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Verification and Validation (V&V) Definitions

Verification: Are the equations solved correctly? 
(Math)

Validation: Are the equations correct? 
(Physics)

ASC:
– Verification: The process of determining that a model 

implementation accurately represents the developer’s 
conceptual description of the model and the solution to the 
model.

– Validation: The process of determining the degree to which a 
model is an accurate representation of the real world from the 
perspective of the intended uses of the model.

V&V targets applications of codes, not codes.V&V targets applications of codes, not codes.
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Verification and Validation (V&V) Definitions

Example: linear solvers

“Solve equations correctly” and “correct equations” still 
make sense.
– But also keep in mind (IEEE):

Verification = requirements implemented correctly 
(not quite Math)
Validation = correct requirements (not quite 
Physics)

All the general issues project to Trilinos:
– Hence Trilinos is part of the “problem”
– But Trilinos may also be part of the “solution”

Ax b=
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WHY do we have a V&V program?

“We built a good code – it’s not our fault that nobody 
used it.”
“We built a good code – it’s not our fault that nobody 
used it.”
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The ASC Program’s Grasp is large!

“The purpose of computing is not insight.”“The purpose of computing is not insight.”

Instead, the NNSA Advanced Simulation and 
Computing Program states that the purpose of 
computing is: 

“high-performance, full-system, high-fidelity-

physics predictive codes to 
support weapon assessments, renewal 
process analyses, accident analyses, and 
certification.”

(DOE/DP-99-000010592)
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Outline

History
Process
Verification
Validation
Stockpile – Toward QMU
Final Cautions

Perceived Mission Statement: Taking the fun out of 
computational science.
Perceived Mission Statement: Taking the fun out of 
computational science.
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A Little History

1998• Autumn 1997 validation workshop kicks off 
development of an ASCI “Validation 
Program” (“code developers do 
verification”).

• ASCI “Validation and Verification Program”
launches FY1999 (“maybe we do need to 
worry about verification”).

• FY2007 begins 9th year of “Verification and 
Validation Program” (“verification is very 
important and difficult”)

• The program has been highlighted by 
milestones designed to optimize SSP 
impact.

• The ASC Predictive Science Academic 
Alliance Program (PSAAP) White Paper on 
V&V does a reasonable job of defining the 
goals and values of the program.

2006
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Do you trust the calculation? 

Can you trust the calculation?

Three reasons you may not wish to bet your 
life on a calculation:

1. Wrong physics (validation)
2. Wrong numerics (verification)

• Wrong math, algorithms, software
• Lousy numerical accuracy

3. Wrong use of the results* (decisions)

(* Especially scary!)
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V&V is a methodology.

Code
Verification

Code
Verification

DP
Application

DP
Application

PlanningPlanning

Experiment
Design, Execution

& Analysis

Experiment
Design, Execution

& Analysis

MetricsMetrics

AssessmentAssessment

Prediction 
& Credibility
Prediction 

& Credibility

DocumentDocument

Calculation
Verification
Calculation
Verification

1

7

6

5

2

4

3

3

8

Requirements and 
planning

Verification Validation 
Metrics

Credibility

Permanence

Validation 
Experiments

Described in SAND2002-0341
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Simplified (everybody in ASC does this):

PlanPlan

VerifyVerify

ValidateValidate

CredibilityCredibility

• This methodology has been 
applied to all SNL ASC V&V 
milestones.

• Current work includes QASPR 
and an FY08 HEDP milestone.
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Planning
It’s all about the APPLICATION of the code(s):
• Application Requirements
• Phenomenology Identification and Ranking Table 

(PIRT)
• Priorities
• Identify focused verification requirements 

(supplementing code development)
• Identify hierarchical validation requirements
• Understand resultant link to credibility for the 

application
• Described in SAND2000-3101.

“Everybody in the room pretty much knows what 
to do …”
“Everybody in the room pretty much knows what 
to do …”
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Verification
Consider the following comparison with data:

Numerical
Error

“Calculation”
Verification

Software
Implementation

Algorithms

Mathematics

Correct?

Correct?

Correct?

“Code”
Verification

• What is the computational (crosses and stars) 
error?

• “Good agreement” with experimental data 
(circles) does not imply numerical accuracy!

• (A DNS resolution study underlies the 
computational points.) To believe any numerical error statement 

requires “code verification.”
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Verification

Numerical
Error

Software
Implementation

Algorithms

Mathematics

Correct?

Correct?

Correct?

“Code”
Verification

Ax b=

Verification challenges 
immediately project into 
Trilinos.

“Calculation” Verification
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Verification is hard!

• This was clearly stated to ASCI, for example in 
January 1999.

• Credible numerical error statements require a 
significant code verification foundation:
– Proofs that math and algorithms are correct
– Proofs that the software has no bugs
– Anything less is an approximation and has epistemic 

(lack-of-knowledge) uncertainty attached to it
• Error statements themselves (solution verification) 

come from a (presently) limited technology base:
1. Convergence studies (highly empirical – can I take 

these to the bank?)
2. A posteriori error estimation (not in our favorite 

equations)
3. Error “models” with intrinsic uncertainty (“the error 

probably is…”)
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Verification is hard! 
Code verification:

Two particulars:
• Software engineering, which I will spare you since 

you know much more about this than I do.
• Specialized verification testing – “functional testing”

(not “unit” testing, not “regression testing,” not 
“structural” testing).
1. How to define tests? See Roy (2005) for current 

discussion of test design, including Method of 
Manufactured Solutions
– There is NO AUTHORITATIVE PRESENTATION OF 

TESTING FOR CS&E IN ANY LITERATURE!
2. Why define formal benchmark sets (so-called 

Verification Test Suites)? See Oberkampf et al 2002, 
2004 for some discussion.
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Verification is hard! 
Convergence studies:

• Work at the state of the art is illustrated by the LANL 2005 
Level II verification milestone.

• Explored convergence error estimation both in asymptotic 
and non-asymptotic regimes, as well as other work.

• Heavily documented.
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Verification is hard! 
A posteriori error estimates:

• Remains a “Holy Grail” effort for multi-material compressible 
flow hydrodynamics coupled to multiple and multiscale energy 
transport mechanisms and material descriptions.
– E.g. need error estimates, not error indicators, for non-

genuinely hyperbolic systems, including mixed hyperbolic-
parabolic systems.

• See, for example, Fuentes et al (2006) [Oden’s “goal-oriented 
error estimation program”] for current initial work on transient, 
nonlinear problems.

• Ongoing debate about how long the legs on this program are 
for NECDC-type problems. ☺

• Adaptive mesh refinement (AMR) doesn’t necessarily provide 
error estimates (error indicators versus error estimates).
– Nor does it eliminate the need for verification.
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Verification is hard! 
Probabilistic error models:

• Glimm and colleagues: treatment of numerical error as an 
uncertainty (incomplete knowledge).

• Probability used to quantify error models.
• See Yu et al (2006) for latest published example.
• I believe this (type of) work has great importance for the long 

run. For one thing, it is compatible with QMU.

Standard deviation 
of probabilistically 
interpreted interface 
position error as 
function of time, 
different meshes.

Ti
m

eImploding 
shock wave 
on perturbed 
material 
interface.
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Validation is hard!

Uncertainty of both the calculation and the 
experimental data referent is dominant in validation.

• Assume calculations are 
converged, say their error bar 
is the size of the plot symbol.

• What does the comparison 
mean? 

• THERE ARE NO 
EXPERIMENTAL ERROR 
BARS (i.e. experimental 
uncertainty quantification).

• THINK QMU.

“Experience and instinct are poor substitutes for 
careful analysis of uncertainty.”
“Experience and instinct are poor substitutes for 
careful analysis of uncertainty.”
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Validation lies at the heart of 
“predictive codes”

EXPERIMENT

CALCULATION

In principle, a simple strategy: 

“Converge” the calculation.

Put in enough physics to insure 
“agreement” of calculation and 
experiment.

This is the 1995 charter of ASCI.

• Experimental uncertainty (variability, bias, diagnostic fidelity) is 
remarkably hard to quantify.

• Quantitative expt-calc differences are uncertain quantities *
• We aren’t converging calculations yet (10 years later).
• What ARE the calculation error bars? Why would anybody believe 

the reported value? (VERIFICATION IS CRITICAL)
• How much physics do you need?
• How much agreement is good enough?
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Validation is hard!
Technically speaking, validation is -

* Characterization of (say) the high-dimensional random 
field

Diff = “Nature – Calculation”
• Given relatively sparse information
• For the purpose of making a reliability statement 

about “Calculation”
• This interpretation has historical leverage in the 

atmospheric sciences:
– For example, see Jolliffe and Stephenson (2003), 

Forecast Verification; Wilks (1995), Statistical 
Methods in the Atmospheric Sciences
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Validation is hard!
Have we detected a trend?

Where is the numerical 
accuracy estimation and 
experimental uncertainty 
quantification in these kinds 
of comparisons?

Re: the “Mystery Calculation” Rogue’s Gallery



November 9, 2006 TUG 2006 Page 23

SAND2006-7046C

Validation is hard!
Summary of Rogue’s Gallery:

• Little or no information about V&V
• Reported “V&V” has little or no formality
• Experimental data have little or no quantified uncertainty
• Little or no discussion of computational error
• Confusion of robustness with respect to a different grid with “small numerical 

errors”
• Comparison with experiment to claim small numerical errors
• Viewgraph norms and spaghetti plots for validation
• Information inadequate to repeat calculations
• Information inadequate to repeat experiments (or model them with other calculations
• Confusion of calibration and validation
• Archaic or non-existent editorial policy for computations

• …

HOW ARE THESE ARTICLES PEER REVIEWED?
This is a challenge for the CS&E profession, not just 

V&V weenies!
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Viewgraph norm to quantitative differences

Tieszen, et al (2005), “Validation of a Simple Turbulence 
Model Suitable for Closure of Temporally-Filtered Navier-
Stokes Equations Using a Helium Plume,” SAND2005-
3210.
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Validation is hard!
Validation Metrics

• Our formal engagement with this 
topic goes back to 2001.

• See Oberkampf and Barone (2006) for 
a recent summary of principles.

• “Metrics” are really metrics, but the 
general topic has to do with rigorous 

methods for quantifying Diff and 
drawing rigorous conclusions about 
predictive capability (per the ASC 
mission).

• Many benefits to thinking rigorously, 
not least of which is strong 
clarification of the difference between 
calibration and validation (Trucano et 
al, 2006), which is especially
important in prediction.

Estimated computational error bars 
disjoint from experimental uncertainty 
confidence intervals – target for future 
validation experiments.
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Credibility for WHAT?
SSP aka QMU

Will our calculations be used properly?
• More than code developers and users need to 

believe ASC M&S and understand why it is 
believable.

• Best Estimate Plus Uncertainty 
– See Pilch et al (2006)

• How much V&V is enough?
– “Sufficiency”Æ “Predictive Capability Maturity 

Model”
• Judgment replaced? 

– Do codes replace humans?
– Are codes certified?
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Decisions are hard!
Remember: ASC is “predictive” computational science.

DO PREDICTIVE M&S!DO PREDICTIVE M&S!

Reliability Dimension
1. What can happen?
2. How likely is it?
3. What are the likely consequences if it does 

happen?

Confidence Dimension
4. What is your confidence in predicting the 

answers to the three questions? 

Use the science and experience of 
high-consequence system 
design/performance assessment in 
rigorous decision environments.

“Risk”-Informed Decision Making

Foundation = V&V

Large-scale computational 
simulations supplement or replace 
physical experiments and tests for 
stockpile stewardship.

What does “predictive”
mean?
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Decisions  are hard!
What do we mean by “predictive”?

“Predictability” versus “Predictive Science”
versus “Predictive Capability”

• Predictability – A technical concept, conventionally arising 
in the consideration of complex systems. I.e. as in “predict
the stability of the solar system” or “predict the evolution of 
a chaotic system.”

• Predictive Science – might just as well be a philosophical 
hope in the progress of the human condition. How do you 
measure it?

• Predictive Capability – in particular a computational
capability with some (rigorous?) basis for credible 
interpolation or extrapolation of current knowledge, for 
example existing experimental data.

We (ASC) believe that “predictive capability” can be 
measured, although such capability is always relative to the 
intended application.
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What do we mean by “predictive”?

• M&S typically informs decision making under uncertainty.
• ASC World: “Quantification of Margins and Uncertainty”

(QMU)
– Technical performance margins for engineered systems
– Uncertainty in the underlying information and 

characterization of margins
– Decisions required that reflect this uncertainty

• Many complex factors enter into using M&S in a complex 
technical endeavor, like Stockpile Stewardship (or climate 
warming policy).

• Our bottom line: Produce, communicate, and use M&S in 
the form of:

Best Estimate Plus Uncertainty



November 9, 2006 TUG 2006 Page 30

SAND2006-7046C

Example of BE+U: “Rivers of Blood”
• Inflation projections from the Bank of England (February 2005 

Inflation Report)
• Hendry: “Surprisingly, reporting of forecasts alone was the norm 

for the Bank, even until relatively recently; and it is still the norm 
among many forecasters.” [Hendry and Ericsson, Understanding 
Economic Forecasts, MIT, 2001]
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“Rivers of Blood” – note missing elements

• Where is the comparison of observation with prediction?

Uncertainty in the observation

Comparison of observation with 
forecast (overlay past RoB)

Uncertainty in the uncertainty
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Decisions are hard!
V&V Sufficiency – How much is enough?

Two options:
1. Keep going until you run out of money or 

until management can’t take it anymore. 
YUK! /

2. Come up with a constructive basis for 
assessing sufficiency.

• The latter is inevitably tied to the application 
and the associated decisions, that is QMU.

• Sufficiency raises challenges of accumulation, 
communication and preservation of 
information.
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Predictive Capability Maturity Model –
LANL Style!

Predictive 
Attribute [SNL]

Lowest
[Exploratory]

Low
[Design]

High
[Qualification]

Highest
[Certified]

Simulation 
Geometry 
Fidelity

Cartoon-ish Better Better again Solution time / 
resolution 
balance at will

Physics Model 
& Alg Fidelity

Ad-hoc Calibrated / low 
fidelity

Physics-based / 
higher fidelity

Validated / algs
span application

Model 
Integration in 
Code

Stand-alone Limited testing Achieved; 
validation

Robustness 
demonstrated

Solution 
Verification

Judgment only Numerical 
sensitivities

Convergence, 
numerical errors 
quantified

Verification test 
suites created, 
automated

NTS Data 
Validation/QMU

Not applied Variable 
calibration, less 
validation

Global 
calibration, 
validation

No ad-hoc 
calibrations, 
systematic val

Impact on 
codes, knob 
removal

Ignored Makes little 
difference

Clear 
improvement

Designer 
adoption
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Decisions Æ PCMM Æ Sufficiency

Designer 
adoption

Clear 
improvement

Makes little 
difference

IgnoredImpact on 
codes, knob 
removal

No ad-hoc 
calibrations, 
systematic val

Global 
calibration, 
validation

Variable 
calibration, less 
validation

Not appliedNTS Data 
Validation/QMU

Verification test 
suites created, 
automated

Convergence, 
numerical errors 
quantified

Numerical 
sensitivities

Judgment onlySolution 
Verification

Robustness 
demonstrated

Achieved; 
validation

Limited testingStand-aloneModel 
Integration in 
Code

Validated / algs
span application

Physics-based / 
higher fidelity

Calibrated / low 
fidelity

Ad-hocPhysics Model 
& Alg Fidelity

Solution time / 
resolution 
balance at will

Better againBetterCartoon-ishSimulation 
Geometry 
Fidelity

Highest
[Certified]

High
[Qualification]

Low
[Design]

Lowest
[Exploratory]

Predictive 
Attribute [SNL]

Designer 
adoption

Clear 
improvement

Makes little 
difference

IgnoredImpact on 
codes, knob 
removal

No ad-hoc 
calibrations, 
systematic val

Global 
calibration, 
validation

Variable 
calibration, less 
validation

Not appliedNTS Data 
Validation/QMU

Verification test 
suites created, 
automated

Convergence, 
numerical errors 
quantified

Numerical 
sensitivities

Judgment onlySolution 
Verification

Robustness 
demonstrated

Achieved; 
validation

Limited testingStand-aloneModel 
Integration in 
Code

Validated / algs
span application

Physics-based / 
higher fidelity

Calibrated / low 
fidelity

Ad-hocPhysics Model 
& Alg Fidelity

Solution time / 
resolution 
balance at will

Better againBetterCartoon-ishSimulation 
Geometry 
Fidelity

Highest
[Certified]

High
[Qualification]

Low
[Design]

Lowest
[Exploratory]

Predictive 
Attribute [SNL]

Decisions

Risk Tolerance
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Are we in the business of replacing 
humans or their judgment? NO!

• But what are the requirements on the codes for the 
SSP and the future evolution of the stockpile in a no-
nuclear-test environment?

• Designers are “certified” from a variety of 
perspectives, from explicit training to the tacit 
knowledge they embody.

• No code will ever replace the explicit and tacit 
knowledge of a designer.

• But must future codes be certified?
• Codes are certified right now! – through designer 

use (and WILLINGNESS to use).

Hint: not a designer 
talking about using 
an ASC code.

“Over my dead body …”“Over my dead body …”
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Should we be constructing “Black Box”
software systems?

If “Users” don’t understand ASC 
codes they shouldn’t be using 
them.
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A National “Community of Practice”?
(Beyond V&V)

• Where do we stand on defining and measuring the 
credibility of our work for important applications?
– “Ground-water models cannot be validated.”

• How do we define, use and empower benchmarks?
– “My code passes more benchmarks than your code.”

• Are “standards” needed? Appropriate? Frightening?
– “I feel free to ignore those DMSO Guidelines.”

• Are journals helping or hurting?
– “Good enough for a journal does not imply good 

validation.”
• Will we ever solve enough of the technical problems to 

make the above questions reasonable?
• How can education help?

“Ground-water models cannot be validated.”“Ground-water models cannot be validated.”

“My code passes more benchmarks than your code.”“My code passes more benchmarks than your code.”

“I feel free to ignore those DMSO Guidelines.”“I feel free to ignore those DMSO Guidelines.”

“Good enough for a journal does not imply good 
validation.”
“Good enough for a journal does not imply good 
validation.”
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Example:

Mehta

“NASA and DOD 
could learn from 
ASC, NNSA.”

“NASA and DOD 
could learn from 
ASC, NNSA.”
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My take-home lessons from the past 11 
years of worrying about this are:

1. Comparing calculations with experimental data has no 
obvious impact on the problem of estimating numerical 
errors.

2. There is no obvious benefit to be gained by comparing 
with experimental data that have undefined uncertainty.

3. Code comparisons have no clear relationship to V&V.
4. Confusing calibration and validation is dangerous in 

prediction.
5. V&V is a risk-management component for high-

consequence decision making under uncertainty.
6. Social elements are important.
7. Absence of evidence that something is wrong is not 

evidence that something is right.

“I’ve had sixteen fights. I won all but twelve of 
them...”
“I’ve had sixteen fights. I won all but twelve of 
them...”
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In conclusion:

V&V is a collaboration between code 
developers, experimenters, designers, 
people with specialized V&V knowledge 
(to the extent they exist) and decision 
makers.

Success or failure in V&V directly mirrors 
the success or failure of this 
collaboration.

“Too hard … Too slow … Too expensive …” ?“Too hard … Too slow … Too expensive …” ?
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Key technical challenges:

• Numerical error quantification.
• Quantifying epistemic uncertainty.
• Validation metrics for high-complexity data sets (e.g. 4-

D data depending on N uncertain parameters, N>>1, 
with aleatory and epistemic uncertainty separately 
accounted for).

• Measuring predictive capability and progress in 
achieving it for the important applications. 

• Sufficiency – define and implement “What’s good 
enough.”

• What is the best way to collaborate with the user 
community, in particular beta-users.

• Supporting QMU, that is integrating decision concerns.
• Where is the computing going to come from?
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2. D. Fuentes et al. (2006), “Extensions of Goal-Oriented Error Estimation Methods to simulations 

of highly-nonlinear response of shock-loaded elastomer-reinforced structures,” Computational 
Methods in Applied Mechanics and Engineering, Volume 195, 4659-4680.

3. Klein, et al (2006), “ASC Predictive Science Academic Alliance Program Verification and 
Validation Whitepaper,” UCRL-TR-220342-Rev, to be released.

4. National Science Foundation (2006), “Simulation-Based Engineering Science: Revolutionizing 
Engineering Science through Simulation,” Report of the National Science Foundation Blue 
Ribbon Panel on Simulation-Based Engineering Science.

5. Oberkampf and Trucano (2002), “Verification and validation in computational fluid dynamics,”
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13. Trucano et al (2002), “General Concepts for Experimental Validation of ASCI Code 

Applications,” SAND2002-0341.
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