

integrals, approximated by Monte-Carlo sampling. x= Qs vvs X s Xy oo es Xp) |

— Computationally intensive, as replicated sets of samples are evaluated:
N samples and D inputs— evaluation of N x (D + 2) samples. Sandia

SAND 2012-2563C Lahoratories



o

> How sensitivity indices are ¢ _ Var(E(Y | X)))

calculated i Var(Y)

e Full Factorial:

Take n values of each input variable X;; the number of samples are a full
tensor product of n samples in each input variable, N = nd

For each particular value of X, ca.IcuIate E(Y|X =x,)

the average over the other X; variables.

Calculate the variance of this

expectation (variance over n values) Var(E(Y | X)))

e Approximation in Sensitivity Analysis in Practice (Satelli et al. 2004):

Calculate two independent sample matrices, A and B, with d
(number of inputs) columns and n rows . C. is constructed by
taking the it column of A and substituting it into B.

Y, Yg and Y are the vectors of potatts
responses from evaluating the simulator N
at the sample valuesin A, B, or C. estimated var(Y) = (LY Y )-f’

. -1
Total samples is (2+d)*n

Requires that n is of order thousands G _.N-1" -
. Nnoia

for accuracy ’ estlmatedvar(Y) National _
Laboratories
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- _} Comments on Computing
| Sensitivity Indices

e The multidimensional integrals are usually computed
approximately — estimated from limited information. In
practice, this isn’t so bad because the indices are used
primarily for ranking inputs rather than precise
comparisons.

* Nonetheless, it is still important to know how the accurate
the estimates are as a function of, e.g., sample size, and
that they converge to the correct value.

e Exact solution of the sensitivity analysis problem: full
factorial “sampling” of the uncertain inputs can be viewed
as numerical quadrature for uniformly distributed inputs.

Sandia
SAND 2012-2563C Lahoratories



% The sensitivity indices for Y, have

some interesting features.

e For Y, (final right p), main and total indices have different
values, indicating those inputs interact with others.

Main Total
| l y2-LH376e3 | [ | ‘y2-ACOS‘30256
B y2-LHS 6e4 B y2-DACE256
X X 0 Bl A-EXACT-160k
4 4 O i  A-EXACT-2.56M
O M R-EXACT-160k
B y2-SDR256 M R-EXACT-2.56M
~N ~ i
X X
3 3
= =
= mmm—— =
w0 gy, ILUELIECLLUTLATITCLTTCTTECCCRCCRCCICLCIY = yg_tﬁg_gei —
) X B 2.PCEd 2 . Inter- {4 X
What is. 2 O action 2
happening_/ B | | omong
here? |||||||||||||||||||||||| ] y2-DACE256 these
B A-EXACT-160k .
1 A-EXACT-2.56M Inputs Xl
M R-EXACT-160k
M R-EXACT-2.56M
] | T T - .
02 0 02 04 06 0.8 1 1.2 -0.2 1 1.2
S T
LHS 6000 ACOSSO 256 A-EXACT 160k  R-EXACT 160k

JRC 196k  SDP 256 DACE 256 A-EXACT-2.56M R-EXACT-2.56M

SAND 2012-2563C =_J Laboratores




The sensitivity indices for Y, perform
similarly for all approaches.

e As anticipated, Y; (final right KE) depends strongly on X, (ug).
— Sensitivity on Xj; (y3) is less than heuristically expected.

Main Total
¥ E V3-LHS, 6e3 ¥ é eHeee
4 % 4 O
g i % y3-SDR256 |
B y3-SDR256 ~ - B y3-ACOSSO256
B y3-ACOSS0256 B y3-DACE256
B y3-DACE256 B A-EXACT-160k
X Bl A-EXACT-160k X A-EXACT-2.56M
3 % Q'Ei((ﬁg'?é’(?k“" 3 M R-EXACT-160k
é M R-EXACT-2.56M| é W R_FXACT-Z'SGM
E E |||||
X > Inter- < X
| \‘ action
— among
these
X, inputs | X,
i i o .
02 0 02 04 06 0.8 1 1.2 -0.2 1 1.2
S
LHS 6000 ACOSSO 256 A-EXACT 160k  R-EXACT 160k

SDP 256 DACE 256 A-EXACT-2.56M R-EXACT-2.56M

SAND 2012-2563C —=_J lLaboratones




What are we looking at?

e Two different models -> two different sensitivity analysis
problems

1. Model 1: exact solution to the Riemann problem

2. Model 2: approximate numerical solution to the Riemann
problem (Alegra simulations)

e Solutions for each sensitivity analysis problem are
essentially exact.

SAND 2012-2563C
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What else could we have done?

e Treat simulation model discretization parameters as
uncertain inputs and compute sensitivity indices. This
is @ common practice; more troubling is that it is often
viewed as sufficient code verification.

e Consider the sensitivity of the differences between the

exact and simulation models
e Consider error of the code verification problem as
sensitivity analysis outputs.

Sandia
SAND 2012-2563C Lahoratories
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Sensitivity Indices for y2 Differences

33
Sz

SAND 2012-2563C

0.0017
0.0175
0.2487
0.2757

0.0050
0.2214
0.6477
0.6715

0.0218
0.4858
0.1865

0.1529
0.7704
0.4523

0.0011
0.0544
0.0688
0.0602

0.0173
0.7621
0.6495
0.8644

a: alegra
r: Riemann solver
diff: error

diff is not the
difference between
Y2-a and Y2-r; it is the
sensitivity index of
Y2-a—Y2-r

Results from LHS-60k

@ :
National
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A
p Sensitivity Indices for y3 Difference

0.0023
0.0737
0.2811

-0.0010 0.0
S3 -0.0043 0.0440
82 0.5296  0.5046
0.0598 0.0927

0.0063
T3 0.2063
T, 0.8279
T, 0.3858

0.2354
0.8097
0.3630

0.0048

0.0183
0.6471
0.7988
0.6018

a: alegra
r: Riemann solver
diff: error

diff is not the
difference between
Y3-a and Y3-r; it is the
sensitivity index of
Y3-a—Y3-r

Results from LHS-60k

It is not obvious how to interpret the sensitivity of the differences

SAND 2012-2563C
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A
% Sensitivity Indices for L, Error Norms

33
Sz

0.1938
0.3615
0.0905
0.1948

0.1908
0.5744
0.0191
0.0626

0.1707
0.5414
0.0462
0.0858

0.2249
0.5485
0.0259
0.0473

SAND 2012-2563C

0.2824
0.4534
0.1577
0.2644

0.2893
0.6853
0.0539
0.1345

0.2625
0.6528
0.0869
0.1703

Results from LHS-60k

0.3301
0.6611
0.0607
0.1088

@ :
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__ What else can we say given two
) 4 alternative models?

That is, we have a simulation model and an exact model.

We know how to use the exact model for code verification on

a point by point (in input parameter space) basis.

e How can we use UQ techniques to perform code
verification over a broad input parameter space?

e (Can such techniques help us filter “noisy” convergence
rates? How much deviation from design convergence rates
is acceptable?

Sandia
SAND 2012-2563C Lahoratories
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> Cook-Cabot Convergence Rates

L1 density error convergence rates, Cook-Cabot problem

NX 18 36 72 144 288
Order 1.675 1.957 2.003 1.999

NX 19 38 76 152 304
Order 1.626 1.982 1.984 2.004

NX 20 40 80 160 320
Order 1.846 1.888 2.012 2.001

Why do the convergence rates vary so much for the three
similar sequences?

Cook, A. W. and Cabot, W. H., : “A High-Wavenumber viscosity for High-

SAND 2012-2563C Resolution Numerical Methods”, J. Comput. Phys., 195, pp. 594-601 (2004).
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Cook-Cabot Density Error Norms

SAND 2012-2563C

L1 density error

L1 density error, Cook-Cabot problem

How smooth is the error? |
Tl R T
10-6 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Wl S
All meshes, nx=10, ..., 330
1078 Frovreire RNt S
102 10!
dx

Sandia
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> Sod Convergence Rates

L1 density error convergence rates, Sod problem

NX 18 36 72 144 288
Order 0.972 0.984 0.930 1.025

NX 19 38 76 152 304
Order 0.846 0.985 1.034 0.962

NX 20 40 80 160 320
Order 0.803 1.062 0.973 0.975

Why do the convergence rates vary so much for the three
similar sequences?

Sandia
Sod G., : “A Survey of Several Finite Difference Methods for Systems of National i
SAND 2012-2563C Nonlinear Hyperbolic Conservation Laws”, J. Comput. Phys., 27, pp. 1-31 (1978). Laboratories



Sod Density Error Norms

SAND 2012-2563C

L1 density error

1073

L1 density error, Sod problem

SRS Effectlve—'n'x—"—l—() """""""" 3—33'—3 ———————

(Equal ddx, dx=0. 003, .,0. 1)

10'2 10‘1
dx

Sandia
Laboratosies



