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Abstract 
 
The overall conduct of verification, validation and uncertainty quantification (VVUQ) is 

discussed through the construction of a workflow relevant to CASL.  The workflow contained 
herein is defined at a high level and constitutes an overview of the activity.  Nonetheless, the 
workflow represents an essential activity in predictive simulation and modeling.  VVUQ is 
complex and necessarily hierarchical in nature.  The particular characteristics of VVUQ elements 
depend upon where the VVUQ activity takes place in the overall hierarchy of physics and 
models.  In this document, we focus on the differences between and interplay among validation, 
calibration and UQ, as well as the difference between UQ and sensitivity analysis. The 
discussion in this document is at a relatively high level and attempts to explain the key issues 
associated with the overall conduct of VVUQ.  The intention is that CASL developers and 
analysts can refer to this document for guidance regarding how VVUQ analyses fit into their 
efforts toward conducting truly predictive calculations. 

 



 

 

 
 
 
 
 

1.  OVERVIEW  
 
Verification, Validation, and Uncertainty Quantification (VVUQ) is a complex and 

often controversial set of procedures for determining the overall quality of a simulation 
activity. The definitions of what properly constitutes VVUQ are subject to debate and the 
field continues to evolve.  Aspects of the overall process we describe have been 
addressed by many researchers, e.g., [AIA98, ASM06, Han01, Kam08, Knu03, Obe02, 
Obe04, Obe07a, Obe10, Ore94, Rid10, Roa04, Roa09, Roy05, Roy10, Sar98, Sar01, 
Sor07, Sch06, Ste01, Ste05a, Tru03, Tru06].  Despite all that has been written about 
VVUQ, there remain diverse and often imperfect definitions for each element of the 
process. Figure 1 contains the Verification & Validation Flowchart from the ASME guide 
on V&V for Solid Mechanics [Sch06], which provides one high-level overview of the 
entire VVUQ approach to computational modeling. This document contains a general 
workflow for verification, validation and uncertainty quantification that is based on the 
concepts developed by previous investigators and is tailored with the broad CASL 
objectives in mind.  The intention of this presentation is not to be dogmatic regarding a 
particular VVUQ approach (including the one espoused), but rather to inform CASL 
analysts of the issues and to suggest approaches by which to enhance the VVUQ content 
of their work. 

 
 

2. THE SCIENTIFIC SIMULATION CONTEXT 
 
Scientific simulations are run for a variety of reasons, including scientific discovery 

(e.g., in astrophysics) and in a capacity to inform decision-making (e.g., in many 
engineering, national security and manufacturing fields).  In this document, we focus on 
scientific simulation in the latter role. The goal of scientific simulation is to provide 
answers to particular questions; these answers must be inferred from numerical values 
output by the simulations of the specified problems.  The numerical values are rarely 
precise and, as such, contain intrinsic uncertainty, which should be regarded as essential 
to quantify as part of the simulation activity.  We echo the terminology and sentiment of 
Trucano et al. [Tru06], who focus on “confident prediction” and whose observation 
below captures the essence of the use of scientific simulations in the context of CASL: 

 
“In computational science, of course, to some degree confidence is correlated with 

belief in the quantitative numerical, mathematical and physical accuracy of a calculated 
prediction. Intuitively, confident prediction then implies having some level of confidence 
or belief in the quantitative accuracy of the prediction. This further implies a willingness 
to use the prediction in some meaningful way, for example in a decision process.” 



 

 

 
Figure 1.  The overall Verification & Validation Flowchart taken from the ASME 

guide on V&V for Solid Mechanics [Sch06].  This document covers the analyses and 
boxes at the bottom center of the parallel columns, encompassing Uncertainty 

Quantification and Validation. 



 

 

 
 

CASL modeling efforts necessarily involve complex, multiphysics simulations, the 
results of which are unavoidably approximate solutions. This immediately raises 
important questions.  How good are the approximations?  Is the approximate solution 
good enough (in the context of the decision)? Or considering the quality of the 
approximate solution can a decision be comfortably made ? The former question is 
difficult to address because the exact solution is not known (if it were, scientific 
simulation would not be needed).  Differences between the simulation results and reality 
arise from many sources. Verification, Validation, and Uncertainty Quantification 
(VVUQ) are different forms of assessment intended to quantify various aspects of these 
differences;  see [AIA98, ASM06, Han01, Kam08, Knu03, Obe02, Obe04, Obe07a, 
Obe10, Ore94, Rid10, Roa04, Roa09, Roy05, Roy10, Sar98, Sar01, Sor07, Sch06, Ste01, 
Ste05a, Tru03, Tru06]. These assessments address the first question and help inform the 
decision maker regarding the second question. 

 
The accuracy of the approximate solutions (and their corresponding uncertainties) for a 

complex, multiphysics problem of interest is directly related to the fidelity of the 
solutions for simpler “component” problems, with additional errors arising from  
coupling and the increased complexity.  For simpler foundational problems, different 
(usually better and inherently less error-prone) sources of information can be used to 
provide the estimation of uncertainty without the complications of the coupled models. 
These circumstances lead to a hierarchical view of validation problems, with the problem 
of interest at the top of a notional pyramid and the simplest problems at the base. 
Scenarios at the base of this conceptual pyramid can be solved (simulated or examined 
experimentally) with demonstrably greater confidence and more certainty, as these 
simpler problems are, by definition, less complex and better understood.  In this context, 
“simpler” means, e.g., fewer physical phenomena, less complex submodels, limited 
physical scale, or reduced geometric complexity.  Uncertainty and empiricism naturally 
increase as the top of the pyramid is approached.  At the highest level the problem is, by 
definition, complicated and not well understood.  This hierarchy is a useful paradigm by 
which to identify where knowledge (e.g., of a particular physics model) is insufficient 
and where empiricism is a placeholder for this missing knowledge. The purpose of 
hierarchical validation is not to eliminate empiricism, but to restrict it to the parts of the 
hierarchy where it truly represents a lack of knowledge.  This concept is reflected in the 
CASL-specific validation hierarchy, shown in Fig. 2. 

 
In consideration of this hierarchical paradigm, validation can be understood as an 

intrinsically multiscale process. The following conceptual approach can be followed to 
address the overall validation process: 

 
1. Establish a multiscale hierarchy of physics and phenomena to be validated. 
2. Determine simulations and experiments that can be conducted to examine the 

hierarchy. 
3. Execute the validation process on each level of the hierarchy. 
4. Assess the overall validation. 



 

 

 
 
 
 

 
 

Figure 2.  The overall Validation Hierarchy from the CASL proposal. 
 
A goal of this framework is to reduce uncertainties at each conceptual level of the 

pyramid.  The practical purpose of this hierarchical approach is not to eliminate 
uncertainty, but to identify where uncertainty cannot be reduced.  VVUQ can be used to 
help identify where, in the hierarchical modeling and simulation decomposition, 
empiricism and uncertainty are the greatest: these are the elements where improvements 
can have the largest impact.  This process is necessarily imperfect and, at times, 
ambiguous; nevertheless, it can be used to focus efforts, e.g., by identifying where 
additional model calibration may be particularly useful.    It is important to note that the 
intermediate portions of this pyramid present the most difficult validation activities and, 
so, are absent from the process.  Part of the challenge of VVUQ is to fill in the missing 
portions of the hierarchy and provide a more complete picture of the nature and sources 
of uncertainty. 

 
Regarding this observation, we caution that calibration is a potentially dangerous 

activity when carried out in an ad hoc manner, e.g., as a process by which to determine 
modeling coefficients where no (or limited) first-principles guidance is available.  
Calibration can account for inappropriate effects and, so, can mask what is in fact 
uncertainty and lack of knowledge.  Consequently, calibration experiments are 
appropriate and well suited at the lowest level in a modeling hierarchy.  Calibration at the 
higher levels of the hierarchy may be less rigorous if not applied in a principled fashion.  



 

 

Thus, calibration is an acknowledged necessity, but it is increasingly problematic as the 
modeling moves up the problem hierarchy. 

 
It is important to acknowledge that empirical/calibrated models may also be 

appropriate when they replace better-grounded models, but do not increase the overall 
uncertainty of the problem of interest. This endeavor should be conducted with 
exceptional care because of its seeming violation of scientific principle and potential for 
harm when the conditions fall outside the range for the empirical calibration.  The 
validation of the subproblem may demonstrate the sufficiency of the empirical model for 
replacing the better-grounded model; however, this is different from calibrating an 
empirical model to experimental data because a better-grounded model does not exist. In 
this case, the empirically calibrated model actually results in a lower uncertainty, but the 
risks intrinsic in this approach must be kept clearly in mind. 

 
Below, we present general workflows for applying validation and uncertainty 

quantification.  These workflows become more specific by the context in which they are 
applied.  The validation of the top-level problem in the pyramid will be quite different 
than that at the lowest level, because the context is different.  Likewise, uncertainty 
quantification will be context dependent: it can be applied as a part of validation at any 
level of the hierarchy but also across levels. 

 



 

 

 
3. VVUQ WORKFLOW 

 
At the highest level, the workflow for conducting validation at each level of a 

hierarchy can be described concisely in a short series of steps, each of which will be 
described in more detail in their own workflows.  The conceptual validation workflow we 
advocate is described at this level in Figure 3.  The steps are the following: 

 
1. Begin the validation process. 
2. The simulation path of the process: 
a. The conduct of the simulations defines the baseline simulation model. 
b. The determination of the simulation uncertainty defines the sources and 

magnitude of uncertainty in the simulation model. 
3. The experimental path of the process: 
a. The conduct of the experiment provides data to compare the simulation results to 

reality. 
b. The determination of the experimental uncertainty provides the quality of the data 

used for simulation comparison. 
4. The validation assessment provides the overall context for the simulation and 

validation outcomes in relation to their intended application. 
5. The determination of the sufficiency of the validation status based on the defined 

requirements for the application of the simulation: if “yes” then proceed to prediction; if 
“no” then address the shortcomings in the process, i.e., refine simulations and/or 
experiments. 

 



 

 

 
 
 

 
Figure 3.  The overall Validation process as described in this document, 

encompassing both simulations and experiments, the associated Uncertainty 
Quantification analyses, and the ultimate validation assessment. 

 
One complication to acknowledge at the outset of the process is the difference between 

concurrent and legacy experiments.  Concurrent experiments are conducted in 
collaboration with the simulations, so that the two processes experience direct feedback 
from each other.  In particular, dedicated validation experiments1 are those concurrent 
experiments that are specifically designed to validate code calculations; they are executed 
and analyzed in concert with the corresponding simulations. [Obe01, Obe02].  The value 
of dedicated validation experiments cannot be overstated, as the corresponding data are 
particularly valuable for evaluating the simulation capability of a given code.   Moreover, 
validation experiments are designed to be simulated with relatively less difficulty than 
traditional experiments, which are often designed for different purposes. Unfortunately, it 
can be challenging to identify resources for dedicated validation experiment campaigns, 
as these efforts are sometimes perceived to be less valuable than, say, scientific discovery 
or design experiments (i.e., traditional experimental science), a perspective that we argue 
should be resisted in CASL.  Legacy data, on the other hand, come from experiments in 
the past; for the purposes of this discussion, legacy data will be more generally 
characterized as being from experiments that are not for the express purpose of validation 

                                                 
1 As pointed out by Oberkampf [Obe01], “validation experiments” comprise a unique class that 
does not fall into the usual categories of scientific discovery experiments, model improvement 
experiments, or performance/acceptance tests.  



 

 

or are not influenced by the simulation activity.  Since legacy data may not have been 
generated in coordination with modern simulation tools and current VVUQ perspectives, 
such data may be of more limited value, as they often lack sufficient documentation to be 
used in support of a defensible simulation-validation effort.  Lastly, we note that the use 
of experimental data to conduct calibration of simulation models will have a nearly 
identical structure as for validation, but the purpose of the activity is distinctly different 
in character. 

 
Each of the steps in this overall process can be expanded into its own process, which 

we describe and depict below.  This process can be applied at any level of the notional 
hierarchy presented earlier in the document. 

 
3.1 Conduct Simulations (see Fig. 4) 
1. The starting point is a simulation code that have been sufficiently SQAed and 

code verified. 
2. The problem of interest (the experiment) is defined including models, submodels, 

initial and boundary conditions, as well as any supporting data. 
3. The simulation codes’ input is defined, incorporating models, data, initial and 

boundary conditions, and mesh/geometric description; this input should undergo a 
verification/SQA process. 

4. The system response characteristics to be analyzed in the simulation should be 
defined as well as a means of comparison. 

5. The simulation should be run on the computer. 
6. The metrics are used to determine the viability and quality of the simulation for 

the problem of interest. 
7. The simulations results are determined to either be or not be sufficient to move to 

the determination of uncertainty. 
 
It is important that the simulations of the problem of interest be made as faithful as 

possible to the corresponding experiment.  This issue can pose particular difficulties for 
validation and calibration of complex phenomena.  This concept is characterized by 
Trucano et al. [Tru06] as the “alignment” between a simulation and an intended 
application.  They categorize the code input parameters into two (possibly overlapping) 
sets, pA (input parameters that specify alignment with the intended model application) and 
pN  (numerical parameters and other quantities required to execute a calculation and 
control its numerical accuracy).  A principal virtue of validation experiments is that they 
may be designed and executed in coordination with the simulation tool to increase the 
experiment-simulation alignment. 

 
3.2 Determination of Simulation Uncertainty (see Fig. 5) 
1. The starting point is a simulation of sufficient quality or importance to examine 

simulation uncertainty. 
2. The types and sources of uncertainty need to be determined.  Sources of 

uncertainty include intrinsic variability, model form, model parameters, simulation 
choices, and numerical uncertainties.  These uncertainties can be broadly categorized as 



 

 

aleatory (“irreducible” or “random”) or epistemic (“reducible” or “lack of knowledge”); 
see, e.g., [Tru06, Roy10] and references therein. 

3. The metrics and methodology for examining for uncertainty determination should 
be established. 

4. The simulation cases for determining uncertainty should be conducted. 
5. Process the results of the simulations to determine the uncertainties from the 

defined sources. 
6. Examine the sufficiency of the uncertainty estimation and their magnitude. 
 
The literature on simulation uncertainty quantification is vast (see the citations above 

and their references) and the challenges associated with it are well recognized in the 
VVUQ community.  It is important to acknowledge that addressing simulation 
uncertainty increases the technical difficulty of simulation activity (as well as the 
difficulty of subsequent simulation-experiment comparisons).  The intrinsic statistical or 
probabilistic nature of uncertainty information is the unavoidable source of this issue. 

 
 
 



 

 

 
Figure 4.  The overall Conduct Simulations process as described in this 

document is shown.  This process clearly identifies three possible aspects that 
must be investigated if the quality of the simulation does not meet the modeler’s 

expectations.  
 
 



 

 

 
Figure 5.  The overall Simulation Uncertainty Quantification process as 

described in this document is displayed.  This process clearly identifies three 
possible aspects that must be investigated if the quality of the simulation UQ 

estimates does not meet the modeler’s expectations.  
 
3.3 Conduct Experiments  (see Fig. 6) 
1. Begin the experiment at a well-characterized facility with defined quality 

controls. 
2. Define the experimental setup including the physics of interest, initial and 

boundary conditions. 
3. Identify the experimental parameters that can be explicitly controlled as part of 

the experimental operation. 



 

 

4. Define the diagnostics used in the experiment including data capture, post-
processing and related information. 

5. Conduct an instance of the experiment. 
a. Conduct replicate experiments (if possible) to determine the repeatability of the 

results, and/or assess the aletory uncertainty in the experiment. 
b. Where experiments are single time and unique, the physical phenomena must be 

carefully scrutinized. 
6. Post-process the experimental data and assess the quality of the experimental data 

providing uncertainty estimates. 
 
Ideally, experimental data used for validation are generated by experiments designed 

expressly for validation as opposed to scientific discovery (although experiments serving 
both purposes are inherently desireable).  Such experiments are focused on generating 
high quality data, i.e., with high accuracy, with well-quantified errors and uncertainties, 
and of a highly repeatable nature.  Experiments and simulations should be carried out in 
concert, with dynamic feedback between the two. This requires close coordination and 
frequent constructive discussion between computational scientists/engineers and 
experimentalists in the roles of collaborators.  Of course, the larger the scale and greater 
the complexity of the experiment, the more difficult this objective is to achieve.  
Nonetheless, the greater the common understanding of techniques, issues, and practice in 
both experiments and simulations among all parties involved, the higher the quality of the 
VVUQ results. 

 
 
3.4 Determination of Experimental Uncertainty  (see Fig. 7) 
1. Begin with well-defined experimental results 
2. Identify the various sources of error in the experiment (measurement, data 

reduction, etc.) as well as their type (aleatory or epistemic). 
3. Define resources for determining the magnitude of uncertainty. 
4. Examine the experimental measurements for each uncertainty. 
5. Reduce the data associated with the determination of uncertainty. 
6. Post-process the uncertainty to separate the different effects, and produce an 

overall experimental uncertainty budget. 
7. Determine the sufficiency of the uncertainty estimates. 
 
The complete definition of experimental uncertainties and any detailed discussion of 

their determination is beyond the scope of this document.  A few broad-based 
observations regarding the nature of experimental uncertainty are, however, in order.  
Generally speaking, experimental data have errors in their measurement, processing, 
inference, and statistics.  Each of these errors has a fundamentally different character and 
has an analog in the computational domain.  Measurement error is the most obvious, 
being the relative inability to produce an exact measurement of the real condition present 
in the experiment.  Processing errors are introduced when raw signals are processed 
(often, through several steps) into values used in subsequent analysis or inference. 
Inference is often used to produce a “measurement” from the original or processed data.  
For example, particle image velocimetry (PIV) is based upon an inference from the actual 



 

 

measurement.  This inference is usually software and algorithm based, and as such is 
subject to many of the same sources of error as the computations being validated.  
Finally, the statistical error is the variability of a measurement over time, or with repeated 
conduct of the experiment.  This type of error is strongly associated with aleatory 
uncertainty. 

 

 
Figure 6.  The overall Conduct Experiments process as described in this 

document is shown above.  This process clearly identifies three possible aspects 
that must be investigated if the quality of the experimental data does not meet the 

experimentalist’s expectations.  
 
 



 

 

 
Figure 7.  The overall Experimental Uncertainty Quantification process as 

described in this document is displayed here.  This process clearly identifies three 
possible aspects that must be investigated if the quality of the experimental UQ 

estimates does not meet the experimentalist’s expectations.  
 
 
3.5 Validation Assessment  (see Fig. 8) 
1. Define the framework used for the assessment (e.g., CSAU [Boy90], PCMM 

[Obe07b], PCMM++ [Obe07b],  QMU [Hel09, Pil06]) 
2. Conduct a PIRT [Tru02] analysis of the simulation (this could/should be 

conducted as part of the conduct of simulations or experiment).  If this has already been 
conducted, reassess the previous PIRT. 



 

 

3. Examine each element of the simulation and experimental work in the context of 
the assessment framework. 

4. Evaluate the validation in terms of the requirements associated with the intended 
application.   

 
As indicated in the first item above, there are various frameworks available that 

provide guidelines for validation assessments.  CSAU, Code Scaling Applicability and 
Uncertainty [Boy90], is the framework accepted by the Nuclear Regulatory Committee 
for validation by dimensionally scaled experiments. PCMM, the Predictive Capability 
Maturity Model [Obe07b], identifies four qualitative levels of modeling and simulation 
capability maturity that gauge (1) model representation and geometric fidelity, 
(2) physics and material model fidelity, (3) code verification, (4) solution verification, 
(5) model validation, and (6) uncertainty quantification and sensitivity analysis.  
PCMM++, the enhanced Predictive Capability Maturity Model [Ober07b], is PCMM 
with additional evaluations of software modularity and extensibility (an evaluation of the 
ease with which software modifications can be made) and readiness of the software for 
HPC platforms (e.g., how easily the software is adapted to different machines). QMU, the 
Quantifications of Margins and Uncertainties [Hel09, Pil06], is a framework used at the 
Defense Program National Laboratories to support the certification of the nuclear 
stockpile.  The emphasis in QMU is the incorporation of uncertainties into a decision 
framework. 

 
The PIRT, or Phenomena Identification and Ranking Table, analysis mentioned in the 

second item is an approach to define the important of phenomena and their relative 
importance to the situation at hand.  The PIRT should be guided by the relative impact of 
the identified phenomena on the system response quantities of interest for CASL.  
Progress toward implementation and UQ of identified phenomena is also identified in the 
PIRT.  The PIRT, because it ranks the relative impact of phenomena and the status of the 
modeling, can help guide additional model development, V&V, and UQ. 

 
A complexity inherent in any of these assessment frameworks is that the comparison 

between simulations and experiment cannot be expressed simply as difference of the two 
quantities, but instead involves comparison of the probability distributions associated 
with simulations and experiments.  The mapping of metrics used in simulations to those 
used in experiments is problematic.  Simulation science and its associated mathematics 
provide error measures in the form of error norms (a functional measure of a 
mathematical function), and experiments measure quantities made available through 
instruments.   Fortunately, the error norms typically involve some sort of integration in 
time or space, which mimics the processes involved in instrumental science.   As a result 
there is a rough correspondence between experimental and simulation measures.  
Nonetheless, the correspondence is approximate and notional leading to yet another 
source of uncertainty in the simulation of physical circumstances.  The end result of these 
differences leads to the failure of mathematical theory to provide assurances to simulation 
quality.  This is most acutely felt in the uncertainty estimation due to numerical 
approximation (calculation verification), but influences all uncertainties arising through 
numerical approximation. 



 

 

 
The determination of metrics requires the close interaction of computational and 

experimental scientists.  The coordination strives to provide a balance between what is 
possible with experimental measurement science, and metrics that are accurate and well 
behaved mathematically.  As experiments reach the upper echelon of the validation 
heirarchy this becomes increasingly difficult as measurements become more and more 
related to the underlying application-specific measures of success (see Section 4.2 
below). 

 

 
Figure 8.  The Validation Assessment process as described in this document.  

This process clearly defines a course of action for assessment, including a well-
defined framework for assessment and a PIRT analysis of the physical system.  
 



 

 

 
4. DISCUSSION OF THE WORKFLOW IN PRACTICE 

 
The idealized workflow guidelines we have outlined is both resource intensive and 

time consuming.  This observation should not be surprising.  The intent of VUQ analysis 
is to provide value that is commensurate with the effort put into the process.  This value 
is found through producing a defensible level of confidence in the analysis, which then 
informs any subsequent decision-making.  Any such decision reached via modeling 
should be made with a quantitative definition of the associated uncertainties. 

 
The level (and expense) of assessment should be appropriate to the risks and 

consequences of the decision. This document is not about how to make decisions, but it is 
about how to provide input to the decision making process by encouraging that well-
defined uncertainties be associated with modeling. 

 
It is the authors’ observation that the quantity and quality of verification, validation, 

calibration, sensitivity analysis, data assimilation, and uncertainty quantification in 
scientific simulation has historically been extremely variable. It is undeniable, however, 
that VVUQ is growing in both recognition and importance.  It is our impression that, in 
practice, scientific simulation studies: 

 
• Often confuse several of these activities with each other; 
• Regularly	
  include one of these; 
• Sometimes include two of these; 
• Virtually never include all of these. 
 
The objective of this manuscript is not for CASL analysts to become experts in all of 

these (i.e., to do a perfect job in all of them), but to strive to include and become 
competent in each of them and apply the concepts appropriately, mindful of the following 
generalizations. 

 
• VVUQ is usually at its best in the lowest level of the hierarchy of Fig. 2 (i.e., for 

simple, single physics problems). 
• VVUQ often breaks down in the middle of the hierarchy, where theory and 

experiments are sparse. 
• Aspects of the VVUQ activity are often absent from the application to the highest 

level. 
 
4.1 What is Validation? 
 
We will endeavor to define the context for VVUQ in the following sections providing 

selected excepts from key papers and discussion to clarify matters on terms that remain 
difficult to separate from each other conceptually. 

 
In a nutshell, compare simulation and experimental data to assess the adequacy of the 

simulation model. 



 

 

 
The following quotes are from the Trucano et al. “What’s what” paper [Tru06]. 
 
Validation’s Purpose 
 
First, we address the purpose of validation, which described well in this quote, 
 
“Validation is the process of quantifying the physical fidelity and credibility of a code 

for particular predictive applications through the comparison with defined sets of 
physical benchmarks, consisting of experimental data.” 

 
This offers a concise definition along with the previously described definition of 

benchmark.  Next, we move to a purpose for validation, 
 
“The purpose of validation is to quantify our confidence in the predictive capability of 

a code for a given application through comparison of calculations with a set of 
experimental data.” 

 
and 
 
“Validation deals with the question of whether the implemented equations in a code 

are correct for an intended application of the code.” 
 
We note that the intended application will have an increasing influence on the nature of 

experiments used in validation as one moves higher in the validation hierarchy.  We 
define how VVUQ and its impact on simulation-based decision making by addressing the 
impact of evidence and an analogy to the legal system, 

 
“V&V is a process of evidence accumulation similar to the formation of legal cases.” 
 
The workflow should ideally have a logical and linear path of activities with a well-

defined sequence, 
 
“In an ideal setting, validation should not be considered until verification analyses 

have been satisfactorily addressed. In practice, however, for modern simulation codes 
used to model complex physical phenomena, full resolution of verification and validation 
questions is essentially impossible. Instead, verification and, more acutely, validation are 
ongoing processes that should be subject to continual improvements.” 

 
4.2 Metrics 
 
Oberkampf and Trucano [Obe02] present an analysis of useful general characteristics 

of a validation comparison (called a metric in that paper) and a specific example. Roy and 
Oberkampf [Roy10] provide a concrete example validation metric use. A different 
formulation of validation comparisons is found in Zhang and Mahadevan [Zha03] and 
Mahadevan and Rebba [Mah05]. 



 

 

 
A validation metric ideally includes the following properties: 
1. Has a physically meaningful interpretation, i.e., one that is thought to be relevant 

to the system response quantity (SRQ) of interest/feature of merit (FOM); 
2. Is experimentally achievable; 
3. is sufficiently sensitive to discriminate meaningfully different results, but not so 

sensitive that a “meaningful” result cannot be obtained. 
 
These are characteristics (or shortcomings) of a (community’s) given (favorite) 

metrics;  one needs to know how to weigh them when making a validation evaluation 
(even if this procedure is heuristic). 

 
They are used to compare experiment with simulation in an application of interest for a 

purpose of interest. That is, the context and purpose of the comparison should be known 
at the outset.  In the long term, the metrics evolve over time and their definition is 
iterative in nature based upon feedback from the results found applying the VVUQ 
processes. 

 
 
4.3 Role of other assessment techniques in Validation 
 
One obtains a “best estimate model” in validation, which does include uncertainties. 

(UQ within verification and validation.) 
 
Verification aspect:  
• Calculation verification is to be used to quantify numerical uncertainties 
• Calculation verification provides a means by which to defensibly estimate the 

contribution of the numerical algorithm to the uncertainty budget. 
 
4.4 Hierarchical view 
 
VVUQ is necessarily hierarchical in nature just as modeling.  Multiscale modeling is 

an important emphasis in computational science, and by the same token validation is 
multiscale.  For most integrated engineering applications many physical models are 
joined together.  The issue of design of experiment, quality of experimental data and 
comparison is simplest for a single physical process.  As more physical processes are 
joined together, the entire process becomes more difficult, and uncertainty systematically 
increases.  Ultimately, the specter of calibration becomes a necessity in an increasingly 
unprincipled manner moving toward the multiphysics end of the spectrum.  This alone 
complicates the VVUQ process substantially. 

 
4.5 Distinguishing Calibration and Data Assimilation from Validation and 

Uncertainty Quantification 
 
There is some disagreement among experts as to the proper interaction of validation 

and calibration.  Trucano et al. [Tru06] maintain that validation must be undertaken 



 

 

before calibration: “…calibration is logically dependent on the results of validation…” 
for the reasons that “Validation provides important information to calibration accounting 
for model-form uncertainty” and “Validation provides information that is necessary to 
understand the ultimate limitations of calibration.”  Nelson et al. [Nel10], however, see 
calibration and validation as being different aspects of the same overall “calibration/ 
validation/prediction process”, maintaining that “…calibration is a task that is considered 
part of validation.”  

 
The process of calibration and validation can be brought together into a single self-

consistent framework via data assimilation.  The structure of the solution and data is 
considered as a whole providing an optimal calibration with the simultaneous assessment 
of the state of validation for the model.  This approach is being codified in a separate 
activity within the CASL program. 

 
To start, given a calibrated model, you need to assess it before applying it to 

prediction. 
 
The following quotes are from the Trucano et al. “What’s what” paper [Tru06] and are 

relevant to calibration and validation: 
 
 “Calibration and validation are essentially different.” 
 
 “Calibration and validation are distinct.” 
 
I think the issue comes down to validation must be done with data NOT used in the 

putative calibration.  The data used for calibration can contain useful information about 
aleatory uncertainty, but not epistemic uncertainty due to the fundamental nature of each 
category of uncertainty.  The definition of “NOT” in this case could be problematic 
depending on the difficulty of achieving independent experimental data for a given 
circumstance. This goes to the ultimate validation providing faith in that the calibration is 
producing something akin to a good prediction to the system in question.   The particular 
issue that is the most difficult to examine is the quality of the extrapolation of a 
simulation to situations where experimental data does not exist, yet the situation has 
application significance.  For nuclear reactor operations this includes most severe 
accident scenarios. 

 
“Validation and calibration in CS&E both depend on results of verification. We also 

claim that calibration is logically dependent on the results of validation, which is one way 
of emphasizing that calibration cannot be viewed as an adequate substitute for validation 
in many CS&E applications.” 

 
“Calibration is conditioned by the probability that validation has been successfully 

performed.” 
 
“Validation provides important information to calibration accounting for model form 

uncertainty.” 



 

 

 
“Validation provides information that is necessary to understand the ultimate 

limitations of calibration.” 
 
4.6 What Is Uncertainty Quantification and Its Purpose? 
 
Establish defensible and credible bounds on a prediction. A prediction can be based on 

simulations, experiments or their combination.  The focus is to establish credible bounds 
on predictability of the model on an intended application in a regime of interest.  We 
have little to add that has not already been given at length by other authors.  With this in 
mind we provide a series of relevant quotes from Trucano et al. [Tru06]. 

 
The following quotes are from the Trucano et al. “What’s what” paper [Tru06] 

regarding the definition and reasoning behind UQ: 
 
“Quantification of Uncertainty is driven by the identification, characterization, and 

quantification of the uncertainties that appear in the code predictions of “Best Estimate” 
calculations. The thrust of Best Estimate plus Uncertainty (BE+U) is that prediction is 
probabilistic precisely because of our inability to complete V&V in some definitive sense 
and because of uncertainties intrinsic to complex modeling activities.” 

 
The definition of prediction is central to the use, 
 
“Here, a prediction is a calculation that predicts a value a set of these values prior to or 

in lieu of their physical measurement.” 
 
We echo the the terminology and sentiment of Trucano et al., who focus on “confident 

prediction”: 
 
“In computational science, of course, to some degree confidence is correlated with 

belief in the quantitative numerical, mathematical and physical accuracy of a calculated 
prediction. Intuitively, confident prediction then implies having some level of confidence 
or belief in the quantitative accuracy of the prediction. This further implies a willingness 
to use the prediction in some meaningful way, for example in a decision process.” 

 
 A key word associated with UQ is “predictability”. 
 
UQ is about the model (but it must include experimental data + their uncertainties.) 

UQ does not (cannot) replace validation or verification; model is accepted as input to the 
UQ process. 

 
What is the role of sensitivity analysis?  Quotes from the Trucano et al. “What’s What” 

paper [Tru06]: 
 
“Sensitivity analysis underlies the determination of the importance, hence priorities, of 

code elements that must be subjected to V&V in particular studies.” 



 

 

 
“Parameter sensitivity is also important in guiding our studied reaction to model 

uncertainty. Parsimony, the reduction of the size of the parameter vector, is guided by 
sensitivity analysis and remains an important model selection principle. Sensitivity 
analysis is required for understanding the extent to which a model is complicated enough 
to be credible but not too complicated.”  

 
“First, sensitivity analysis directly contributes to the definition of planned validation 

activities that culminate in the definition application of validation benchmarks as defined 
above. This centers on the use of a Phenomenology identification and Ranking Table 
(PIRT) in defining the key requirements of planned validation tasks.” 

 
“Second, we stress that from the perspective of prediction, calculation of parametric 

uncertainties of calculations of benchmarks, either local or global, suggests the need to 
predict these sensitivities off the chosen benchmark sets.” 

 
 
	
  



 

 

 
 

5. CONCLUSIONS AND RECOMMENDATIONS 
 
In this document, we have described the concepts and flow of activities in VVUQ 

through a process by which uncertainties in modeling can be evaluated.  Our context is 
broad and applies to the full spectrum of the modeling hierarchy.  Moreover, the 
workflow we have described is general and is intended in the spirit of more of guidelines 
than as a “cookbook”.  In particular, each component activity can be conducted with a 
fair amount of flexibility to define uncertainties in a manner appropriate for the physical 
model and the available experimental data.  The important aspect to be emphasized is that 
each element—Verification, Validation, and Uncertainty Quantification—must be parts 
of an overall assessment of simulation quality. 

 
While the suggested approach to VVUQ is moderately well codified and used in some 

quarters, practical details of VVUQ vary widely.  Most validation cases encountered by 
modelers require significant application of domain-specific knowledge and experience.  
Unless the analyst has chosen very simple problems, each particular modeling problem 
will likely present its own challenges that will require insight, innovation, and 
determination on the part of the analyst to resolve.  Despite these obstacles, VVUQ is a 
necessary part of the “due diligence” of scientific modeling.  The outcome of the VVUQ 
process is a quantitative assessment of uncertainty, which provides the decision-making 
authority a degree of confidence to place in the modeling activity’s contribution to the 
process. 
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