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Abstract: In this paper we briefly consider the role that software engineering has in 
performing verification and validation of high performance computational science software. 
We focus on three areas where the intersection of software engineering methodologies and the 
goals of computational science verification and validation clearly overlap. These topics are (1) 
the evidence of verification and validation that adherence to formal software engineering 
methodologies provides; (2) testing; and (3) qualification, or acceptance, of software. In each 
case we emphasize some challenges and opportunities presented by consideration of the 
overlap. 

 

1. INTRODUCTION 
We remind the reader that the IEEE (IEEE, 1991) has defined verification and validation 

in the following way: 

 Verification – “(1) The process of evaluating a [software] system or component to 
determine whether the products of a given development phase satisfy the conditions 
imposed at the start of that phase. (2) Formal proof of program correctness.” 

 Validation – “The process of evaluating a [software] system or component during or at 
the end of the development process to determine whether it satisfies specified 
requirements.” 

 Verification and Validation (V&V) – “The process of determining whether the 
requirements for a [software] system or component are complete and correct, the 
products of each development phase fulfill the requirements or conditions imposed by 
the previous phase, and the final [software] system or component complies with 
specified requirements.” 

Oberkampf and Trucano (2002) pointed out that it requires some care and subtlety to 
understand these definitions from the perspective of computational science. Here, we simply 
take these definitions as given and clear, as the thrust of our discussion is on software 
engineering issues for which these definitions can be strictly applied. 
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Our starting point for this discussion is consideration of three statements in the latest 
Advanced Simulation and Computing (ASC) Program Plan of the United States Department 
of Energy’s (DOE) National Nuclear Security Administration (USDOE, 2003). 

 The Mission of the ASC program is to “Provide leading edge, high-end simulation 
capabilities needed to meet weapons assessment and certification requirements.” 

 The Vision of the ASC program is to “Predict, with confidence, the behavior of 
nuclear weapons, through comprehensive, science-based simulations.” 

 The Strategic Goal of the ASC program is to provide “Predictive simulations and 
modeling tools, supported by necessary computing resources, to sustain long-term 
stewardship of the stockpile.” 

Additionally, it is stated in this DOE program plan that “Verification and Validation (V&V) 
will provide high confidence in computational accuracy by systematically measuring, 
documenting, and demonstrating the predictive capability of codes…” 

The thrust of these quotes is startling. That is, the ASC program has the goal of building, 
deploying and applying complex computational science tools for the purpose of providing 
high-consequence predictions. V&V is understood by ASC to be key to understanding the 
confidence in these computational tools and for establishing sufficiency of this confidence for 
the intended applications to the U.S. nuclear weapons program. No less is implied. 

One of the elements of the V&V strategy identified by the ASC Program Plan is “improve 
software engineering tools and practices for application to [ASC] simulations.” It is this point, 
made in the context of the above mission, vision and goals of the ASC program, which brings 
us to our purpose in the present paper. From the perspective of a high-consequence HPC-
dominated national program, software engineering is an important component of achieving 
success. Why do we make this statement? In what ways does software engineering influence, 
or intersect, V&V for HPC computational science? 

In this paper, we separately consider three key challenges that speak to this intersection. 
We use the term code to mean a HPC computational science software system and then express 
these challenges as follows: 

 How to build high-integrity codes. 

 How to test high-integrity codes. 

 How to accept high-integrity codes. 

In the following, we will briefly consider each of these challenges within the context of 
V&V. This considerably limits our discussion but emphasizes certain ideas that are especially 
relevant to V&V. 

2. CODE CONSTRUCTION 
It is clear that techniques used for constructing software have a strong influence on the 

reliability and success of that software. This awareness has led to increasingly formal 
software development models addressing software engineering in apparently every field 
except computational science. In computational science, which we view as the numerical 
solution of systems of complex partial differential equations in this paper, we observe 
resistance to formal software engineering models, especially to highly structured software 
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development processes and documentation requirements (such as Fairley, 1985; Sanders and 
Curran, 1994; Paulk et al., 1994; Phillips, 1997; IEEE, 1998; Vliet, 2000; Pressman, 2001). 

A fundamental component of V&V is the rigor with which it can be demonstrated that a 
software implementation is correct, that is free from bugs and accurately achieves the design 
requirements. In ASC computational software the issues of absence of bugs and correctness of 
design requirements are centered on complex solution algorithms for partial differential 
equations. In a perfect world, algorithms as designed are correct, so software bugs and failures 
to achieve requirements center strictly on software implementation of these algorithms. This 
would then likely intensify the scrutiny of computational scientists upon programming models 
that increased the likelihood of correct software implementations and it would be less of a 
challenge to argue for this need. The world is not perfect however, especially in HPC (High 
Performance Computing) codes, and it is often a complex but fair question as to whether an 
observed bug or requirements failure in a code is due to algorithms or software or both. 

Since we cannot prove in some mathematically rigorous sense that a code is correct, belief 
in correct software implementation is supported in principle through the incomplete 
accumulation of positive evidence that the software implementation is correct. Even the 
notion of positive evidence – that is, evidence that bugs and requirements failures don’t exist – 
is challenging in practice. The history of HPC software verification, for example in 
computational fluid dynamics, is dominated rather by the response to negative evidence – that 
is, detection of bugs and requirements failures during code operation. This makes the 
understanding of the HPC software development endeavor all the harder because HPC papers 
are not written that emphasize the detection of bugs. Papers are often written instead that 
emphasize apparent computational successes in which, quite frankly, all that can really be 
claimed is that software bugs have not been evident, and are therefore believed to not be 
present.  Clearly this approach has been sufficient for three generations and more of scientific 
publication in computational science, but it is somewhat distant from the needs underlying the 
mission, vision and goals of the ASC program stated above. 

In our view, a key reason to use formal software engineering methodologies (also called 
software quality engineering – SQE) in HPC software development is because of their 
potential for creating additional positive evidence of software verification. Generically, this 
evidence is strongly correlated with two major constructs that result from a deployment of 
useful software engineering formalism; that is (1) an appropriate software development model 
and (2) an appropriate software life cycle model. There is currently no accepted standard for 
either a software development model or a software life cycle model for the codes that are 
created under that ASC program (and for HPC computational science in general). This fact 
creates an opportunity for software engineering as a discipline to strongly influence the future 
of high-integrity HPC verification, at least in the ASC program. 

Despite the absence of a decreed formal SQE standard, the United States DOE has 
recognized the important role of software engineering in contributing to the integrity of HPC. 
High-level guidance that emphasizes software engineering as a component of evidence of 
V&V for ASC codes has been created and documented (USDOE, 2001). That brief document 
emphasizes the way that software engineering formalisms, including software development 
techniques, software verification techniques and software project management techniques, 
contribute to valued dimensions of ASC software – fidelity, functionality, reproducibility, 
traceability, manageability and supportability. Traditionally the focus on the science in 
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computational science has emphasized fidelity and functionality, with the other factors simply 
supporting these supreme goals as best they could and all but invisible in subject-matter 
discourse. It is now understood, as evidenced by (USDOE, 2001) that “high-integrity” 
computational science raises the level of importance of these other dimensions. In particular, 
the conduct and conclusions of V&V are directly influenced by software reproducibility, 
traceability and supportability, as well as fidelity and functionality. It remains an important 
technical software engineering problem to understand how to best accomplish the appropriate 
passage to a more broadly based emphasis on all of these dimensions in the context of 
physical-science dominated HPC. 

The key DOE labs building ASC codes are expected to respond to this high-level DOE 
guidance with a more detailed implementation of the key expressed principles. An example of 
a detailed implementation strategy is that of Zepper et al. (2003). In this document a series of 
specific SQE practices that are believed to support development of reliable software products 
under the ASC program are defined. These practices address broad SQE principles, including 
documentation, testing, SQE – software life cycle linkages, project management processes, 
and roles and responsibilities versus support elements, such as third party software packages. 
Practices have defining elements that include needed inputs, expected outputs, and metrics. 
Quality of the deployment of a given practice, for example documentation of software 
requirements, is quantized into generally four categories, with the intent of supporting graded 
deployment of the practice, assessment of the deployment, and quality improvement of the 
practice over time. Minimal expectations for a core set of identified practices are also stated in 
this document.  

An assessment mechanism coupled with this software engineering deployment strategy 
was also designed and implemented. Assessment is essential for improvement; and annual 
internal assessments of the ASC code development program at Sandia are performed and 
documented. The latest example of this assessment and documentation is found in (Ellis et al., 
2004). These assessments are formal, requiring trained assessment teams and significant 
documentation from the twenty different software projects that participated in the 2003 
assessment documented in (Ellis et al., 2004). The products of these assessments include (1) a 
common measurement of the degree to which the practices identified in Zepper et al. (2003) 
are implemented; (2) comparison with past assessment to quantify the nature of SQE 
improvement over time, both for particular software projects and for the overall Sandia ASC 
program; (3) identification of lessons-learned, both best practices and challenges, that 
influence the overall execution of the ASC code development projects at Sandia. This 
information also influences the nature of defined SQE practices and the means of assessment 
(as we write, the initial definition of Zepper and colleagues is undergoing modification based 
on assessment lessons-learned and overall deepening of knowledge). 

In theory, an important quantification of the SQE processes should be the degree to which 
these practices are contributing to the development of “Predictive simulations and modeling 
tools…” and how this factor is improving in time. This has not yet been accomplished. 
Scoring versus defined practices and the quality of deployment is performed, plotted and 
compared with the previous assessment in (Ellis et al., 2004). The expectation is that 
improvement in one or more practices, hopefully of special importance to given code projects, 
takes place on yearly time scales. It is also expected that performance on any given practice 
will not worsen. 
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As an example of how such an assessment might be conceivably used by those who may 
be perceived to be only interested in the calculations such software delivers, we emphasize 
that the V&V program at Sandia uses this information as part of the general challenge of 
determining that a code is “suitable” for validation. Code suitability for validation was 
defined in Trucano, Pilch and Oberkampf (2002), and operationally means that there is 
evidence that money will not be wasted in a dedicated experimental validation activity 
targeting a specific application of the code. Before committing significant resources to 
validation some evidence that the code can function well enough to allow comparison with 
experimental data is desirable. If no such evidence is demanded, then all codes at any state of 
their development can reasonably expect validation resources to be directed their way. This 
situation is impossible because of resource limitations and priorities. The SQE assessment 
process at Sandia mentioned above provides relatively minimal evidence of code suitability 
for validation, but it is evidence nonetheless. The existence of this evidence does not 
guarantee that the code will be fully functional for all aspects of an elaborate experimental 
validation project, but it is useful as a necessary condition for managing a V&V program. 
This is not an unreasonable example of a larger class of decisions that might sensibly rely 
upon the existence of SQE evidence as a necessary condition for application of an identified 
code. 

Post (2004) has observed that in the HPC community, resistance to SQE arises when 
perceived purely formal requirements, for example for seemingly unnecessary documentation, 
take precedence over correctly functioning scientific software. It is also onerous to implement 
practices for which evidence of their effectiveness when applied to HPC software is missing. 
These observations are also echoed by others, for example the “Agile Manifesto” community 
(Agile Manifesto, 2003). While this concern is real, it partly arises from psychological issues 
associated with computational scientists being first and foremost physical scientists and 
second software engineers. We emphasize this point strongly. No amount of software 
engineering will fix incorrect algorithms, or perform the research required to find “the” 
correct equation required to model a given physical phenomenon. However, it is also probably 
true that properly defined, implemented and constrained software engineering is a necessary 
condition for computational science to develop high-integrity software appropriate for high-
consequence applications. In particular, appropriate software engineering methodologies 
contribute V&V evidence that goes beyond waiting for the next bug or requirements 
inadequacy to surface. Past scientific success with an HPC code is of undoubted importance 
and compelling in itself, but in high-consequence computing one must always confront the 
question “How do you know the answer that was calculated is the right answer?” and seek 
any relevant information wherever it may be found. 

To conclude this section we return to a point we raised earlier, that compelling software 
development and life cycle models for HPC codes, such as the codes the ASC program is 
developing, are unclear. We are aware of little work on this particular topic. A standard 
approach that we have observed is to decree that a software development quality model, such 
as the Capability Maturity Model CMM (Paulk et al., 1994), will be used with little available 
real experience of the application of the model to, say, computational physics codes. 

Even less is apparently known about the life cycle of important HPC codes. For example, 
HPC life cycles often boil down to anticipation of major code rewrites at fixed periods of time 
governed by the acquisition of new computers or by the loss of key personnel. There is little 
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confrontation with the fundamental concept of retirement in the HPC code world; retirement 
is perceived as happening when projects are cancelled or funding is eliminated, or when key 
personnel leave a project. SQE formalism firmly linked to life cycle models specifically 
recognizes the importance of managing software retirement. It is believed by most 
practitioners that the standard waterfall model (Fairley, 1985), or an iterated waterfall model, 
or any number of other such models, is not appropriate for HPC codes. Beyond that point, 
there are wildly differentiated approaches to development and life cycle across the spectrum 
of ASC codes and the broader U.S. HPC software community. 

We therefore take this opportunity to advocate several opportunities for future work on the 
intersection of formal models of software development and software life cycle for high-
integrity HPC software.  

 First, we believe that it remains a rich area for applied research to define an 
appropriate SQE development model that is broadly applicable for the ASC codes. We 
do not advocate development of a model that will be rigidly and ruthlessly applied. 
Rather, we advocate identification of a model that provides richer opportunities for 
measurement of the software development process, for V&V to be a more integral part 
of the development process, for better life cycle planning, and for improved 
documentation.  

An interesting example of work along these lines is Ambrosiano and Peterson (2000). 
These authors discuss a software engineering model, called the Exploratory Process 
Model, that emphasizes exploratory work flow characteristics of computational 
science software projects. The model has some elements in common with Extreme 
Programming (Beck, 2000) and also the Agile Manifesto. A particular focus of their 
study is the impact that exploratory research has on the otherwise rigid framework for 
developing requirements and subsequent software project planning present in more 
conventional software engineering models. It is also of interest that Ambrosiano and 
Peterson’s Exploratory Process Model comfortably embraces some of the 
psychological elements of “Scientist” versus “Software Developer” that we mentioned 
above. We do not believe that this work proceeded beyond the initial report these 
authors published. We consider this to be an excellent example of taking a deeper look 
at SQE issues in computational science and deriving useful unobvious conclusions. 
More work along these lines is desirable, especially if accompanied with careful 
empirical studies. 

Much is assumed within the HPC community about the limitations of software 
engineering formalisms but little published analysis of these limitations is found in the 
computational science literature. Above, we implicitly assume that a model like CMM 
is not really appropriate for HPC code development. Is this a fair assumption? More 
precisely, what can be understood empirically about apparent limitations of specific 
software engineering methodologies for HPC? It is unlikely that this will be a study 
conducted by HPC code activities like those in the ASC program; rather, this is a 
research opportunity for the software engineering community itself 

 Second, we believe that life cycle concepts are relevant to HPC code development and 
need to be better understood. Post and Kendall (2003) have undertaken the only study 
that we are aware of that examines certain life cycle dimensions and parameters for 
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ASC codes, centered on ASC codes developed at Los Alamos National Laboratory 
and Lawrence Livermore National Laboratory. These factors include code complexity 
measures, qualitative and quantitative; product characteristics; user base definition; 
configuration management statistics; hardware platform characteristics; funding 
parameters; software lifetime characteristics; development team characteristics; and 
project planning characteristics. The discussion is framed within an overall iterative 
life cycle model, as well as tied to accepted software measurements (Jones, 1997) for 
predicting software evolution within the life cycle and future resource requirements. 
Throughout their paper, Post and Kendall emphasize that requirements drive resources 
and software development within the life cycle, not vice versa. In point of fact, this 
amounts to pointing out that ignoring software life cycle issues is tantamount to 
ignoring a fact of life. Post and Kendall also consider the impact of schedule factors 
other than software development in the evolution of ASC code project, often a 
somewhat disconcerting issue because it too may be incorrectly managed. 

Among other things, life cycle concepts are important for cost estimation and project 
planning and influence quantitative measurement techniques that contribute to the 
objective quantitative evaluatin of software correctness as well as software 
development management (Fenton and Pleeger, 1997; Jones, 1997). This was clearly 
revealed in the study of Post and Kendall. Post (2004) has emphasized the point we 
essentially made above, that requirements drive costs, not vice versa, or a code project 
is doomed, even if one wants to think of it as only computational science. 
Unfortunately, the largest hidden (or at least hard to measure) cost in current ASC 
projects, in our opinion, is V&V. This is not surprising, since these costs are 
recognized by the HPC community as being the hardest to estimate with good fidelity. 
Failure to focus on HPC software life cycle increases our inability to discern and 
estimate HPC V&V costs. Since V&V is a critical requirement for ASC software (as 
we emphasized in our introduction), failure to properly estimate and measure these 
costs within a life cycle model increases the potential for doom of ASC code projects. 

 Third, it is worth studying how software engineering influences, and is influenced by, 
the psychological problem of “physical scientist” versus “software engineer” that is 
prominent in large-scale HPC code development projects. In our opinion, the HPC-as-
physical-science philosophy contributes to the practice of V&V as a reaction to 
discovered problems, rather than as a directed organic activity within HPC code 
development projects. Reacting to discovered bugs is inadequate when the 
consequences of a bug are great. The consequences of a late-discovered bug in HPC 
software intended “to meet weapons assessment and certification requirements” are 
indeed great! 

3. CODE TESTING 
The next intersection between HPC and V&V that we wish to discuss is software testing. 

In our view, the frontiers of high-integrity HPC are dominated by testing. Testing remains the 
most essential contributor to the collection of evidence that is required for establishing 
confidence in HPC code applications, independently of whether the testing is deliberate or 
inadvertent through code application not intended to be a “test.” For high-integrity HPC 
sufficient confidence in the credibility of the code is crucial. Sufficient confidence in software 
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firmly rests upon the idea of sufficient testing. Inadequate testing increases the risk of dire 
consequences of applying malfunctioning software in important circumstances.  

How sufficient testing may be defined and how it may be achieved is influenced by 
software engineering principles. Testing infrastructure, that is, the design of testing, the 
technology required to properly conduct it, and the methodologies for properly interpreting 
the results remains a huge technical challenges for the entire software industry, not simply for 
HPC and the ASC program. Inadequacy of the testing infrastructure has been estimated to 
contribute billions of dollars in additional costs to software development projects nationwide 
(NIST, 2002), as well as to decreased quality of delivered software products. The NIS study 
analyzes testing infrastructure and economics with a relatively strict alignment to SQE 
principles and dimensions. To the degree that this alignment is incomplete, for example due to 
an inadequate recognition of SQE factors in a given software product, it is hard to even 
properly frame the economic questions that the NIS study poses. While the case studies 
presented by NIS were in non-HPC applications (CAD/CAM/CAE systems; product data 
management software; financial services software), there is little reason to doubt the 
relevancy of the qualitative conclusions for HPC software. 

The NIST study implies in its detail that to the degree that a formal SQE framework is 
missing for a software product, the more likely the software testing is “art” (ad hoc and expert 
judgment driven) than “science.” Beizer (1990) expounds exactly upon this issue in a treatise 
of over 500 pages devoted to testing in SQE. Beizer’s basic message is that good testing 
requires good test design; and good test design is rooted in the characteristics of a good 
software development process. Details will vary, of course, depending on whether the 
software being tested in a CAD/CAM system or solves a system of partial differential 
equations. 

Software testing for HPC is especially difficult because of the problems created by the 
strong coupling of the science and mathematics of complex algorithms with code success. 
Formal logic of testing (Beizer, 1990) first and foremost depends upon having tests that a 
code passes or fails. In HPC such tests are most easily designed as structural tests, say at the 
unit testing level. Unfortunately, a large set of unit tests can be successfully passed in a CFD 
code, yet the resulting computations can fail to accurately simulate a desired problem. At 
more complex integral software levels, structural tests that have clear cut pass/fail assessment 
are very difficult to devise, while more easily designed and broadly applied functional tests 
have more difficult assessment issues. At the integral software level we tend to see a 
somewhat implicit transformation from SQE-dominated unit-type structural testing to user-
dominated integral functional testing, with attendant assessment principles that may be best 
characterized as “In the Eye of the Beholder.”  

Most really severe problems with HPC codes that have achieved initial release are not 
hard faults that create clear compiler failures, dramatic code crashes, or other clearly 
interpreted symptoms. Rather, these problems center on lack of accuracy of numerical 
solutions of partial differential equations that is directly (or indirectly) traceable to 
algorithmic failures. Algorithmic failures are mathematical problems, but also typically 
strongly correlated with the science in computational science practice. Detecting a lack of 
accuracy, as opposed to an outright code crash, can be very difficult (hence the importance of 
the “In the Eye of the Beholder” assessment). Extensive experience may be required to 
recognize a true algorithm failure. Lack of accuracy may also be due to lack of discretization 
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resolution in a given calculation; the algorithm may be correct, but the number of finite 
elements, or finite difference resolution, or number of iterations specified for an iterative 
solver, may not be sufficient. Since HPC is dominated by the need to increase numerical 
resolution for hard problems where current achievable discretizations are known to be 
insufficient, we see how difficult it can be to detect true algorithmic faults or other code 
problems that don’t result in hard software failures. Detecting an algorithmic failure may have 
to be deferred until numerical resolution issues can be dealt with. But notice that believed 
numerical resolution adequacy is itself coupled to some belief in current understanding of 
solution algorithms. To the extent that the algorithms may be wrong, the perception of needed 
numerical resolution may be wrong. Untangling these complex problems is not easy. 

For these and other reasons, HPC testing ends up looking quite ad hoc over the very long 
run and differs very little from the lowest level of testing Beizer (1990) identifies, that is 
debugging. This kind of testing will not likely originate in formal test design described in 
detail by Beizer and other processes advocated by SQE, nor will it rely upon a systematic 
testing infrastructure. This means that the issues raised by NIS are probably magnified, not 
absent. In computational science, only a few of the existing test problems are agreed to be 
standards of simulation performance in given fields. Where a standard test problem is 
identified (very rare) or implicitly exists (for example, the Sod problem in compressible fluid 
flow; Woodward and Colella, 1984) while the correct solution is known there is no universal 
standard for how close to that answer a code must be for a given resolution to define success 
as opposed to failure.  

There sometimes appears to be an active distaste for this kind of discourse, which is 
particularly apparent in published comparisons with such “test” problems. This issue has also 
been firmly raised recently by Quirk (2004). In principle, the matter could be made more 
objective through an approach such as convergence studies applied with a rigorous formalism 
that draws a firm conclusion as to whether one achieves the correct solution in the limit as 
discretization fidelity increases (Oberkampf and Trucano, 2002). In practice, one rarely sees 
this kind of testing logic published, even if one is lucky enough to have a test problem that 
could be considered (informally we emphasize) to be a community standard. Nor is this kind 
of study typically required by editorial constraints in journals devoted to publishing the 
progress and results of HPC. 

Key HPC testing centers on usage of the code, hence is clearly functional testing at an 
integral software level. This is effectively unplanned software testing and it certainly helps 
develop a sense of the correct functioning of the software over a long period of time. This 
sense of correctness – correct requirements correctly implemented – may indeed run 
exceptionally deep within a particular community of users of the code, but it is also strongly 
correlated with the knowledge of experienced individual users. The result is often a basis for 
belief in the correctness of HPC software that simply cannot be decoupled from an individual 
user. This is not satisfactory in our view, since software should either be functioning correctly 
or not as an abstract principle divorced from any particular user. This is not philosophical 
hairsplitting when high-consequence application of the code is the goal. 

While accumulated experience applying complex computational science codes is very 
important to understanding the problem of correctness, it is also unsatisfactory from the 
perspective of knowing when a code is adequate for a particular application. This is also 
important for high consequence applications. Rigorous testing should form an important 
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contribution to decisions about usage of software. Ad hoc testing seems singularly unable to 
accomplish this. The problem of adequacy, or acceptance, of HPC is further discussed in 
Section 4. 

It is important to emphasize the three important dimensions in testing that must be 
encompassed by formal testing methodologies integrated with SQE elements for HPC 
software. First, a precise understanding of the purpose of the test must be developed. This is 
very straightforward for structural unit tests, and considerably harder for functional integral 
tests. An entire spectrum lies between these two extremes in HPC software. Second, specific 
definition of a test that achieves the purpose is required. Again, this is relatively 
straightforward for a unit-level functional software test. It can be virtually impossible if the 
goal is to devise an integral test for combined algorithms solving a complex system of partial 
differential equations. Third, this test must be assessable. Or, another way to put this is that 
the test must be accompanied by a precise assessment specification. The goal of this 
specification is quite simply to eliminate, or at least minimize, the “In The Eye Of The 
Beholder” effect in computational science software testing. It is not clear to what degree this 
ideal can be achieved; therefore, this is clearly an attractive target for dedicated research. 

The importance of testing is further illuminated by a comment on software product 
liability. The purpose of testing is to remove defects from software, whether they are 
programming language, algorithmic, or physics in origin. Product defects in worlds other than 
software produce vulnerability to legal liability. Due diligence in product testing is an 
important principle in this case, because it is generally recognized that a product cannot be 
guaranteed to function properly through testing alone. Due diligence typically reflects the 
existence of standards guiding that product testing. Where such standards don’t exist, the 
presence of due diligence is harder to establish. It is unclear what due diligence means when 
we are discussing the testing of HPC software. A default then appears to be the use of 
standard cautionary language, such as the statement appearing in Press et al. (1992)  

“We make no warranties, express or implied, that the programs contained in this volume are free of 
error, or are consistent with any particular merchantability, or that they will meet your requirements for 
any particular application. They should not be relied upon for solving a problem whose solution could 
result in injury to a person or loss of property. If you do use the programs in such a manner, it is at your 
own risk. The authors and publisher disclaim all liability for direct or consequential damages resulting 
from your use of the programs.” 

In another large book on software testing, Kaner, Faulk and Nguyen (1999) devote an 
entire chapter to a discussion of potential liability issues that trace to a greater or lesser extent 
to inadequate software testing. The title of the chapter in question is “Legal Consequences of 
Defective Software.” We heartily recommend that readers of this paper scrutinize that 
chapter. Among other thing, these authors point out that it is not clear that cautionary 
language of the above type is sufficient protection. This kind of warning is called a restrictive 
warranty disclaimer, and does not necessarily protect software product developers from suits 
based on non-contract legal theories, such as claims of fraud (for example, an unsound basis 
for making a claim about the software performance) or property damage (for example, 
software that destroys real property – i.e. data – through malfunction). From the testing 
perspective, we simply note that one potential unsound basis for claiming software 
performance is inadequate testing, for example failure to conform to available industry 
standards. As it happens, there is an ANSI standard for software testing that as far as we know 
is not usually followed in the development of HPC codes.  
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Our purpose is not to emphasize litigation potential in inadequately tested HPC software. 
Rather, it is to emphasize that formal testing procedures rooted in SQE methodologies are 
worth considering for claimed high-integrity HPC software. The legal themes of negligently 
supported claims of software capability (inadequate testing) and property loss due to 
inadequate software quality (time, money, information) are perfectly appropriate as technical 
themes in the HPC world. Due diligence – rigorous testing – is not simply a legal recourse, 
but a scientific necessity. 

Given these observations about HPC testing, we offer the following recommendations for 
building on the role of SQE specifically in the area of testing: 

 Developing software testing methods that are specialized for complex computational 
science software and deployable within formal SQE-centric test infrastructures is an 
important area of research. One attempt at a general approach is the Method of 
Manufactured Solutions (MMS), a testing procedure of some generality that is 
specifically aimed at software for solving partial differential equations. A complete 
discussion of this methodology is given by Knupp and Salari (2003), extensively 
building on an earlier exposition of Roache (1998). Setting aside the interesting 
challenge of finding other testing methodologies that reflect to some extent the 
generality claimed by MMS, a fair question is how to properly meld a testing 
methodology like MMS with the software development process. MMS has 
characteristics of structural testing and therefore would appear to be strengthened by 
greater attention to its needs and requirements during even the design phase of an HPC 
code. Actually confirming this speculation is of interest. 

 We believe that there should be increased reliance upon major structural testing 
procedures, mirroring SQE procedures, to achieve measurably high-reliability HPC 
software components, and less reliance upon ad hoc experience alone. More generally, 
there should be increased emphasis on formal testing as product development, not just 
as computational science experience. In SQE, test plans, infrastructure and test 
conclusions couple to the software life cycle elements. TO the degree that a reasonable 
HPC software life cycle framework is missing, it is hard to achieve the goal of a 
systematic SQE-focused test process. Constructing a recognized and standardized test 
discipline for high-integrity HPC is a difficult but worthwhile problem for research by 
the SQE community.  

 We recommend the exploration of increased use of testing methods not traditionally 
applied in computational science. In particular, we advocate the increased use of 
statistical testing.  This is correlated with a methodology currently applied to many 
ASC codes, systematic regression testing, that was not even visible as recently as 15 
years ago. As pointed out by a National Research Council study (NAS, 1996) the 
problem of adequately covering complex software systems with structural tests is 
formidable, at least if coverage is defined to be of common use profiles or execution 
paths as well as discrete software elements. Statistical testing methodologies offer a 
means of addressing this problem. However, to accomplish this, an underlying 
framework of statistical software reliability must also be conceived.  

Statistical testing, correlated with statistical specification of important use profiles, is a 
truly new idea in computational science software and strikes us as a highly important 
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step forward. From the perspective of the traditional computational science 
community, however, the difficulty posed by statistical testing methodologies is that 
their presumed results are also statistical. In particular, conceptions of reliability or 
effectiveness of the software based on statistical testing must, of necessity, be 
statistical. While this is new for the computational science community it is certainly 
not new for the broader software engineering community (Singpurwalla and Wilson, 
1999). Certainly the use of statistical reliability concepts in software measurement is 
now rather conventional (Fenton and Pfleeger, 1997). A traditionalist would argue that 
the current ad hoc and evolutionary accumulation of evidence that an HPC code works 
is not statistical and therefore better. Our rejoinder is that the ad hoc and evolutionary 
accumulation of evidence is in truth uncertain, and therefore statistical in one sense or 
another whether the computational science community wished to admit it or not. 
Explicitly acknowledging the statistical aspects of computational science software 
reliability offers fresh insights and additional quality measures that are themselves of 
interest. 

To take full advantage of this requires new work in characterizing faults in 
computational software as accuracy failures and other sorts of soft failures (code runs 
but results are not sufficient), rather than hard faults (code dies). This is theoretically 
what V&V is really all about, so there is an opportunity here for building on the failure 
information that V&V provides as well as the successes. 

Finally, from the software reliability view, we need stochastic process models of faults 
in software that are indexed by spatial variables (typically high-dimensional, we are 
not referring only to the three dimensions of physical space but to the dimensions 
provided by all the various parameters that enter into the specification of specific 
simulations in a given computational science code). The easiest software reliability 
formulation develops stochastic processes and predicts software fault characteristics as 
functions of time. It is of interest to go beyond that for HPC.  

 An important opportunity for the SQE community is presented by the need to research 
and develop predictive cost (time, money, level of effort) estimates for V&V of HPC 
software, especially test costs. The real goal is to estimate the cost of development and 
deployment of a sufficient testing infrastructure for HPC codes. By the cost of V&V 
for software, we mean the cost required to achieve a believed level of reliability as 
measure by specific metrics. Sufficiency dominates the concept of code acceptance 
(accreditation) discussed in Section 4, which is why we cast this point in this way. 
V&V costs are hard to estimate for highly formal software development activities, let 
alone for HPC with its lack of life cycle constructs and historical reliance on ad hoc, 
and essentially unbounded, user testing. Sufficiency is also governed by appropriate 
quantitative metrics. So, coupled with our call for better cost predictors is of course 
the need to develop appropriate measures of testing impact for HPC codes.  

 

4. CODE ACCEPTANCE 
The purpose of V&V is to develop a knowledge base that allows objective assessment of 

whether or not an HPC code can provide a good enough answer for a stated problem. For 
high-consequence applications, an HPC code must be a high-integrity software system and the 
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V&V must be performed in a way and to an extent that allows determination and warranting 
of the high-integrity characteristics that are required. This is the problem that we call 
acceptance or accreditation, and it remains the most difficult problem for computational 
science.  

The problem has not traditionally been an issue when science is emphasized in HPC 
because of the accepted evolutionary character of the code (worse yesterday, better tomorrow) 
that matches the progress of science. When a high-integrity software product must be 
delivered on a finite time scale through the application of less than unlimited resources the 
question is dominant. 

The Department of Defense recognizes the need to address these issues. That is why they 
have developed and deployed a VV&A (Verification, Validation and Accreditation) program 
to support DOD software efforts, rather than only a V&V program (DMSO, 2000). There, 
accreditation is defined as “The official certification that a model, simulation, or federation of 
models and simulations and its associated data is acceptable for use for a specific purpose.” 
This is also what we mean by acceptance in this paper.  

Various questions enter into the judgment of acceptance, all providing opportunities for 
potential consideration of SQE methodologies. 

 Was the code built “good enough?” How do you measure “good enough?” 

 What are metrics for determining sufficient V&V? How many verification and 
validation tests do you need? How should the testing infrastructure be designed to 
support an evaluation of software acceptance for HPC? How should code performance 
on a collection of test problems be evaluated? 

 When does the science in computational science end and SQE begin? When does the 
SQE end and the science begin? 

 How is risk quantified for high-integrity HPC? 

 Does the notion of formal acceptance actually make sense for HPC? 

 

5. CONCLUSION 
There are several factors that we have not discussed to any degree in this paper. For 

example, there are unique problems posed by the requirement to design mathematically 
correct solution algorithms for complex systems of partial differential equations that are 
accurate with available computing resources. These algorithms must also be efficient, that is, 
allow code executions on problems of interest on required time scales. There are also unique 
problems posed by experimental validation. Both of these factors add great complexity to the 
purely SQE factors that enter into a rational discussion of verification and validation. In the 
first case, a problem that is essentially mathematical must be solved. In the latter case, a 
problem that is essentially physical must be solved. Further discussion of these problems can 
be found, for example, in Oberkampf and Trucano (2002). 

The issues we have discussed in this paper, HPC code development, testing, and 
acceptance, are neither academic nor trivial. Ad hoc evolution of ASC computational science 
software from a past state of “worse” to a future state of “better” is insufficient and 
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inappropriate because of the fundamental goal for its application that has been stated in the 
Introduction – to “Predict, with confidence, the behavior of nuclear weapons, through 
comprehensive, science-based simulations.” This is a high-consequence, demanding 
deliverable that will not likely be achieved through software engineering principles that aim 
low because of fear of inappropriate formality. In our opinion, the challenges we have raised 
that center on overlaps between computational science and software engineering should be 
studied and resolved to minimize the risk of future computational science catastrophic 
blunders.  
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