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PARTITIONED METHODS 2

Complex applications often require coupling of different codes or 
separately meshed regions through non-matching interfaces 

Applications:

• Solid-solid interaction

• Transmission problems

• Fluid-structure interaction

We seek a method that:

• Enables independent solution of  each subdomain problem 

• Is explicit and non-iterative for time-dependent governing equations 

• Is accurate and stable for interfaces with non-matching grids 

Model	1 Model	2

Interface	Conditions

u1 = u2 on �

F1 = �F2 on �

u̇1 + L1u1 = f1 in ⌦1 u̇2 + L2u2 = f2 in ⌦2

⌦1

⌦2

!



PARTITIONED METHODS FOR INTERFACE COUPLING3

Direct estimation of flux/force 

• Subdomain solution used to approximate flux and project to other side 

• Mathematically equivalent to single step of  iterative method 

• Can lead to stability or accuracy problems 

• Jaiman et al. 2005; Dryja and Widlund 1998;

Lagrange multiplier approach 

• Lagrange multiplier is force/flux 

• Derived from monolithic formulation

• Not compatible with explicit time integration

• Mortar (Bernardi et al. 1994); FETI (Farhat and Roux 
1991); Other (Zheng et al. 2007;  Ross et al. 2009)

Existing approaches
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PARTITIONED METHODS FOR INTERFACE COUPLING4

Direct estimation of flux/force 

• Subdomain solution used to approximate flux and project to other side 

• Mathematically equivalent to single step of  iterative method 

• Can lead to stability or accuracy problems 

• Jaiman et al. 2005; Dryja and Widlund 1998;

Lagrange multiplier approach 

• Lagrange multiplier is force/flux 

• Derived from monolithic formulation

• Not compatible with explicit time integration

• Mortar (Bernardi et al. 1994); FETI (Farhat and Roux 
1991); Other (Zheng et al. 2007;  Ross et al. 2009)

We present a new partitioned method derived from a well-posed monolithic 
mixed formulation of the coupled problem that is stable, accurate, and 

compatible with explicit time stepping 

Existing approaches

Model	1 Model	2

Interface	Conditions

u1 = u2 on �

F1 = �F2 on �

u̇1 + L1u1 = f1 in ⌦1 u̇2 + L2u2 = f2 in ⌦2



MODEL PROBLEMS5

• Two domains connected by an interface 
• Non-matching grids, but spatially 

coincident 
• Same governing equations in each domain 

Linear solid-solid interaction

üi �r · �i(ui) = f i in ⌦i ⇥ [0, T ]

ui = gi on �i ⇥ [0, T ]

�i(ui) = �i(r · ui)I + 2µi"i(ui)

u1(x, t) = u2(x, t) and �1(x, t) · n� = �2(x, t) · n� on � ⇥ [0, T ]

Coupling Conditions



MODEL PROBLEMS6

• Two domains connected by an interface 
• Non-matching grids, but spatially 

coincident 
• Same governing equations in each domain 

Coupling Conditions

Advection-Diffusion Transmission Problem

'̇i �r · Fi('i) = fi in ⌦i ⇥ [0, T ]

'i = gi in �i ⇥ [0, T ]

Fi('i) = ✏ir'i � ui'i

'1(x, t) = '2(x, t) and F1(x, t) · n� = F2(x, t) · n� on � ⇥ [0, T ]



MONOLITHIC FORMULATION LINEAR ELASTICITY7

u1 2 S
h
1 ⇢ H

1
�1
(⌦1)

u2 2 S
h
2 ⇢ H

1
�2
(⌦2)

t 2 G
h
� ⇢ H

�1/2(�)

ü1 �r · �1(u1) = f1 in ⌦1

�1 · n1 = �t on �

ü2 �r · �2(u2) = f2 in ⌦2

�2 · n2 = t on �

u1 = u2 on �

M1ü1 +GT
1 t = f1(u1)

M2ü2 �GT
2 t = f2(u2)

G1u1 �G2u2 = 0

• System of  3 equations for 3 unknowns

• Neumann boundary conditions involve unknown contact force t

• Contact force continuity subsumed into the equations 

• Displacement discontinuity enforced explicitly

Mixed Formulation Discretize Semi-Discrete System 

Mass matrix 

Coupling matrix (Gi)kl = (Ni,k, ⌫l)�

(Mi)kl = (Ni,k, Ni,l)⌦

Force vector fi,k = �(rNi,k,�i)⌦ + (Ni,k,f i)⌦



LAGRANGE MULTIPLIER FORMULATION8

M1ü1 +GT
1 t = f1(u1)

M2ü2 �GT
2 t = f2(u2)

G1u1 �G2u2 = 0

• Index 2 Differential Algebraic Equation (DAE) 

• Lagrange multiplier is not an implicit function 
of  displacements 

• Not compatible with explicit treatment of  
interface force (t) 



LAGRANGE MULTIPLIER FORMULATION9

• Index 2 Differential Algebraic Equation (DAE) 

• Lagrange multiplier is not an implicit function 
of  displacements 

• Not compatible with explicit treatment of  
interface force (t) 

• Replace displacement continuity constraint on the 
interface with acceleration continuity constraint

• Under suitable assumptions new constraint implies 
the original 

• New system enables a fully explicit treatment of  t 
G1ü1 �G2ü2 = 0

M1ü1 +GT
1 t = f1(u1)

M2ü2 �GT
2 t = f2(u2)

G1u1 �G2u2 = 0

M1ü1 +GT
1 t = f1(u1)

M2ü2 �GT
2 t = f2(u2)

Conversion
To index 1 DAE

(u̇1,�(0) = u̇2,�(0), u1,�(0) = u2,�(0))



SOLVING FOR THE INTERFACE FORCE10

2

4
M1,� 0 GT

1

0 M2,� �GT
2

G1 �G2 0

3

5

2

4
ü1,�

ü2,�

t

3

5 =

2

4
f1,�(u1)

f2,�(u2)

0

3

5

Note: Solvability requires G1 and G2 to have full column ranks 

�
G1M

�1
1,�G

T
1 +G2M

�1
2,�G

T
2

�
t =

�
G1M

�1
1,� f1,�(u1)�G2M

�1
2,� f2,�(u2)

�

For lumped mass matrices, can directly separate the interface block

And solve for the interface force

to enforce contact conditions where it had been resolved by devising a specialized “forward increment”
explicit scheme [18].

However, unlike in contact problems, the components of the constraint matrices G1 and G2 in (4.2) do not
change with time. This presents a simpler alternative to amend (4.2) for standard explicit solution methods.
Specifically, di↵erentiating the first coupling condition in (3.4) twice in time yields a similar condition on
the accelerations, i.e.,

ü1(x, t) = ü2(x, t) on � ⇥ [0, T ]. (4.3)

Using this coupling condition in lieu of the original one transforms (4.2) into the following Index-1 DAE:

M1ü1 + G
T
1 t = f1(u1)

M2ü2 �G
T
2 t = f2(u2)

G1ü1 �G2ü2 = 0

. (4.4)

To ensure that (4.3) continues to imply the original constraint, from now on we assume that the initial data
are continuous along the interface, i.e.,

u0(x
�) = u0(x

+) and u̇0(x
�) = u̇0(x

+) 8x 2 �,

where x� and x+ denote left and right limits to interface points x, respectively.
We will use (4.4) to develop the partitioned MFR formulation for the LSSI problem. To that end it

will be convenient to rearrange the equations in this DAE by grouping the interface variables first and the
interior variables second. With this reordering (4.4) assumes the following 2 ⇥ 2 block form:

2

66666664

M1,� 0 G
T
1 M1,�0 0

0 M2,� �G
T
2 0 M2,�0

G1 �G2 0 0 0

M1,0� 0 0 M1,0 0

0 M2,0� 0 0 M2,0

3

77777775

2

66666664

ü1,�

ü2,�

t

ü1,0

ü2,0

3

77777775

=

2

66666664

f1,�(u1)

f2,�(u2)

0

f1,0(u1)

f2,0(u2)

3

77777775

(4.5)

The blocks Mi,� , i = 1, 2 in (4.5) are the Gramian matrices of the interface spaces G
h
i , the blocks Mi,�0

and Mi,0� represent the interactions between the interface S
h
i,� and interior S

h
i,0 parts of the finite element

space S
h
i,�, and the blocks Mi,0, i = 1, 2 are the Gramian matrices of the interior parts Sh

i,0. The splitting of
the force terms fi follows the same pattern. For pedagogical reasons we first present the MFR formulation
for lumped, i.e., diagonal mass matrices and then explain the additional steps necessary in the consistent
mass matrix case. To distinguish between the two cases we term these formulations MFR(L) and MFR(C),
respectively

4.1.1. The lumped mass matrix case
For lumped mass matrices the blocks Mi,�0 vanish and (4.5) assumes the form

2

666664

M1,� 0 G
T
1 0 0

0 M2,� �G
T
2 0 0

G1 �G2 0 0 0

0 0 0 M1,0 0

0 0 0 0 M2,0

3

777775

2

666664

ü1,�

ü2,�

t

ü1,0

ü2,0

3

777775
=

2

666664

f1,�(u1)

f2,�(u2)

0

f1,0(u1)

f2,0(u2)

3

777775
(4.6)

The diagonal structure of the lumped mass matrices greatly simplifies the makeup of the DAE. In particular,
the equations for the interior nodes form a system of ODEs that is completely decoupled from the equations
for the interface nodes. The latter are still an index-1 DAE but of a much smaller size. Thus, to develop

8

Linear system of equations



TIME DISCRETIZATION11

•Time discretization both discretizes the system in time and partitions the 
subdomain equations

•As long as time step is within the stability region of  the time integrator, the 
partitioned scheme is stable

•Not subject to splitting errors characteristic of  iterative partitioned methods

D̈n+1(ui) = (un+1
i � 2un

i + un�1
i )/�t2

4.1.3. Step 3: Reduction of the DAE to the underlying ODE

The assumption that @zg is non-singular is an integral part of the definition of a Hessenberg index-1
DAE. Thanks to this assumption, the algebraic equation in (4.8) defines the algebraic variable as an implicit
function of the di↵erential variables. The third IVR step uses this fact to expresses the Lagrange multiplier
in terms of ui, i = 1, 2 and then substitutes it back into (4.7). This transforms the DAE into the so-
called underlying ODE, which is a coupled system of ODEs for the unknown subdomain displacements. To
elucidate this step it is convenient to rearrange the equations in (4.7) by grouping the interface variables
first and the interior variables second. With this reordering the DAE assumes the following 2⇥2 block form:

2

66666664

M1,� 0 G
T
1 M1,�0 0

0 M2,� �G
T
2 0 M2,�0

G1 �G2 0 0 0

M1,0� 0 0 M1,0 0

0 M2,0� 0 0 M2,0

3

77777775

2

66666664

ü1,�

ü2,�

t

ü1,0

ü2,0

3

77777775

=

2

66666664

f1,�(u1)

f2,�(u2)

0

f1,0(u1)

f2,0(u2)

3

77777775

(4.9)

The blocks Mi,� and Mi,0, i = 1, 2 in (4.9) are the Gramian matrices of the interface S
h
i,� and interior S

h
i,0

parts of the finite element space S
h
i,�, respectively, whereas Mi,�0 and Mi,0� result from the interactions

between these part. Likewise, fi,�(ui) and fi,0(ui), i = 1, 2 correspond to the forces at the interface and
interior nodes, respectively. We first describe Step 3 for lumped, i.e., diagonal mass matrices and then
discuss the consistent mass matrix case.

Step 3 in the lumped mass matrix case. For lumped mass matrices the blocks Mi,� and Mi,0 are diagonal,
the blocks Mi,�0 are zero, and (4.9) assumes the following 2 ⇥ 2 block-diagonal form:

2

666664

M1,� 0 G
T
1 0 0

0 M2,� �G
T
2 0 0

G1 �G2 0 0 0

0 0 0 M1,0 0

0 0 0 0 M2,0

3

777775

2

666664

ü1,�

ü2,�

t

ü1,0

ü2,0

3

777775
=

2

666664

f1,�(u1)

f2,�(u2)

0

f1,0(u1)

f2,0(u2)

3

777775
. (4.10)

The block-diagonal structure of the matrix in (4.10) simplifies Step 3 because it splits the equations into a
pure ODE system for the interior displacements and a smaller Hessenberg index-1 DAE

2

64
M1,� 0 G

T
1

0 M2,� �G
T
2

G1 �G2 0

3

75

2

64
ü1,�

ü2,�

t

3

75 =

2

64
f1,�(u1)

f2,�(u2)

0

3

75 (4.11)

for the interface variables. As a result, the equation 0 = g(t, y, z) in (4.8) can be fully determined from the
smaller DAE (4.11) and is given by

0 = St � G1M
�1
1,� f1,�(u1) + G2M

�1
2,� f2,�(u2), (4.12)

where S = G1M
�1
1,�G

T
1 + G2M

�1
2,�G

T
2 . Proposition 4.1 implies that S is symmetric and positive definite and

so, (4.12) defines the Lagrange multiplier as an implicit function t(u1,u2) of the displacements. Step 3
concludes with the substitution of this function back into (4.10), which reduces this DAE to its underlying
system of ODEs:

2

6664

M1,� 0 0 0

0 M1,0 0 0

0 0 M2,� 0

0 0 0 M2,0

3

7775

2

6664

ü1,�

ü1,0

ü2,�

ü2,0

3

7775
=

2

6664

f1,�(u1) � G
T
1 t(u1,u2)

f1,0(u1)

f2,�(u2) + G
T
2 t(u1,u2)

f2,0(u2)

3

7775
. (4.13)

9

Given interface force (t) as a function of displacements, we have the 
underlying system of ODEs 

Discretize in time 

the acceleration in terms of the pressure in order to transform a Robin condition involving the acceleration
into one involving the pressure. In this context, the use of a time derivative of the kinematic constraint is
driven exclusively by the choice of a fractional scheme to solve the fluid equation and the need to derive a
boundary condition for the pressure equation. In contrast, IVR uses the algebraic equation in a Hessenberg
index-1 DAE to solve for the Lagrange multiplier in terms of the displacements in order to reduce the DAE
to its underlying ODE. In this context, di↵erentiation of the displacement constraint serves the purpose of
reducing the index of the original DAE.

4.1.4. Step 4: Time discretization and partitioning

An important aspect of the IVR approach, which underscores its non-iterative nature, is that explicit
time integration of the underlying ODEs (4.13) and (4.16) both discretizes them in time and “partitions”
the subdomain equations. Indeed, these ODEs can be written in the explicit form

ÿ1 = f1(t, y, z(y))

ÿ2 = f2(t, y, z(y))
(4.17)

in which the functions fi(t, y, z(y)) do not involve time derivatives of the di↵erential variables, and can be
computed independently at any previous time step. Consequently, the equations in (4.17) can be advanced
in time by an explicit time integrator independently from each other. Moreover, each equation can be
integrated by a di↵erent explicit scheme running at a di↵erent time step. However, for simplicity we will
illustrate the final IVR step using the same second central di↵erence

üi(t, x) ⇡ ui(t + �t, x) � 2ui(t, x) + ui(t � �t, x)

�t2

to discretize both equations in (4.13) and (4.16). Thus, we assume that un
i 2 S

h
i and un�1

i 2 S
h
i are given

finite element approximations of ui at tn, and tn�1 = tn � �t, respectively, and let un+1
i 2 S

h
i be the

unknown value of the finite element solution at tn + �t. We set D̈
n+1(ui) = (un+1

i � 2un
i + u

n�1
i )/�t

2.
To find un+1

i in the lumped mass case, i.e., (4.13) we proceed as follows:

IVR(L)-1 Determine internal and body forces:

• For i = 1, 2 use u
n
i to compute the force vector f

n
i,� := fi,�(un

i ).

IVR(L)-2 Determine the interaction force: Solve the Schur complement equation

�
G1M

�1
1,�G

T
1 + G2M

�1
2,�G

T
2

�
t
n =

�
G1M

�1
1,� f1,�(un

1 ) � G2M
�1
2,� f2,�(un

2 )
�
, (4.18)

for t
n and compute G

T
i t

n.

IVR(L)-3 : Update displacements: For i = 1, 2 solve the subdomain equations for u
n+1
i :


Mi,� 0

0 Mi,0

� 
D̈

n+1
ui,�

D̈
n+1

ui,0

�
=


f
n
i,� + (�1)iGT

i t
n

fi,0

�
. (4.19)

In the consistent mass matrix case (4.16) the IVR scheme requires an additional step to compute the
modified mass matrices and force vectors. Thus, to find un+1

i we proceed as follows:

IVR(C)-1a Determine modified mass matrices:

• For i = 1, 2 set Ai = Mi,� � Mi,�0M
�1
i,0 Mi,0� .

IVR(C)-1b Determine modified force: For i = 1, 2

• Use u
n
i to compute the internal and body force vector f

n
i := fi(un

i ).

11



IVR ALGORITHM12

1. Compute the force vectors

2. Estimate interface boundary condition

3. Update solution

fni := fi(u
n
i )

�
G1M

�1
1 GT

1 +G2M
�1
2 GT

2

�
tn =

�
G1M

�1
1 fn1,� �G2M

�1
2 fn2,�

�


Mi,� Mi,�0

Mi,0� Mi,0

� 
D̈n+1ui,�

D̈n+1ui,0

�
=


fni,� + (�1)iGT

i t
n

fni,0

�

In this formulation, the Lagrange multiplier can be expressed as an 
implicit function of the displacements. 

We refer to this scheme as Implicit Value Recovery (IVR)

(Peterson, Bochev, Kuberry 2018)



MONOLITHIC FORMULATION ADVECTION-DIFFUSION13

'̇1 �r · F1('1) = f1 in ⌦1

F1 · n1 = �� on �

'̈2 �r · F2('2) = f2 in ⌦2

F2 · n2 = � on �

'1 = '2 on �

Mixed Formulation Discretize Semi-Discrete System 

'1 2 S
h
1 ⇢ H

1
�1
(⌦1)

'2 2 S
h
2 ⇢ H

1
�2
(⌦2)

� 2 G
h
� ⇢ H

�1/2(�)

M1'̇1 +GT
1� = f1('1)

M2'̇2 �GT
2� = f2('2)

G1'1 �G2'2 = 0

Mass matrix 

Coupling matrix (Gi)kl = (Ni,k, ⌫l)�

(Mi)kl = (Ni,k, Ni,l)⌦

Force vector fi,k = �(rNi,k, Fi)⌦ + (Ni,k, fi)⌦



MONOLITHIC MIXED FORMULATION14

'̇1 �r · F1('1) = f1 in ⌦1

F1 · n1 = �� on �

'̈2 �r · F2('2) = f2 in ⌦2

F2 · n2 = � on �

'1 = '2 on �

Mixed Formulation Discretize Semi-Discrete System 

'1 2 S
h
1 ⇢ H

1
�1
(⌦1)

'2 2 S
h
2 ⇢ H

1
�2
(⌦2)

� 2 G
h
� ⇢ H

�1/2(�)

M1'̇1 +GT
1� = f1('1)

M2'̇2 �GT
2� = f2('2)

G1'1 �G2'2 = 0

M1'̇1 +GT
1� = f1('1)

M2'̇2 �GT
2� = f2('2)

G1'̇1 �G2'̇2 = 0

Conversion
To index 1 DAE

Mass matrix 

Coupling matrix (Gi)kl = (Ni,k, ⌫l)�

(Mi)kl = (Ni,k, Ni,l)⌦

Force vector fi,k = �(rNi,k, Fi)⌦ + (Ni,k, fi)⌦

4.2. An IVR formulation for transmission problems

Development of a partitioned IVR scheme for the model parabolic equation (3.7) follows along the same
lines as for the hyperbolic LSSI problem. In the present context S

h
i,� is a conforming subspace of the scalar

Sobolev space H
1
�(⌦i) and G

h
� ⇢ H

�1/2(�) is a (scalar) finite element space for the Lagrange multiplier. We
assume that, with the appropriate modifications to the norms to account for scalar fields, (4.1)–(4.2) hold
for G

h
� . For brevity we compress the first two IVR steps into a single one that performs both the spatial

discretization and the index reduction5. To that end we assume that the initial data in (3.8) is continuous
along the interface, i.e.,

'0(x
�) = '0(x

+) 8x 2 �,

and di↵erentiate the state continuity constraint in (3.9) to obtain the new coupling condition

'̇1(x, t) � '̇2(x, t) = 0 on � ⇥ [0, T ]. (4.23)

The compressed IVR step then yields the following semi-discrete in space mixed problem: seek {'h
1 ,'

h
2 ,�

h} 2
S
h
1,� ⇥ S

h
2,� ⇥ G

h
� such that

�
'̇
h
1 , 

h
1

�
0,⌦1

+
�
�
h
, 

h
1

�
0,�

=
�
f1, 

h
1

�
0,⌦1

�
�
F1('h

1 ), r h
1

�
0,⌦1

8 h
1 2 S

h
1,��

'̇
h
2 , 

h
2

�
0,⌦2

�
�
�
h
, 

h
2

�
0,�

=
�
f2, 

h
2

�
0,⌦2

�
�
F2('h

2 ), r h
2

�
0,⌦2

8 h
2 2 S

h
2,��

'̇
h
1 � '̇

h
2 , µ

h
�
0,�

= 0 8µ
h 2 G

h
� .

(4.24)

The mixed finite element problem (4.24) is equivalent to a DAE
2

4
M1 0 G

T
1

0 M2 �G
T
2

G1 �G2 0

3

5

2

4
'̇1

'̇2

�

3

5 =

2

4
f1('1)
f2('2)

0

3

5 (4.25)

for the finite element coe�cient vectors '1, '2 and �. Let y = ('1,'2) and z = �. It is straightforward to
see that with f(t, y, z) and g(t, y, z) defined as in Section 4.1.2, but in terms of the matrix blocks in (4.25),
the latter has the canonical Hessenberg index-1 form

ẏ = f(t, y, z)

0 = g(t, y, z)
. (4.26)

The proof of Proposition 4.1 also extends to the present case without a di�culty. Thus, as for the LSSI
problem, assumptions (4.1)–(4.2) are su�cient for @zg to be non-singular.

After grouping interface and internal variables (4.25) assumes the familiar 2 ⇥ 2 block matrix form

2

666664

M1,� 0 G
T
1 M1,�0 0

0 M2,� �G
T
2 0 M2,�0

G1 �G2 0 0 0

M1,0� 0 0 M1,0 0

0 M2,0� 0 0 M2,0

3

777775

2

666664

'̇1,�

'̇2,�

�

'̇1,0

'̇2,0

3

777775
=

2

666664

f1,�('1)

f2,�('2)

0

f1,0('1)

f2,0('2)

3

777775
. (4.27)

Although (4.27) and (4.9) correspond to di↵erent types of PDEs, their matrices have identical structures.
As a result, step 3 for the TP problem is identical to the one for the LSSI equations. We note that the
consistent mass matrix case is more relevant for the TP problem because (3.7) requires stabilization in the
advection-dominated regime. For time dependent problems, residual-based stabilization methods such as
SUPG [38] contribute terms to the consistent mass matrix, turning it into an unsymmetric one; see Section
6. This makes traditional mass lumping unsuitable for the stabilized equations.

5The second step is necessary because finite element discretization of (3.11) also results in a Hessenberg index-2 DAE.
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SOLVING FOR THE INTERFACE FLUX15

For consistent mass matrices, the interface system is

And the interface flux

where

This pair, along with (4.13) gives the semi-implicit MFR(C) formulation for the consistent mass matrix case.
For completeness, we state the associated explicit partitioned MFR(C) scheme below.
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• Compute the generalized mass matrix Ai = Mi,� �Mi,�0M
�1
i,0 Mi,0� .

• Use u
n
i compute the force vector f
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i ).

• Use f
n
i to compute the generalized force vector bfni,� = f

n
i,� �Mi,�0M

�1
i,0 f

n
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MFR(C)-2 Estimate traction force: form the Schur complement system
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⌘
. (4.15)

solve for t
n and compute G

T
i t

n.

MFR(C)-3 : Update displacements: for i = 1, 2 solve the subdomain systems for u
n+1
i :


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4.2. An MFR formulation for transmission problems

Development of an explicit partitioned MFR formulation for the model parabolic equation (3.7) follows
along the same lines as for the hyperbolic LSSI problem. As in that case, finite element discretization of the
standard mixed form (3.11) would result in a Hessenberg Index-2 DAE. Accordingly, we start by replacing
the state continuity condition in (3.9) by its time derivative, i.e.,
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To ensure that (4.17) implies the original constraint, we assume that the initial data in (3.8) is continuous
along the interface, i.e.,
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The semi-discrete problem (4.18) is equivalent to the following Index-1 DAE:
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5 . (4.19)

With a suitable reordering of (4.19) in terms of interior nodes and interface nodes system (4.19) assumes
the following form:

2

666664

M1,� 0 G
T
1 M1,�0 0

0 M2,� �G
T
2 0 M2,�0

G1 �G2 0 0 0

M1,0� 0 0 M1,0 0

0 M2,0� 0 0 M2,0

3

777775

2

666664

'̇1,�

'̇2,�

�

'̇1,0

'̇2,0

3

777775
=

2

666664

f1,�('1)

f2,�('2)

0

f1,0('1)

f2,0('2)

3

777775
. (4.20)
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Linear system of equations
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TIME DISCRETIZATION16

Given interface flux as a function of subdomain state, we have the 
underlying system of ODEs 

We conclude this section with a simple example of an IVR(C) method for (3.7), obtained by using the
same forward Euler scheme for both equations in the fourth step of the IVR formulation. Let '

n
i 2 S

h
i,� be

a finite element approximation of the solution 'i at the old time step tn, and '
n+1
i 2 S

h
i,� be the unknown

solution at the new time step tn + �t. To find '
n+1
i 2 S

h
i,� we perform steps IVR(C)-1a, IVR(C)-1b and

IVR(C)-2 in Section 4.1.4, with the caveat that the modified mass matrices Ai and force vectors efni,� are
now computed using the blocks from (4.27). Then we solve


Mi,� Mi,�0

Mi,0� Mi,0

� 
Ḋ

n+1'i,�

Ḋ
n+1'i,0

�
=


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i = 1, 2; (4.28)

where Ḋ
n+1'i = ('n+1

i � 'n
i )/�t.

5. Well-posedness of the IVR formulation

This section establishes su�cient conditions for @zg, i.e., the Schur complement S to be non-singular. To
this end, we exploit the connection between the matrices in (4.9) and (4.27) and mixed variational problems,
in order to apply Brezzi’s general saddle-point theory [39]. Because the analysis is essentially the same for
the LSSI and TP cases we provide details only for (4.9).

Let B(·; ·) denote the mixed bilinear form corresponding to the terms on the left hand side of (4.3), i.e.,

B(uh
1 , uh

2 , th; vh
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2 ; th) + b(uh
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where
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1 )0,⌦1 + (uh
2 , vh

2 )0,⌦2 and b(vh
1 , vh

2 ; th) =
�
vh

1 � vh
2 , th

�
0,�

.

Obviously, the matrix in (4.9) is an algebraic representation of this form. As a result, every property of
B(·; ·) and its component forms translates into a specific property of this matrix and its blocks.

The Brezzi theory allows one to establish the well-posedness of B(·; ·) by checking two separate conditions
on the component forms a(·, ·) and b(·, ·). To state these conditions we regard a(·; ·) as a form acting on
X ⇥ X, where X = S

h
1,� ⇥ S

h
2,� is equipped with the norm |||·||| defined in (4.2). Likewise, we view b(·; ·) as a

form acting on X ⇥ Y where Y = G
h
� is equipped with the norm k · kY := k · k0,� . The first Brezzi condition

requires a(·, ·) to be coercive on the kernel of b(·; ·) in X, while the second one requires that

sup
{vh

1 ;vh
2 }2X⇥X

b(vh
1 , vh

2 ; sh)������vh
1 ; vh

2

������ � �kshkY (5.1)

with a mesh-independent constant �. The Brezzi theory asserts that if these two conditions are met then
B(·, ·) is weakly coercive with a mesh-independent constant. The first condition is trivially satisfied because

a(vh
1 , vh

2 ; vh
1 , vh

2 ) = kvh
1 k2

0,⌦1
+ kvh

2 k2
0,⌦2

=
������vh

1 ; vh
2

������2

and so, a(·; ·) is coercive on all of X. Thus, application of the abstract Brezzi theory and showing that
B(·, ·) is weakly coercive reduces to checking the inf-sup condition (5.1).

Lemma 5.1. Assume that (4.1)–(4.2) hold for the Lagrange multiplier space G
h
� . Then the form b(·; ·)

satisfies the inf-sup condition (5.1).
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Discretize in time and partition the subdomain equations

The underlying ODE system (4.13) yields the exact same displacements as its parent DAE (4.10). It follows
that Step 3 does not introduce any errors. We note that the equations in (4.13) remain coupled through the
interaction force t(u1,u2).

Step 3 in the consistent mass matrix case. We now examine the reduction of (4.9) to its underlying system of
ODEs for consistent mass matrices. In this case the interface and interior variables in (4.9) remain coupled
through the o↵-diagonal blocks Mi,�0 and Mi,0� and the algebraic function g(t, y, z) in (4.8) has a more
complicated form. To find this function we start with a “static condensation” of the interior variables by
performing a block Gausian elimination in (4.9) with the (2, 2) block as a pivot. This results in the following
Hessenberg index-1 DAE for the interface variables

2
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A1 0 G
T
1

0 A2 �G
T
2

G1 �G2 0

3

775

2

664

ü1,�

ü2,�

t

3

775 =

2

664

ef1,�(u1)

ef2,�(u2)

0

3

775 , (4.14)

which is similar to (4.11) but involves modified mass matrices and force vectors given by

A1 = M1,� � M1,�0M
�1
1,0M1,0� , A2 = M2,� � M2,�0M

�1
2,0M2,0� ,

ef1,�(u1) = f1,�(u1) � M1,�0M
�1
1,0 f1,0(u1) and ef2,�(u2) = f2,�(u2) � M2,�0M

�1
2,0 f2,0(u2),

respectively. As in the lumped mass case, the algebraic equation 0 = g(t, y, z) can now be fully determined
from the smaller DAE (4.14) and is given by

0 = St � G1A
�1
1

ef1,�(u1) + G2A
�1
2

ef2,�(u2), (4.15)

where S = G1A
�1
1 G

T
1 +G2A

�1
2 G

T
2 . Proposition 4.1 asserts that S is symmetric and positive definite and so,

(4.15) defines an implicit function t(u1,u2). Substitution of this function into (4.9) yields the underlying
system of ODEs
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f2,0('2)

3

7775
(4.17)

and completes step 3 for the consistent mass matrix case. This system yields the same displacements as its
parent DAE (4.9), i.e., Step 3 does not introduce any errors in this case as well.

Remark 4.2. Time derivatives of standard interface conditions also appear in some partitioned schemes
having an iterative basis. However, the reasons prompting their use in such schemes on the one hand and
IVR on the other hand di↵er fundamentally. For example, the FSI method in [10] defines characteristic-
based Robin interface conditions for the fluid and the structure by taking weighted averages of the standard
interface conditions4 along specific directions across the interface. This method advances the fluid equation
in time by a fractional step method, which involves solving a Poisson equation for the pressure. The latter

4For an FSI formulation these comprise a kinematic and dynamic condition enforcing velocity and force equilibriums at the
interface, respectively.
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IVR ALGORITHM – CONSISTENT MASS MATRICES17

1a.  Compute the force vectors

1b.  Compute generalized mass matrices and generalized force vectors

2. Estimate interface boundary condition

3. Update solution
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n+1'i = ('n+1

i � 'n
i )/�t.

5. Well-posedness of the IVR formulation

This section establishes su�cient conditions for @zg, i.e., the Schur complement S to be non-singular. To
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RELATIONSHIP TO OTHER METHODS18

• Hybrid methods (Brezzi and Fortin 1991; Cockburn et al. 2009) and FETI 
methods (Farhat and Roux 1991; Farhat et al. 1994)

•These systems involve Schur complements of  subdomain stiffness matrices 
rather than subdomain mass matrices

•Typically used for domain decomposition rather than partitioning

•Solve for Lagrange multipliers then back solve for the displacements

• Use f
n
i to compute the modified force vector efni,� = f

n
i,� � Mi,�0M

�1
i,0 f

n
i,0.

IVR(C)-2 Determine the interaction force: solve the Schur complement system

�
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�1
1 G

T
1 + G2A

�1
2 G

T
2

�
t
n =

⇣
G1A

�1
1

efn1,� � G2A
�1
2

efn2,�
⌘

. (4.20)

for t
n and compute G

T
i t

n.

IVR(C)-3 : Update displacements: for i = 1, 2 solve the subdomain equations for u
n+1
i :


Mi,� Mi,�0

Mi,0� Mi,0

� 
D̈

n+1
ui,�

D̈
n+1

ui,0

�
=


f
n
i,� + (�1)iGT

i t
n

f
n
i,0

�
. (4.21)

A few comments about the accuracy and stability of the fully discrete partitioned IVR formulation are
now in order. The partitioned equations (4.19) and (4.21) are simply an explicit time discretization of an
underlying ODE having the structure of (4.17). As a result, the temporal accuracy and stability of (4.19)
and (4.21) are governed solely by the accuracy and stability of the explicit scheme employed, and are not
subject to additional stability considerations as in traditional partitioned schemes. As long as the time step
is within the stability region of the explicit time integrator, the partitioned IVR formulation is guaranteed
to be stable and accurate without any additional cycles and/or acceleration techniques.

The non-iterative nature of IVR also means that the only error introduced at step four is the time
discretization error associated with the particular explicit scheme employed and that IVR is not subject
to additional splitting errors characteristic of partitioned methods having an iterative basis. However, it is
important to point out that in the presence of time discretization errors the alternative interface condition
(4.5) implies the original one only up to the order of the time integrator. If left unchecked, accumulation
of time discretization errors can potentially lead to a separation between the subdomains for long-term
integration. Although we have not observed such a separation in our numerical tests, one simple option is
to check for interface separation every few time steps and restore spatial coincidence of the interfaces.

Remark 4.3. Equations (4.18) and (4.20) resemble the type of linear systems that one often encounters
in hybrid [33, 34] and domain decomposition methods such as FETI [35, 21]. These methods use block
elimination to obtain a similar equation for a Lagrange multiplier

�
G1K

�1
1 G

T
1 + G2K

�1
2 G

T
2

�
t =

�
G1K

�1
1 f1 � G2K

�1
2 f2

�
, (4.22)

where Ki are subdomain sti↵ness matrices and fi are body forces. However, there are important di↵erences
between this system and the IVR systems (4.18) and (4.20), and manner in which they are used by domain
decomposition and IVR methods, respectively. First, the matrix in (4.22) is a Schur complement of the
subdomain sti↵ness matrices, whereas (4.18) and (4.20) are Schur complements of the subdomain mass
matrices. In Section 5.0.1 we show that their condition numbers are bounded by a constant, which makes
(4.18) and (4.20) much easier to solve than (4.22). Second, domain decomposition methods use (4.22) as a
way to improve computational e�ciency. Instead of solving a larger problem in terms of the displacements,
these methods solve the smaller SPD system (4.22) for the Lagrange multiplier and then use it to backsolve
for the displacements; see [35, p.1208, Eq. (7)]. This is possible because the right hand side in (4.22) depends
only on the given body force. In contrast, the IVR systems (4.18), (4.20) correspond to the algebraic equation
0 = g(t, y, z) in the Hessenberg index-1 DAE (4.8), and are used to define the Lagrange multiplier as an
implicit function of the subdomain displacements.

Finally, we note that systems with the structure of (4.18), (4.20) and (4.22) also appear in the range-
space method for solving Quadratic Programming problems; see, e.g., [36, p.289] or [32, Algorithm 10.3,
p.546]. This is not coincidental and is rooted in the connection between mixed variational formulations and
constrained optimization problems; see [37, Section 1.2.4].
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Other methods lead to similar linear systems

�
G1M

�1
1,�G

T
1 +G2M

�1
2,�G

T
2

�
t =

�
G1M

�1
1,� f1,�(u1)�G2M

�1
2,� f2,�(u2)

�
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M1ü1 +GT
1 t = f1(u1)

M2ü2 �GT
2 t = f2(u2)

Consider semi-discrete equations for the linear elastic case

G1ü1 �G2ü2 = 0

B(üh
1 , ü

h
2 , t

h;vh
1 ,v

h
2 , s

h) := a(üh
1 , ü

h
2 ;v

h
1 ,v

h
2 ) + b(vh

1 ,v
h
2 ; t

h) + b(üh
1 , ü

h
2 ; s

h)

We can denote a mixed bilinear form corresponding to the terms on the 
left hand side as 

where
a(üh

1 , ü
h
2 ;v

h
1 ,v

h
2 ) = (üh

1 ,v
h
1 )0,⌦1 + (üh

2 ,v
h
2 )0,⌦2

{uh
1 ,u

h
2 , t

h} 2 Sh
1,� ⇥ Sh

2,� ⇥Gh
� {vh

1 ,v
h
2 , s

h} 2 Sh
1,� ⇥ Sh

2,� ⇥Gh
�

b(vh
1 ,v

h
2 ; t

h) = (vh
1 � vh

2 , t
h)0,�
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Well-posedness of          requires            to be coercive and          to    
satisfy an inf-sup conditions

B(·, ·) a(·, ·) b(·, ·)

Can easily show that           is coercive

We conclude this section with a simple example of an IVR(C) method for (3.7), obtained by using the
same forward Euler scheme for both equations in the fourth step of the IVR formulation. Let '

n
i 2 S

h
i,� be

a finite element approximation of the solution 'i at the old time step tn, and '
n+1
i 2 S

h
i,� be the unknown

solution at the new time step tn + �t. To find '
n+1
i 2 S

h
i,� we perform steps IVR(C)-1a, IVR(C)-1b and

IVR(C)-2 in Section 4.1.4, with the caveat that the modified mass matrices Ai and force vectors efni,� are
now computed using the blocks from (4.27). Then we solve


Mi,� Mi,�0

Mi,0� Mi,0

� 
Ḋ

n+1'i,�

Ḋ
n+1'i,0

�
=


f
n
i,� + (�1)iGT

i �
n

f
n
i,0

�
i = 1, 2; (4.28)

where Ḋ
n+1'i = ('n+1

i � 'n
i )/�t.

5. Well-posedness of the IVR formulation

This section establishes su�cient conditions for @zg, i.e., the Schur complement S to be non-singular. To
this end, we exploit the connection between the matrices in (4.9) and (4.27) and mixed variational problems,
in order to apply Brezzi’s general saddle-point theory [39]. Because the analysis is essentially the same for
the LSSI and TP cases we provide details only for (4.9).

Let B(·; ·) denote the mixed bilinear form corresponding to the terms on the left hand side of (4.3), i.e.,

B(uh
1 , uh

2 , th; vh
1 , vh

2 , sh) := a(uh
1 , uh

2 ; vh
1 , vh

2 ) + b(vh
1 , vh

2 ; th) + b(uh
1 , uh

2 ; sh)

where

a(uh
1 , uh

2 ; vh
1 , vh

2 ) = (uh
1 , vh

1 )0,⌦1 + (uh
2 , vh

2 )0,⌦2 and b(vh
1 , vh

2 ; th) =
�
vh

1 � vh
2 , th

�
0,�

.

Obviously, the matrix in (4.9) is an algebraic representation of this form. As a result, every property of
B(·; ·) and its component forms translates into a specific property of this matrix and its blocks.

The Brezzi theory allows one to establish the well-posedness of B(·; ·) by checking two separate conditions
on the component forms a(·, ·) and b(·, ·). To state these conditions we regard a(·; ·) as a form acting on
X ⇥ X, where X = S

h
1,� ⇥ S

h
2,� is equipped with the norm |||·||| defined in (4.2). Likewise, we view b(·; ·) as a

form acting on X ⇥ Y where Y = G
h
� is equipped with the norm k · kY := k · k0,� . The first Brezzi condition

requires a(·, ·) to be coercive on the kernel of b(·; ·) in X, while the second one requires that

sup
{vh

1 ;vh
2 }2X⇥X

b(vh
1 , vh

2 ; sh)������vh
1 ; vh

2

������ � �kshkY (5.1)

with a mesh-independent constant �. The Brezzi theory asserts that if these two conditions are met then
B(·, ·) is weakly coercive with a mesh-independent constant. The first condition is trivially satisfied because

a(vh
1 , vh

2 ; vh
1 , vh

2 ) = kvh
1 k2

0,⌦1
+ kvh

2 k2
0,⌦2

=
������vh

1 ; vh
2

������2

and so, a(·; ·) is coercive on all of X. Thus, application of the abstract Brezzi theory and showing that
B(·, ·) is weakly coercive reduces to checking the inf-sup condition (5.1).

Lemma 5.1. Assume that (4.1)–(4.2) hold for the Lagrange multiplier space G
h
� . Then the form b(·; ·)

satisfies the inf-sup condition (5.1).
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a(·, ·)

algebraic variable as an implicit function of the di↵erential variables. This fact is at the core of the IVR
approach and is used in step 3 to eliminate the Lagrange multiplier and to obtain the underlying ODE
system in terms of the subdomain displacements only. The solution of this system can be advanced in time
independently on each subdomain by using explicit time integration. In other words, an explicit scheme both

discretizes and decouples the monolithic ODE system. This is the final, fourth step in the IVR formulation,
which highlights its non-iterative character and the absence of splitting errors.

4.1. An IVR formulation for solid-solid interaction problems

This section describes the four steps of the IVR formulation for the LSSI problem (3.1). At each step
we identify the type of errors, if any, that the step introduces into the formulation.

4.1.1. Step 1: Spatial discretization of the mixed problem

To discretize the mixed problem (3.6) in space we approximate subdomain displacements by the conform-
ing finite element spaces S

h
i,� and introduce a conforming finite element subspace G

h
� ⇢ H

�1/2(�), spanned

by a basis {⌫r}, for the approximation of the Lagrange multiplier. Regarding G
h
� we assume that (i) it is

defined on a uniformly regular partition �h of the interface � into finite elements with characteristic size h� ,
and (ii) G

h
� has the following property:

There exists an operator Q : G
h
� 7! S

h
1,� ⇥ S

h
2,�, such that

kshk0,�  C1

�
sh

, (Qsh)1 � (Qsh)2
�
0,�

8sh 2 G
h
� , and (4.1)

������Q(sh)
������  C2h

↵
�ksk0,� , ↵ � 0 (4.2)

where |||·|||2 = k · k2
0,⌦1

+ k · k2
0,⌦2

and C1, C2 are mesh-independent constants.

Step 1 concludes with the restriction of (3.6) to these finite element spaces. This yields the following
semi-discrete in space mixed problem: seek {uh

1 , uh
2 , th} 2 S

h
1,� ⇥ S

h
2,� ⇥ G

h
� such that

(üh
1 , vh

1 )0,⌦1 +
�
th, vh

1

�
0,�

= (f1, vh
1 )0,⌦1 � (�1(uh

1 ), "(vh
1 ))0,⌦1 8vh

1 2 S
h
1,�

(üh
2 , vh

2 )0,⌦2 �
�
th, vh

2

�
0,�

= (f2, vh
2 )0,⌦2 � (�2(uh

2 ), "(vh
2 ))0,⌦2 8vh

2 2 S
h
2,�

�
uh

1 � uh
2 , sh

�
0,�

= 0 8sh 2 G
h
�

. (4.3)

Accordingly, the only error introduced at Step 1 is the spatial error due to the approximation of the
displacements and the Lagrange multiplier by finite element spaces.

The mixed problem (4.3) is equivalent to a system of Di↵erential Algebraic Equations (DAEs)

M1ü1 + G
T
1 t = f1(u1)

M2ü2 � G
T
2 t = f2(u2)

G1u1 � G2u2 = 0

(4.4)

for the coe�cient vectors u1, u2 and t of the finite element displacement fields uh
1 , uh

2 and the Lagrange
multiplier th, respectively. In this system Mi, i = 1, 2 are the Gramian (mass) matrices of the subdomain
spaces S

h
i,�, and Gi, i = 1, 2 are rectangular matrices with elements given by

(Gi)qr = (Ni,q, ⌫r)0,� , q = 1, . . . , ni, r = 1, . . . , n� ; i = 1, 2 ,

where n� = |Gh
� | is the dimension of the Lagrange multiplier space. The force terms fi(ui), i = 1, 2 in (4.4)

include both the action of the body force fi and the internal forces �i(ui).

7

(1)

(2)

With the following conditions on the Lagrange multiplier space, can show 
that           satisfies the inf-sup conditionb(·, ·)
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Corollary: Assume that      satisfies conditions (1) and (2), then the matrix in (3) 
is uniformly bounded and its inverse is uniformly bounded in the mesh size. 
Furthermore, the block matrix                          has full column rank.

Gh
�

to enforce contact conditions where it had been resolved by devising a specialized “forward increment”
explicit scheme [18].

However, unlike in contact problems, the components of the constraint matrices G1 and G2 in (4.2) do not
change with time. This presents a simpler alternative to amend (4.2) for standard explicit solution methods.
Specifically, di↵erentiating the first coupling condition in (3.4) twice in time yields a similar condition on
the accelerations, i.e.,

ü1(x, t) = ü2(x, t) on � ⇥ [0, T ]. (4.3)

Using this coupling condition in lieu of the original one transforms (4.2) into the following Index-1 DAE:

M1ü1 + G
T
1 t = f1(u1)

M2ü2 �G
T
2 t = f2(u2)

G1ü1 �G2ü2 = 0

. (4.4)

To ensure that (4.3) continues to imply the original constraint, from now on we assume that the initial data
are continuous along the interface, i.e.,

u0(x
�) = u0(x

+) and u̇0(x
�) = u̇0(x

+) 8x 2 �,

where x� and x+ denote left and right limits to interface points x, respectively.
We will use (4.4) to develop the partitioned MFR formulation for the LSSI problem. To that end it

will be convenient to rearrange the equations in this DAE by grouping the interface variables first and the
interior variables second. With this reordering (4.4) assumes the following 2 ⇥ 2 block form:

2

66666664

M1,� 0 G
T
1 M1,�0 0

0 M2,� �G
T
2 0 M2,�0

G1 �G2 0 0 0

M1,0� 0 0 M1,0 0

0 M2,0� 0 0 M2,0

3

77777775

2

66666664

ü1,�

ü2,�

t

ü1,0

ü2,0

3

77777775

=

2

66666664

f1,�(u1)

f2,�(u2)

0

f1,0(u1)

f2,0(u2)

3

77777775

(4.5)

The blocks Mi,� , i = 1, 2 in (4.5) are the Gramian matrices of the interface spaces G
h
i , the blocks Mi,�0

and Mi,0� represent the interactions between the interface S
h
i,� and interior S

h
i,0 parts of the finite element

space S
h
i,�, and the blocks Mi,0, i = 1, 2 are the Gramian matrices of the interior parts Sh

i,0. The splitting of
the force terms fi follows the same pattern. For pedagogical reasons we first present the MFR formulation
for lumped, i.e., diagonal mass matrices and then explain the additional steps necessary in the consistent
mass matrix case. To distinguish between the two cases we term these formulations MFR(L) and MFR(C),
respectively

4.1.1. The lumped mass matrix case
For lumped mass matrices the blocks Mi,�0 vanish and (4.5) assumes the form

2

666664

M1,� 0 G
T
1 0 0

0 M2,� �G
T
2 0 0

G1 �G2 0 0 0

0 0 0 M1,0 0

0 0 0 0 M2,0

3

777775

2

666664

ü1,�

ü2,�

t

ü1,0

ü2,0

3

777775
=

2

666664

f1,�(u1)

f2,�(u2)

0

f1,0(u1)

f2,0(u2)

3

777775
(4.6)

The diagonal structure of the lumped mass matrices greatly simplifies the makeup of the DAE. In particular,
the equations for the interior nodes form a system of ODEs that is completely decoupled from the equations
for the interface nodes. The latter are still an index-1 DAE but of a much smaller size. Thus, to develop

8

(3)

GT = (GT
1 , G

T
2 )

Lemma: Assume that      satisfies conditions (1) and (2), then          satisfies the 
inf-sup condition 

We conclude this section with a simple example of an IVR(C) method for (3.7), obtained by using the
same forward Euler scheme for both equations in the fourth step of the IVR formulation. Let '

n
i 2 S

h
i,� be

a finite element approximation of the solution 'i at the old time step tn, and '
n+1
i 2 S

h
i,� be the unknown

solution at the new time step tn + �t. To find '
n+1
i 2 S

h
i,� we perform steps IVR(C)-1a, IVR(C)-1b and

IVR(C)-2 in Section 4.1.4, with the caveat that the modified mass matrices Ai and force vectors efni,� are
now computed using the blocks from (4.27). Then we solve


Mi,� Mi,�0

Mi,0� Mi,0

� 
Ḋ

n+1'i,�

Ḋ
n+1'i,0

�
=


f
n
i,� + (�1)iGT

i �
n

f
n
i,0

�
i = 1, 2; (4.28)

where Ḋ
n+1'i = ('n+1

i � 'n
i )/�t.

5. Well-posedness of the IVR formulation

This section establishes su�cient conditions for @zg, i.e., the Schur complement S to be non-singular. To
this end, we exploit the connection between the matrices in (4.9) and (4.27) and mixed variational problems,
in order to apply Brezzi’s general saddle-point theory [39]. Because the analysis is essentially the same for
the LSSI and TP cases we provide details only for (4.9).

Let B(·; ·) denote the mixed bilinear form corresponding to the terms on the left hand side of (4.3), i.e.,

B(uh
1 , uh

2 , th; vh
1 , vh

2 , sh) := a(uh
1 , uh

2 ; vh
1 , vh

2 ) + b(vh
1 , vh

2 ; th) + b(uh
1 , uh

2 ; sh)

where

a(uh
1 , uh

2 ; vh
1 , vh

2 ) = (uh
1 , vh

1 )0,⌦1 + (uh
2 , vh

2 )0,⌦2 and b(vh
1 , vh

2 ; th) =
�
vh

1 � vh
2 , th

�
0,�

.

Obviously, the matrix in (4.9) is an algebraic representation of this form. As a result, every property of
B(·; ·) and its component forms translates into a specific property of this matrix and its blocks.

The Brezzi theory allows one to establish the well-posedness of B(·; ·) by checking two separate conditions
on the component forms a(·, ·) and b(·, ·). To state these conditions we regard a(·; ·) as a form acting on
X ⇥ X, where X = S

h
1,� ⇥ S

h
2,� is equipped with the norm |||·||| defined in (4.2). Likewise, we view b(·; ·) as a

form acting on X ⇥ Y where Y = G
h
� is equipped with the norm k · kY := k · k0,� . The first Brezzi condition

requires a(·, ·) to be coercive on the kernel of b(·; ·) in X, while the second one requires that

sup
{vh

1 ;vh
2 }2X⇥X

b(vh
1 , vh

2 ; sh)������vh
1 ; vh

2

������ � �kshkY (5.1)

with a mesh-independent constant �. The Brezzi theory asserts that if these two conditions are met then
B(·, ·) is weakly coercive with a mesh-independent constant. The first condition is trivially satisfied because

a(vh
1 , vh

2 ; vh
1 , vh

2 ) = kvh
1 k2

0,⌦1
+ kvh

2 k2
0,⌦2

=
������vh

1 ; vh
2

������2

and so, a(·; ·) is coercive on all of X. Thus, application of the abstract Brezzi theory and showing that
B(·, ·) is weakly coercive reduces to checking the inf-sup condition (5.1).

Lemma 5.1. Assume that (4.1)–(4.2) hold for the Lagrange multiplier space G
h
� . Then the form b(·; ·)

satisfies the inf-sup condition (5.1).
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�

Therefore,          is weakly coercive with a mesh-independent constantB(·, ·)

b(·, ·)

4.1.2. Step 2: Index reduction

The DAE (4.4) can be transformed into a Hessenberg index-2 form (1.1); see [19, p.238]. Such DAE’s
include hidden constraints and are more di�cult to solve numerically. In the context of IVR though,
the main problem with this DAE structure is that the algebraic equation in (4.4) does not define the
Lagrange multiplier as an implicit function of the displacements. To resolve this issue, we reduce (4.4) to a
Hessenberg index-1 form by replacing the constraint in (4.4) with an alternative one enforcing continuity of
the accelerations along the interface, i.e.,

ü1(x, t) = ü2(x, t) on � ⇥ [0, T ]. (4.5)

To ensure that (4.5) continues to imply the original constraint, from now on we assume that the initial data
are continuous along the interface, i.e.,

u0(x
�) = u0(x

+) and u̇0(x
�) = u̇0(x

+) 8x 2 �, (4.6)

where x� and x+ denote left and right limits to interface points x, respectively.
Using (4.5) in lieu of the original coupling condition transforms (4.4) into the following DAE:

M1ü1 + G
T
1 t = f1(u1)

M2ü2 � G
T
2 t = f2(u2)

G1ü1 � G2ü2 = 0

. (4.7)

To confirm that (4.7) is indeed a Hessenberg index-1 DAE let y = (u1,u2) denote the di↵erential variable,
z = t the algebraic variable,

f(t, y, z) =

0

@
M

�1
1

�
f1(u1) � G

T
1 t

�

M
�1
2

�
f2(u2) + G

T
2 t

�

1

A , and g(t, y, z) = St � G1M
�1
1 f1(u1) + G2M

�1
2 f2(u2)

where S = G1M
�1
1 G

T
1 + G2M

�1
2 G

T
2 . In terms of this notation problem (4.7) assumes the form

ÿ = f(t, y, z)

0 = g(t, y, z)
. (4.8)

It remains to show that Jacobian @zg = S is nonsingular for all t.

Proposition 4.1. Assume that the Lagrange multiplier space G
h
� satisfies conditions (4.1)–(4.2). Then the

matrix S is symmetric and positive definite.

Proof. The matrix S is the Schur complement of the symmetric and positive definite block diagonal matrix
M = (M1, M2). Thus, S will be symmetric and positive definite if G

T = (GT
1 , G

T
2 ) has a full column rank;

see [32, Appendix 5.5]. Corollary 5.2 asserts that the latter is true provided the Lagrange multiplier space
satisfies (4.1)–(4.2). This completes the proof.

Assumption (4.6) implies that problem (4.7) is completely equivalent to (4.4), i.e., the second step in the
IVR formulation does not introduce any errors.

Remark 4.1. Contact formulations based on Lagrange multipliers lead to similar Hessenberg index-2 DAEs.
The latter are deemed incompatible with explicit time integration methods because they render the in-
cremental equation of motion singular [20]. This incompatibility can be traced back to the fact that the
algebraic constraint in a Hessenberg index-2 DAE does not relate the algebraic and di↵erential variables. In
[20] this issue is resolved by relating the displacement constraint at tn+1 with the Lagrange multiplier at tn.
The index reduction step obviates the need for such a desynchronization in an IVR formulation. However,
this step may not be appropriate for contact problems where assumptions (4.6) are not necessarily valid.
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S is invertible



LAGRANGE MULTIPLIER SPACE22

IVR(1)

•Following mortar method approach, choose one of  
the interface partitions to define the Lagrange 
multiplier space

•For this choice we can always find an operator Q to 
satisfy conditions (1) and (2)

•Results in a formulation that satisfies the inf-sup 
condition 

•Additionally, we can show that for this choice the 
condition number of  S is bounded

Assume that               and let                         

If  

If  

IVR(2)

h1  h2 ⇢ = h2/h1 > 1.

Gh
� = Gh

1

Gh
� = Gh

2

(S̃)  C⇢d�1

(S̃)  C⇢d



ALTERNATIVE LAGRANGE MULTIPLIER SPACE23

IVR(12)•Drawback of  using the previous Lagrange 
multiplier spaces is consistency errors

•Expect to converge optimally, but not pass a 
patch test

•As an alternative, considered the use of  a 
common refinement to define the Lagrange 
multiplier space

•No proof  of  inf-sup stability for this space, but 
numerical results indicate that it preserves linear 
fields

•Practical challenges include floating point errors 
and mesh quality for certain configurations



LSSI PATCH TEST

u(x) = (3x+ 5y, 8x� 4.3y)

�i = 400 and µi = 400

Error Norm IVR(L1) IVR(L2) IVR(L12)
L
2(0, T ;L2(⌦)) 5.166e-04 1.468e-06 2.223e-15

L
2(0, T ;H1(⌦)) 1.683e-02 2.679e-05 3.412e-14

24

üi �r · �i(ui) = f i

Manufactured Solution

�i(ui) = �i(r · ui)I + 2µi"i(ui)

Linear Elasticity



LSSI DISCONTINUOUS PATCH TEST25

üi �r · �i(ui) = f i

u1(x) =

✓
�0.9 + x+ 0.1y

0.15
,
18� 20x� 2y

0.15

◆

u2(x) =

✓
100

✓
�0.9 + x+ 0.1y

0.15

◆
� 99), 100

✓
18� 20x� 2y

0.15

◆
+ 1980

◆

�1 = 40 and µ1 = 40

�2 = 0.4 and µ2 = 0.4

Error Norm IVR(L1) IVR(L2) IVR(L12)
L
2(0, T ;L2(⌦)) 1.093e-04 5.418e-07 4.832e-13

L
2(0, T ;H1(⌦)) 4.591e-02 1.083e-04 6.658e-11

�i(ui) = �i(r · ui)I + 2µi"i(ui)

Manufactured Solution



LSSI CONVERGENCE26

üi �r · �i(ui) = f i

hmin(⌦1) hmin(⌦2) �t IVR(1) IVR(2) IVR(12)
0.378545 0.113981 0.00371833 0.341327 0.340643 0.340643
0.220723 0.0672413 0.00185917 0.16736 0.16385 0.163848
0.107240 0.0359195 0.00101409 0.094672 0.081204 0.0812045
0.0514682 0.0196624 0.00053119 0.0701869 0.0404745 0.0404726
0.0277461 0.00957506 0.00024789 0.0576898 0.0204939 0.0204888
Rate 0.657 1.05 1.05

hmin(⌦1) hmin(⌦2) �t IVR(1) IVR(2) IVR(12)
0.378545 0.113981 0.00371833 0.0146414 0.0146403 0.0146404
0.220723 0.0672413 0.00185917 0.00353829 0.00349268 0.00349301
0.107240 0.0359195 0.00101409 0.00095948 0.000854641 0.000854613
0.0514682 0.0196624 0.00053119 0.00033852 0.000217698 0.000217665
0.0277461 0.00957506 0.00024789 0.000141964 5.53096e-05 5.52471e-05
Rate 1.73 2.08 2.08

L2(⌦) Error

H
1(⌦) Error

Manufactured Solution
u(x, t) = (3 sin(x) sin(y) cos(t), sin(x) sin(y)t)

� = 0.864198 and µ = 0.37037

�i(ui) = �i(r · ui)I + 2µi"i(ui)
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'̇i �r · (✏r'i � u'i) = fi

u = (� sin(⇡/6), cos(⇡/6))

Advection Diffusion

Manufactured Solution

'i(x, t) = x+ y

Error Norm IVR(1) IVR(2) IVR(12)
L
2(⌦) 9.745e-04 1.062e-06 1.384e-13

H
1(⌦) 4.089e-02 2.155e-05 3.106e-12

Error Norm IVR(1) IVR(2) IVR(12)
L
2(⌦) 8.417e-03 8.477e-06 2.229e-13

H
1(⌦) 3.540e-01 1.523e-04 3.176e-12

Error Norm IVR(1) IVR(2) IVR(12)
L
2(⌦) 2.000e-01 3.175e-05 2.227e-13

H
1(⌦) 1.136e+01 7.719e-04 4.341e-12

Pure Diffusion

Moderate Advection

Strong Advection u = (� sin(⇡/6), cos(⇡/6))

✏ = 0.1

✏ = 0.1

✏ = 0.0001

u = 0
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Error Norm IVR(1) IVR(2) IVR(12)
L
2(⌦) 1.269e-02 2.003e-05 1.700e-13

H
1(⌦) 5.098e-01 3.573e-04 5.149e-12

Error Norm IVR(1) IVR(2) IVR(12)
L
2(⌦) 1.899e-04 3.963e-07 4.365e-14

H
1(⌦) 7.510e-03 8.674e-06 1.920e-12

Pure Diffusion

Moderate Advection

u1 = u2 = 0

u1 = u2 = (� sin(⇡/6), cos(⇡/6))

'̇i �r · (✏r'i � u'i) = fi

Advection Diffusion

Manufactured Solution

✏1 = 0.01 ✏2 = 0.1

'1(x, t) = 2x+ y

'2(x, t) = 0.2x+ y + 1.8
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✏ = 0.0001

Manufactured SolutionAdvection Diffusion
strong advection regime

'̇i �r · (✏r'i � u'i) = fi
u = (� sin(⇡/6), cos(⇡/6))

'k(x, t) = x2y sin(2⇡x) sin(2⇡y) exp(t)

h(⌦1) h(⌦2) �t IVR(1) IVR(2) IVR(12)
0.25 0.0714 1.042e-02 1.121e-01 9.114e-02 9.114e-02
0.125 0.0357 5.102e-03 3.482e-02 3.426e-02 3.783e-02
0.0625 0.0179 2.551e-03 8.282e-03 8.279e-03 8.747e-03
0.03125 0.00893 1.272e-03 1.620e-03 1.613e-03 1.663e-03
Rate - - 2.04 1.95 1.94

h(⌦1) h(⌦2) �t IVR(1) IVR(2) IVR(12)
0.25 0.0714 1.042e-02 3.215 2.321 2.321
0.125 0.0357 5.102e-03 1.412 1.297 1.448
0.0625 0.0179 2.551e-03 0.6381 0.6261 0.6502
0.03125 0.00893 1.272e-03 0.3012 0.2985 0.3020
Rate - - 1.14 0.993 0.998

L2(⌦) Error

H
1(⌦) Error
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Manufactured SolutionAdvection Diffusion
moderate advection regime

'̇i �r · (✏r'i � u'i) = fi
u = (� sin(⇡/6), cos(⇡/6))

'k(x, t) = x2y sin(2⇡x) sin(2⇡y) exp(t)

h(⌦1) h(⌦2) �t IVR(1) IVR(2) IVR(12)
0.25 0.0714 3.497e-03 2.080 2.072 2.072
0.125 0.0357 8.681e-04 1.096 1.094 1.124
0.0625 0.0179 2.161e-04 0.5602 0.5594 0.5652
0.03125 0.00893 5.391e-05 0.2821 0.2817 0.2831
Rate - - 0.962 0.960 0.961

h(⌦1) h(⌦2) �t IVR(1) IVR(2) IVR(12)
0.25 0.0714 3.497e-03 9.021e-02 9.043e-02 9.043e-02
0.125 0.0357 8.681e-04 2.876e-02 2.891e-02 3.367e-02
0.0625 0.0179 2.161e-04 8.157e-03 8.181e-03 8.655e-03
0.03125 0.00893 5.391e-05 2.133e-03 2.136e-03 2.186e-03
Rate - - 1.80 1.80 1.81

✏ = 0.1

L2(⌦) Error

H
1(⌦) Error
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Manufactured Solution
Pure Diffusion

'k(x, t) = x2y sin(2⇡x) sin(2⇡y) exp(t)

✏ = 0.1

'̇i �r · (✏r'i) = fi

h(⌦1) h(⌦2) �t IVR(1) IVR(2) IVR(12)
0.25 0.0714 3.497e-03 9.573e-02 9.630e-02 9.630e-02
0.125 0.0357 8.681e-04 3.049e-02 3.061e-02 3.531e-02
0.0625 0.0179 2.161e-04 8.636e-03 8.660e-03 9.180e-03
0.03125 0.00893 5.391e-05 2.257e-03 2.261e-03 2.320e-03
Rate - - 1.80 1.81 1.81

h(⌦1) h(⌦2) �t IVR(1) IVR(2) IVR(12)
0.25 0.0714 3.497e-03 2.049 2.049 2.049
0.125 0.0357 8.681e-04 1.092 1.091 1.116
0.0625 0.0179 2.161e-04 0.5594 0.5587 0.5643
0.03125 0.00893 5.391e-05 0.2820 0.2816 0.2830
Rate - - 0.955 0.956 0.955

L2(⌦) Error

H
1(⌦) Error
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Partitioned Implicit Value Recovery (IVR) Scheme

• Uses a well-posed monolithic mixed formulation to estimate boundary data

• Key idea is to consider alternative constraint, which enables explicit treatment of  
Lagrange multiplier

• Results in non-iterative partitioned method

• Stability and accuracy derive from the stability and accuracy of  the mixed method

• Subdomain finite element spaces on the interface are stable choices for the 
Lagrange multiplier

Next steps

• Extend to non-coincident interfaces 

• Investigate alternative coupling conditions G1ü1 �G2ü2 = 0

M1ü1 +GT
1 t = f1(u1)

M2ü2 �GT
2 t = f2(u2)
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