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Building Bridges between the
Fundamental Laws of Nature and Engineering

Experimental
Data

Molecular Goal: The analyst running the
; isl i . .
dynamics oy continuum code should easily get
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Previous Focus: MultiMat 2011 Presentation

* Proof of Principle using Simple Equation of State:

* “Fundamental issues in the representation and propagation of uncertain equation of
state information in shock hydrodynamics”, Computers and Fluids, 83, (2013) p. 187—-

193

Current Focus: MultiMat 2013 : Much more difficult - .
National

Representation of uncertain multiphase tabular equations of state Laboratories




Enabling Macroscale UQ Analyses

EOS model library and data Proposal Model
(XML input deck)

Bayesian Inference using Markov Chain Extensive Sampling of the posterior
Monte Carlo distribution function (PDF)
Multinormal PDF fit + Dakota Reduced PDF samples
EOS Table Building Topologically equivalent tables for each
sample
PCA Analysis Mean EOS table + most significant

perturbations

Hydrocode + Dakota Cumulative Distribution Function (CDF)
for quantities of interest

Laboratories




Key ldeas: Quantifiable tabular accuracy is important
and Principal Components Analysis can be used to
reduce the stochastic dimension

CDF for 1 km/s impact at 5.e-6 (s) - PCE Analysis
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Key Idea: Embedding a Dakota Interface in ALEGRA
Input syntax reduces “User Energy Barrier”

[SNL DAKOTA . / ALEGRA Executable \
_| optimization, calibration, <
sensitivity analysis,
uncertainty quantification y [ DAKOTA ]
loose coupling: g | | Internal API
file system o integrated with
3 | physics input and
parameters interface with D response
. )
file separate o | functions; single
executables input file
A 4
(
— ALEGRA

. ) \_

Current Moving from potentially fragile, study-specific script

interfaces to a unified, user-friendly capability

Laboratories




Major new issues for Bayesian inference for
multiphase EOS tables with many parameters

EOS model library and data Proposal Model
(XML input deck)
4 Bayesian Inference using Markov Chain Extensive sampling of the posterior h
Monte Carlo distribution function (PDF)
' (Optional) Multinormal PDF fit+ | Reduced sampleset §
k DAKOTA sampling )
EOS Table Building Topologically equivalent tables for each
sample
PCA Analysis Mean EOS table + most significant

perturbations

Hydrocode + Dakota Cumulative Distribution Function (CDF)
for quantities of interest
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Uncertain Equation of State (EOS) parameters
are inferred from data using Bayesian inference

 Parametric EOS Model:
P=P(p,E;))  T=T(p,E;)

« Bayes'’ rule updates prior belief in parameter values using
data D

posterior |Ike|lh00d prior

\ ()\’D D’)\ ? normalization

 Prior: based on prior data or expert opinion
 Likelihood: how likely is the data for given parameter values
« Accounts for various sources of uncertainty
« Posterior: Probability of parameter values after updating with data




Posterior distribution provides parameter
values and their uncertainty

* Probability here represents the degree of belief in
particular parameter values

* Various sources of uncertainty can be accounted for in the
likelihood

« Measurement noise
« Model discrepancy

N

D:{di}izl Yi = f(Xi;ﬂ’)

S

2

P(D]4)=

(27[0 )

__N v (di-y)
Iog(P(DM))——Elog(ZﬂGZ)—Ziz1 >
 As such, the role of data is to provide information to

reduce the uncertainty

« Multiple data sets can feed into the inference simultaneously
 The more data, the narrower the posterior distribution




The posterior I1s explored with Markov Chain
Monte Carlo (MCMC)

» Hard to explore
- Often no explicit formula A A
* High-dimensional
« Generally sampled with
Markov Chain Monte Carlo

(MCMC)

« Generate proposal sample from
Gaussian distribution centered at

current state
* Proposal distribution width
determines mixing

« Compute a as posterior ratio of l
new sample over old one

« Accept new sample with
probability min(a,1)




MCMC in high-dimensional, complex models is

DIFFICULT and COSTLY

» Posterior shape is often non- 4. 4

J
Gaussian
« Sometimes multimodal

 Posterior width can vary
several orders of magnitude in
different dimensions

* Good starting point hard to find

« Good mixing is hard to obtain
* Needed to have good coverage

» Use optimization to find Maximum A Posteriori (MAP)
parameter values to start chain from
« Use adaptive MCMC

» Adjust proposal covariance based on previous samples
« Use long burn-in time to ensure covariance is positive definite#




30 parameter Al EOS inference

 Many parameters ill-constrained by

« Bump up against prior bounds

» Posterior probability not very sensitive to

 Either must fix parameters or add
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18 parameter Al EOS inference

* Fixed parameters that are not well

constrained by data
« MCMC chain over 18 parameters

mixes better
» Posterior distributions are smoother

and well-defined
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Select marginal distributions

* Marginal distributions
nearly Gaussian

« Strong correlation
between GR and EB

Al satom__ GR
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Select marginal distributions

y

e Other parameters
uncorrelated

shared_ cold densit
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Multiphase Table Generation and
Representation

EOS model library and data Proposal Model
(XML input deck)

Bayesian Inference using Markov Chain Extensive Sampling of the posterior
Monte Carlo distribution function (PDF)
. Multinormal PDF fit + Dakota | Reduced PDF samples §
4 EOS Table Building Topologically equivalent tables for each
sample
PCA Analysis Mean EOS table + most significant
\ perturbations )
Hydrocode + Dakota Cumulative Distribution Function (CDF)

for quantities of interest
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Motivation for Tabulation

Computational and storage efficiency required by codes:
» Good scaling required from small to enormous systems
» Analytic models too slow for inline use
» Minimize data access and movement for quick start up
» Cost of tabulation amortized over many simulations

UQ analysis requires many simulation runs for sampled points
In the parametric EOS space.

Several tabulation strategies proposed:

Strategy A On-the-fly generation from models
Strategy B On-the-fly generation from perturbed tables
Strategy C Ensemble of tables

National
Laboratories



Practical Table Requirements

Verified representation
» Tabulation errors cloud UQ analysis
» Represent analytic model better than data uncertainty
» Required for all variables used in codes
Efficient state look up
» One table look up per state evaluation
» Fast, vectorized interpolation
Compatibility with PCA process
» Topological equivalence between tables
» Smooth mapping between table meshes
» Consistency between independent variable spaces

Sandia

National
Laboratories




New Table Format

Unstructured triangular grid (UTri)
» Easily follow phase boundaries
» Effectively capture discontinuous derivatives
» Allows adaptivity for storage efficiency
» Less efficient table look ups
» Linear interpolation on triangles

Tabulate both X(p, T) and X(p, E)
» X includes all desired thermodynamic variables
» Lose consistency only to tabulated accuracy
» No inverse look ups (i.e. iterations) required
» Special care required in PCA analysis




Determining Phase Boundaries

Phase boundary detection code built into EOS model library:

» Determined on demand by models

» Approximated by 15¢, 3@ or 51" order splines

» Spline accuracy much greater than target table tolerance
Multiple uses for spline boundaries in tabulation:

» Aid in looking up states in EOS models

» Speed up state inversion algorithm

» Set boundaries for mesh regions

Multi-phase aluminum model example:

Temperature (K)
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Topological Equivalence

Generate graph from phase and table boundaries in p-T space
» Boundaries become edges in graph

» Nodes placed at intersections of phase boundaries
» |dentical graphs between model samples indicate
topological equivalence
» PCA analysis enabled for variable node locations
» Capture uncertainty in phase boundary behavior

Aluminum model example:

10000 &
9000 |
8000 |
7000
6000 {®
5000 f H\\
4000 |
3000 |
2000 |
1000
l

Temperature (K)
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Mesh Boundaries

Adaptively mesh each boundary to a desired tolerance:

/\/
7 Pava

» Boundaries meshed concurrently for all N tables

» Linear map of node locations between tables
Aluminum model at 0.5 tolerance:

10000
9000
8000
7000
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Temperature (K)
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Mesh Regions

Adaptively mesh each phase region to a desired tolerance:

» Points placed into first table and mapped to others

Boundary point locations on each phase line segment are related by a linear
mapping.

1 3 Oxr |
V99— =0 .
\/] dﬁﬂ g Or other smooth mappings?
Laplace-Beltrami smoother

Interior boundary point locations are smoothed to remove noise from PCA.

Fully consistent mesh topologies are required. y
National
Laboratories




Tabular EOS UQ representation

Use Principal Component Analysis (PCA) to look for a tabular
representation with reduced dimensionality:
» Start with representative sample of tables (e.g. PCE
integration points) dahprecsion

» Perform PCA: wide range table
s=ZHITHL R NX
G} (Z-z1")H'? =UsV”
r=2+UX=2+G VUL, =2+ (Z - 21T)HV2V¢
» Choose a truncated set of modes to export in tabular form

» Mie-GrUneisen example has two significant modes:
T = T—l—f1 T4 —l—ngg

 Random variables ¢ are uncorrelated, with zero mean and unit
standard deviation, but not necessarily independent
* Gaussian approximation for € exact if T is Gaussian process;

accurate to second order otherwise /




Building the first aluminum multiphase UQ
enabled table

* The major issues with building the UQ enabled full multiphase EOS have to do
with building AUTOMATIC robust EOS and table generation algorithms.

* Parameter sets can be chosen that give errors in phase boundary topology
(kinks)

* Unstable EOS regions can occur if there is not enough data to constrain the
automatic inference process.

* Any constraints that used to be dealt with in various informal ways by the EOS
expert MUST now be automatically detected and removed from the Bayesian
inference process as representing an impossible parameter state.

* The inference must include sufficient data and more extensive prior
constraints.

* The end result will in fact be a much more robust and automated EOS table
building system with the added benefit of UQ enablement.

T=T+&T1+ 6T + &I+ - -




Multiphase Tabular Generation and
Representation: Initial AL UQ enabled table

T=T+&T1+ &I+ &T5+ - -

* First wide range AL EOS tables with 6 phase regions in the density-energy
table and 5 phase regions in the density-temperature table have been
generated. (Triple point collapses)

* With the current data set there are 36 free parameters.
» 13 parameters were fixed due to insufficient information.
* The MCMC inference samples 23 parameters

* We took 400 samples from the chain. Currently we are seeing only 1
significant mode at 1-e6 cutoff in PCA analysis. However, we had to throw
out some samples due to problems with the mesh smoothing in the melt
region.

* Accuracy of the tables is set at a relative tolerance of .5.
* Solver currently scales as N2 so this limits practical number of samples.




Enabling Macroscale UQ Analyses

EOS model library and data Proposal Model
(XML input deck)

Bayesian Inference using Markov Chain Extensive Sampling of the posterior
Monte Carlo distribution function (PDF)
Multinormal PDF fit + Dakota Reduced PDF samples
EOS Table Building Topologically equivalent tables for each
sample
PCA Analysis Mean EOS table + most significant

perturbations

Hydrocode + Dakota Cumulative Distribution Function (CDF)
for quantities of interest
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Al Shock Ramp — Naive approach

Z data and initial ALEGRA modeling setup courtesy Matt Martin.

Demonstrate uncertainty analysis with multiple AL EOS tables.
Assume 8 tables each occur with .125 probability

Dakota sampling and response functions are set up in one
control input file with no external user scripting.

ERAG Historical Table Set (uniformly distributed) (data=solid)
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CDF profiles using a set of 8 classical tables and a

hypothesized uniform discrete distribution.

CDF of interface velocity
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Al Shock Ramp Experiment — UQ AL EOS

UQ enabled AL EOS from 202 sample tables with .5 relative

tolerance results in one primary mode.
PCE sampling of first mode with N(0,1) distribution

T=T+&T &+ &Ts + - -

-
3 -

o Sample Runs for UQ Enabled EOS Table (data=solid)
*
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CDF profiles from PCE expansion of velocities
using UQ enabled AL EOS

CDF of interface velocity for UQ table
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Summary

* We have developed a practical approach to represent uncertainty in
multiphase EOS for production delivery to design analysts working at the
continuum level.

* The Bayesian inference framework seems to be a good framework for thinking
about both the parameter estimate problem and for developing the
distributions on input parameters.

* A robust high dimensional inference methodology is essential.

* Robust control of prior definitions which include physical constraints as well as
sufficient data to constrain the parameter set is essential.

* The new UTRI tabular format gives more detailed phase boundary definitions,
direct control over tabular accuracy and enables UQ representation.

* Delivery for easy usage in continuum codes is essential in order to provide
immediate impact at the continuum modeling scale.

» Good stochastic compression has been observed so far for AL EOS models.

T=T+&T1+&ETy + &5+ - - -




