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Abstract 

 

This report documents the early experiences with porting and performance analysis of 

the Tri-Lab Trinity benchmark applications on Intel Xeon Phi (Knights Corner) 

(KNC) processor.  KNC, the second generation of the Intel Many Integrated Core 

(MIC) architectures, uses a large number of small P54C-x86 cores with wide vector 

units and is deployed as PCI bus attached process accelerators.  Sandia has 

experimental test beds of small InifiniBand clusters and workstations to investigate 

the performance of the MIC architecture.  On these experimental test beds the 

programming models that may be investigated are “offload”, “symmetric” and 

“native”.  Among these program usage models our primary interest is in the so called 

“native” mode, because the planned Trinity system to be deployed in 2016 using the 

next generation MIC processor architecture called Knights Landing would be self-

hosted.  Trinity / NERSC-8 benchmark programs cover a variety of scientific 

disciplines and they were used to guide the procurement of these systems.  

Architectures such as the Intel MIC are well suited to study evolving processor 

architectures and a usage model commonly referred to as MPI + X that facilitates 

migration of our applications to use both coarse grain and fine grain parallelism.  Our 

focus with the applications selected is on the efficacy of algorithms in these 

applications to take advantage of features like: large number of cores, wide vector 

units, higher-bandwidth and deeper memory sub-system.  This is a first step towards 

understanding applications, algorithms and programming environments for Trinity 

and future exascale computing systems.   
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1.  INTRODUCTION AND OBJECTIVES OF THIS INVESTIGATION  
 

As of writing this report there are three dominant programming models on systems with KNC.  

The systems on which we investigated the KNC performance have Intel Xeon E5-2670 Sandy 

Bridge (SB) processors on the compute nodes (host) with one or more Xeon Phi Knights Corner 

coprocessors attached to the system PCIe bus.  The programming models supported in such 

configurations are: MPI + Offload, Native Mode and Symmetric Mode.  In all three approaches 

to using the KNC, an application could be built with a Hybrid (MPI + Threads) computational 

model.  Our primary focus on this report is on the Native mode.  This is because the recently 

announced procurement of NNSA/ACES Trinity system will have a large number of compute 

nodes (nearly half) using the Intel Xeon Phi Knights Landing (KNL) processor.  The Xeon Phi 

Knights Landing on Trinity will operate in ‘self-hosted’ mode.  An application built today to use 

the MIC’s native mode runs entirely on KNC.  The executable is not binary compatible with the 

host Sandy Bridge processor.  The instruction set for MIC is similar to the Intel Pentium 4, but 

not all of the 64 bit scalar extensions are included.  MIC also has 512 bit vector/SIMD registers 

but does not support MMX, SSE or AVX instructions.  Neither can applications built for the host 

Sandy Bridge processor run on the MIC.  The primary reason for our interest in studying the 

Native Mode usage model is that it lays the foundation for application migration to Trinity and 

this model is the least disruptive in adapting Sandia’s production application to the MIC 

architecture.  Even on the other half of the compute nodes on Trinity that incorporate the Intel 

Haswell processors, our investigation of applications on their efficacy in the use of a hybrid 

(MPI + OpenMP) programming model and vectorization would be relevant. 

 

As described in the subsequent sections our systems with KNC, have 57 or 61 cores on the 

processor with each core capable of supporting four threads in hardware.  Each hardware core 

has 512 wide SIMD/vector registers.  All of the cores have fully coherent L1 and L2 caches and 

share 8GB or more of GDDR5 memory.   

 

This investigation focuses on: 

1) The KNC performance profile with different combinations of MPI tasks and 

OpenMP threads sweeping through a range spanning 1 MPI task and 240 

OpenMP threads to 240 MPI tasks each with one OpenMP thread 

2) Comparative performance on the host Sandy Bridge two processor nodes with 16 

cores  

3) The best choice of MPI task and OpenMP thread affinity settings to yield optimal 

performance.  

4) Preliminary investigations on the ability to maximize performance through 

exploitation of 512 bit SIMD/vector registers.   

 

Some of the Trinity benchmarks with a mature Hybrid (MPI + OpenMP) implementation were 

well suited to the investigation of balance between MPI tasks and OpenMP threads.  We 

supplemented Trinity benchmarks with few other hybrid applications such as the NAS 

benchmarks to further gain insights on the optimal use of the KNC architecture.     One of 

benefits of the Intel MIC architecture is the program development environment helps maintain a 



10 
 

single source code, while permitting migration to the many-core architectures with familiar x86 

based compiler, development tools and libraries. 

 

2.  HARDWARE USED 
 

2.1. Corner Workstation 
 

For most of our performance investigation of the MIC/KNC architecture, a dual-socket 

workstation with dual 8 core Xeon E5-2670 (Sandy Bridge) processors with 64GB of RAM 

memory is used.  It has been configured with two MIC PCIe attached Knight Corner processors; 

stepping C0 ES2, 1.2 GHz (1.3 GHz turbo), 61-core, 16 GB on 4 Gb technology.  This 

workstation is named “Corner”.  A block diagram of the KNC processor with 61 cores is shown 

in Figure 1.  The core architecture is shown in Figure 2.    

 

The KNC processor is primarily composed of CPU cores, caches, memory controllers, PCIe 

client logic, and a high bandwidth, bidirectional ring interconnect. There are a total of 61 cores 

on each KNC.  Each core uses a short in-order pipeline and is capable of supporting 4 threads in 

hardware. Each core has a private 32KB instruction and 32KB data L1 cache, and a private 512 

KB L2 cache that is kept fully coherent by a global-distributed tag directory as shown in Figure 

2. The memory controllers and the PCIe client logic provide a direct interface to the 8GB 

GDDR5 memory on the processor and the PCIe bus, respectively. All these components are 

connected together by the ring interconnect. 

 

Multiple Intel Xeon Phi coprocessors can be installed in a single host system. Within a single 

system, the coprocessors can communicate with each other through the PCIe peer-to-peer 

interconnects without any intervention from the host.  Similarly, the coprocessors can also 

communicate through a network card such as InfiniBand or Ethernet, without any intervention 

from the host. 

 

 
Figure 1 Knights Corner Block Diagram 
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Figure 2 Knights Corner Core Architecture 

 

An important component of the Intel Xeon Phi coprocessor’s core is its vector processing unit 

(VPU), shown in Figure 3. The VPU features a 512-bit SIMD instruction set, officially known as 

Intel Initial Many Core Instructions (Intel IMCI). Thus, the VPU can execute 16 single-precision 

(SP) or 8 double-precision (DP) operations per cycle. The VPU also supports Fused Multiply-

Add (FMA) instructions and hence can execute 32 SP or 16 DP floating point operations per 

cycle. It also provides support for integers. 

 

 
Figure 3 Knights Corner Vector/SIMD Unit 

 

2.2. Compton InfiniBand cluster 
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The Compton cluster is an Appro InifiniBand cluster with 42 compute nodes and is similar to the 

production TLCC2 capacity clusters called Chama and Pecos.  Each node has two 8-core Sandy 

Bridge, Xeon E5-2670 2.6 GHz processors.  The nodes differ from Chama and Pecos nodes in 

that each node has two 1.1 GHz Knights Corner processors, each with 57 cores and 6GB of 

GDRR5 memory.  The compute nodes are connected with a Mellanox Infiniscale QDR 

InfiniBand interconnect.  For benchmarking purposes one must be aware that unlike on Chama 

and Pecos, on Compton Hyperthreading is active. The Knights Corner processor used in 

Compton comes from a different SKU to that used in the “corner” workstation and so has only 

57 active cores.  

 

 

 

3.  SOFTWARE ENVIRONMENT 
 

3.1. Corner Workstation 
 

3.1.1. Intel Compiler and Composer version 

 

All the needed software for program development is available in 

/opt/intel/composer_xe_2013_sp1.  The latest install date is March 20, 2014.  This environment 

consisted of compilers icc, ifort versions 14.0.2, with MKL libraries version 11.1 update 2, TBB 

libraries version 4.2 update 3.  It also included Intel MPI, impi version 4.1.3 and  

vtune_amplifier_xe 2013 Update 16.   

 

3.1.2. Setup for Host/Sandy Bridge compile and run 

 

The setup for compiling and running on the host Sandy Bridge processors requires sourcing the 

file: 

 /opt/intel/bin/compilervars.sh intel64. 

 

3.1.3. Setup for MIC/Xeon Phi compile and run in native mode 

 

The steps involved in running on KNC in native mode are: 

  

1) source  /opt/intel/bin/compilervars.sh intel64 

2) use -mmic flag to compile code to run native on MIC; -O2 and above compiler 

optimization flags invokes vectorization 

3) Copy all the needed libraries (like MPI, MKL, etc.)  to MIC.  The script that was used for 

this called load-mic.sh shown below 

4) scp the executable to MIC: (example; sudo scp ./hello_mpi-mic mic0:/tmp) 

5) ssh to the MIC and cd to /tmp and run (example; sudo ssh mic0; cd /tmp;  mpirun -n 4 

./hello_mpi-mic  ) 

 

The load-mic.sh shown below copies the necessary libraries to MIC. 

 

#!/bin/sh 
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 sudo scp /opt/intel/impi/4.1.0/mic/bin/mpiexec.hydra mic0:/bin 

sudo ssh mic0 ln -s /bin/mpiexec.hydra /bin/mpiexec 

sudo scp /opt/intel/impi/4.1.0/mic/bin/mpirun mic0:/bin 

sudo scp /opt/intel/impi/4.1.0/mic/bin/pmi_proxy mic0:/bin 

sudo scp /opt/intel/impi/4.1.0/mic/lib/libmpi.so.4.1 mic0:/lib64 

sudo ssh mic0 ln -s /lib64/libmpi.so.4.1 /lib64/libmpi.so.4 

sudo scp /opt/intel/impi/4.1.0/mic/lib/libmpigf.so.4.1 mic0:/lib64 

sudo ssh mic0 ln -s /lib64/libmpigf.so.4.1 /lib64/libmpigf.so.4 

sudo scp /opt/intel/impi/4.1.0/mic/lib/libmpigc4.so.4.1 mic0:/lib64 

sudo ssh mic0 ln -s /lib64/libmpigc4.so.4.1 /lib64/libmpigc4.so.4 

sudo scp /opt/intel/impi/4.1.0/mic/lib/libmpi_mt.so.4.1 mic0:/lib64 

sudo ssh mic0 ln -s /lib64/libmpi_mt.so.4.1 /lib64/libmpi_mt.so.4 

sudo scp /opt/intel/impi/4.1.0.027/mic/lib/libmpi_dbg.so.4 mic0:/lib64 

sudo scp /opt/intel/composer_xe_2013/lib/mic/libimf.so mic0:/lib64 

sudo scp /opt/intel/composer_xe_2013/lib/mic/libsvml.so mic0:/lib64 

sudo scp /opt/intel/composer_xe_2013/lib/mic/libintlc.so.5 mic0:/lib64 

sudo scp /opt/intel/composer_xe_2013/lib/mic/libiomp5.so mic0:/lib64 

sudo scp /opt/intel/composer_xe_2013/lib/mic/libirng.so mic0:/lib64 

sudo scp /opt/intel/composer_xe_2013/lib/mic/libirng.so mic0:/lib64 

sudo scp /opt/intel/mkl/lib/mic/libmkl_sequential.so mic0:/lib64 

 sudo scp /opt/intel/composer_xe_2013/mkl/lib/mic/libmkl_intel_lp64.so mic0:/lib64 

sudo scp /opt/intel/composer_xe_2013/mkl/lib/mic/libmkl_intel_thread.so mic0:/lib64 

sudo scp /opt/intel/composer_xe_2013/mkl/lib/mic/libmkl_core.so mic0:/lib64 

sudo scp /opt/intel/composer_xe_2013/mkl/lib/mic/libmkl_cdft_core.so mic0:/lib64 

sudo scp /opt/intel/composer_xe_2013/mkl/lib/mic/libmkl_scalapack_lp64.so  mic0:/lib64 

sudo scp /opt/intel/composer_xe_2013/mkl/lib/mic/libmkl_scalapack_lp64.so  mic0:/lib64 

sudo scp /opt/intel/impi/4.1.0/mic/lib/libmpi_dbg_mt.so.4 mic0:/lib64  

 

3.2. Compton InfiniBand cluster 
 

The software environment on Compton is similar to Chama in the sense it has SLURM and 

supports modules.  Both Intel MPI and OpenMPI can be used with Intel compilers or GNU 

compilers.  The /home and /projects directories are visible when running in native mode on the 

MIC and so running a program on the MIC is simpler than on the corner workstation as there is 

no need to explicitly copy the executable or input/output files to and from the local memory on 

the MIC.   

 

4.  PROGRAM DEVELOPMENT TOOLS 
 

4.1. Intel Parallel Studio XE 
 

The primary program development tool used in this effort are packaged with the Intel Parallel 

Studio XE and consists of: 

 C++ , C and Fortran Compilers 

 Thread Building Blocks (TBB) 

 Math Kernel Library (MKL) 
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 OpenMP, version 4.0  

 Advisor XE for threading design and prototyping 

 Inspector XE for memory and thread debugging 

 VTune Amplifier XE for performance profiling 

 MPI Library 

 

Details of these software Intel software elements can be easily located on the Intel web site:  

https://software.intel.com/en-us/intel-parallel-studio-xe 

 

5.  MICRO BENCHMARKS 
 

5.1. Matrix Multiply 
 

The objectives of this benchmark are: 

 

1) Evaluate performance of MKL’s threaded SGEMM and DGEMM, and compare it to the 

theoretical peak performance.  The performance is compared to the theoretical peak to 

gauge what percentage of the peak we are able to achieve. 

2) Compare against host results and understand status of threading efficiency and MKL’s 

ability to achieve fine grain parallelization and vectorization.  

3) This benchmark also serves as a good upper bound of the sustained performance we can 

anticipate with code kernels that have good data locality.   

4) Can also use this code with tools such as PAPI to understand performance tuning and 

hardware counter measures with this simple kernel. 
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Figure 4 Matrix multiply performance on the MIC and the host SB with MKL 

https://software.intel.com/en-us/intel-parallel-studio-xe
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Figure 4 shows the measured performance on both the MIC and the dual-processor host Sandy 

Bridge node.  For both the measurements the same program that call the threaded ‘SGEMM’ and 

‘DGEMM’ MKL routines were used.  While the measured performance for SGEMM on the MIC 

showed about 54% of the peak with 240 threads, the percent of peak on the host was close to 

93%.  Similarly for DGEMM the percentage of peak on MIC did not exceed 38% while on the 

host it was 93%.  In a recent publication, Heinecke et.al. [1], outline an algorithm that takes full 

advantage of the KNC’s salient architectural features to achieve close to 90% of the peak.  This 

apparent large gap between our measured performance using MKL and this demonstrated high 

performance is not fully understood and needs further study. 

 

An objective of this SAND Report is also to gain experience with use of hardware event 

counters, which are described in Intel Reference [2], and [3].  Micro-architectural performance 

tuning using the hardware events available through the built-in Performance Monitoring Unit 

(PMU) can be accessed through Intel’s Vtune.  We have recently installed a version of the 

TAU[4] performance tool on Compton and used it to measure hardware counter metric ratios like 

Vectorization intensity defined as: 

 

Vectorization Intensity=VPU_ELEMENTS_ACTIVE / VPU_INSTRUCTIONS_EXECUTED 

 

For this matrix multiply benchmark using MKL’s DGEMM, a few measurements of this metric 

ratio on the MIC with 4 and 8 threads gave a vectorization intensity value of 7.84.  As suggested 

in Reference [3] this metric has an upper bound of 8 and so values close it suggest efficient use 

of MIC’s SIMD units.  However since the VPU_ELEMENTS_ACTIVE counter measures vector 

instructions like vector load/stores from memory, and instructions to manipulate vector mask 

registers, in addition to the double precision floating point instructions of interest to us, caution is 

needed in use of this metric for performance tuning.  The fact that our measurements of this 

metric achieves close to the peak showing high vectorization intensity is misleading if our goal is 

to achieve high floating point operations throughput.  The percentage of peak double precision 

floating point operations achieved in this test (which agrees with the values shown in Figure 4 

when all the threads on the MIC’s cores are utilized) is about 30%, which as stated previously is 

considerably less than published best performance of close to 90% [1].  However since at the 

present time the Xeon Phi does not have a PMU event to measure floating point performance, we 

still plan to use this Vectorization Intensity metric to give us some insights to the effective use of 

the SIMD units.  

 

5.2. STREAMS 
 

The objectives of this benchmark are: 

 

1) To measure the STREAMS memory bandwidth with an OpenMP version of the 

STREAMS benchmark. 

2) To investigate impact of affinity settings on the measured performance 
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Figure 5 STREAMS Triad memory bandwidth on KNC 

 

Figure 5 shows the KNC achieving an impressive 180 Gbytes/sec.  This may be compared to 

about 74GBytes/sec on the host dual Sandy Bridge nodes. Runs on the MIC used the 

environment variables KMP_PLACE_THREADS=,4T  (i.e. 4 threads per core) and 

KMP_AFFINITY=compact ( or scatter or balanced).    

 

Attempts to validate these measurements on Compton and Morgan, gave a maximum achieved 

STREAM Triad bandwidth of 133GB/s.  Not sure as to the reasons for this discrepancy, but 

published numbers by other investigators are close to the lower values and suggest that the 

differences may be attributable to units with ECC correction enabled and higher values when it is 

disabled.  This needs further investigation.   

 

 

 

6.  APPLICATION BENCHMARKS 
 

6.1 miniFE 
 

miniFE is a Finite Element mini-application which implements a couple of kernels representative 

of implicit finite-element applications. It assembles a sparse linear-system from the steady-state  

conduction equation on a brick-shaped problem domain of linear 8-node hex elements. It then 

solves the linear-system using a simple un-preconditioned conjugate-gradient algorithm. 

 

Thus the kernels that it contains are: 

 

 computation of element-operators (diffusion matrix, source vector) 

 assembly (scattering element-operators into sparse matrix and vector) 

 sparse matrix-vector product (during CG solve) 

 vector operations (level-1 blas: axpy, dot, norm) 
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This version of miniFE has support for OpenMP. However, it is not deemed to be complete 

and/or optimal. There is scope to tune OpenMP sections to particular architecture.  This version 

of miniFE corresponds to miniFE_ref_1.4b.  

 

6.1.1 Hybrid (OpenMP+MPI) code performance 

 

The code uses OpenMP pragmas in the ‘for loops’: computing BLAS daxpy type operations (in 

function waxpby(), computing a reduction  BLAS ddot type operations (in function dot()) and in 

the computing Matrix-Vector products in function matvec(). 

 

The code was compiled with Intel C++ compiler version: 'icpc (ICC) 13.0.1 20121010' and with 

compiler flags '-mmic -O3 -openmp' for running on the Xeon Phi in the native mode.   The same 

compiler was used for generating the executable that was run on the host with the same compiler 

flags except ‘–mmic’ option.   The process/thread affinity settings used were: 

KMP_AFFINITY=compact,granularity=fine and I_MPI_PIN_DOMAIN=omp.   

 

As mentioned in the introduction one objective of this investigation is to find the optimal 

combination of MPI tasks and OpenMP threads that gives the best performance. Taking the 

smallest run time among three trials, Figure 6 shows the run time for the three dominant compute 

kernels, MATVEC, DOT and WAXPBY.  The data for KNC shown on the left half of the chart 

and that for the host SB on the right half.   

 

 
Figure 6 miniFE performance on KNC (left) and SB(right) 

 

The best performance on KNC for the most time consuming kernel, MATVEC, was with 60 MPI 

tasks and 4 threads per MPI task.  This was 1.3X faster than the best performance on the host 

with 16 MPI tasks and 1 task per thread.  Interestingly the data shows that for the DOT compute 

kernel the optimal performance on KNC requires a different MPI tasks /  OpenMP threads 

combination: 30/8.   
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The key to optimal usage of the MIC architectures is to efficiently use the 60/61 cores and the 

four hardware threads each core provides.  Efficient usage could be viewed as achieving good 

thread level parallelism using the fewest MPI tasks on the processor.  This is to permit future 

efficient multi-node scaling as a consequence of fewer MPI task on each node leading to better 

utilization of memory and smaller volume of inter-node message exchanges.  Efficient usage also 

entails high level of vectorization of the compute loop kernels and full utilization of the excellent 

memory bandwidth Xeon Phi provides.   

 

6.1.2 Vampir Profile to gauge coarse and fine grain parallelization effectiveness 

 

Analysis of an application as to its efficient mapping on to an MPI + OpenMP programming 

model requires in addition to the scaling characteristics shown in Figure 6, an application 

function profile giving us an understanding of the fraction of time spent by the application in 

OpenMP compute loops, serial compute kernels, time spent in OpenMP overheads such as 

locks/barriers, time spent in MPI, time spent in MPI synchronizations.  Towards this goal it is 

useful to obtain a profile of the application that reveals these wall-time components.  The profile 

may be strongly influenced by scale and input. The input data set used for this analysis is the 

Trinity/NERSC8 “single-node” benchmark as described at [5].  

  

For miniFE this data was gathered using, 9 nodes, 72 MPI  tasks and 2 OMP threads per task  on 

Sandia’s TLCC2 system called Chama which has twin socket, 8-cores/socket Sandy Bridge 

nodes with Qlogic QDR InfiniBand Interconnect. ScoreP and Vampir are the profiling tools of 

choice to gather the desired information.  Vampir API to bracket only code section that is of 

interest, namely conjugate gradient solver in miniFE is used to generate the plot shown in Figure 

7.  

 

 
Figure 7 miniFE profile showing percentage run time fractions 

 

From the profile it is clear why this application performs well with the hybrid programming 

model.  The large fraction of the run time ( > 72%) that is registered for an OpenMP construct 

and small fraction of the time in MPI gives this application the performance noted above. 
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6.1.3 Vectorization effectiveness 

 

Another key factor in the efficient use of the Xeon Phi architecture is vectorization.  As 

suggested in their book on Xeon Phi by Jeffers and Reinders [6], one approach to gauge effective 

vectorization is to compare run times of the application with and without auto vectorization by 

the compiler.  Using the same input used for gathering the comparative performance between SB 

and KNC shown in Figure 6, picking the run with MPI tasks and OpenMP threads that yielded 

the best performance, the performance gain with compiler generated auto-vectorization for the 

host SB and the MIC measured on the Corner workstation is shown in Table 1.   

 
 Table 1 miniFE compiler auto vectorization performance for SB and KNC 

 

Processor Total CG time (secs) with 

Auto Vectorization 

Total CG time (secs) with No 

Auto Vectorization 

Intel MIC (60 MPI tasks/4 

threads) 

7.941 8.313 

Intel Sandy Bridge(8 MPI 

tasks/4threads) 

12.116 12.3219 

 

Use of compiler vectorization report (with flag –vec-report3) shows that the inner loop in the 

most time consuming kernel, matrix-vector product, in SparseMatrix_functions.hpp, line 573 is 

reported as vectorized.  However this vectorization, reported by the compiler, does not register as 

a significant performance gain for run time comparisons with and without vectorization.  This 

needs to be further investigated, but suspected to be related to the indirect addressing required in 

the operation in line 574:     sum += Acoefs[i]*xcoefs[Acols[i]].  Most of the small gain in run 

time seen in Table 1 comes from the vectorization of the other two key kernel  computations: 

waxpby() and dot(). 

 

Another measure of vectorization that we wish to gain further experience is with the use 

hardware performance counters.  In reference [2], Shannon Cepda presents various metrics using 

hardware events counts from the processing core’s Performance Monitoring Unit (PMU).  PMU 

hardware counters can be programmed to count occurrences of various events.  Intel VTune 

provides developers the ability to collect and view sampled data from the Xeon Phi.  Recently 

we have installed the TAU performance monitoring tool on Compton.  TAU can also provide 

access to the PMU through PAPI.  Of particular interest in investigating effective vectorization 

are two counters: VPU_INSTRUCTIONS_EXECUTED and VPU_ELEMENTS_ACTIVE.  The 

number of vector elements active given by the second counter above is a measure of the number 

of vector operations and provides correct estimates of the multiple vector operations in both 

single and double precision for each instruction executed.  So the metric ratio 

VPU_ELEMENTS_ACTIVE/VPU_INSTRUCTION_EXECUTED, called vectorization 

intensity is very useful in gauging how well the compute intensive sections of the code are 

vectorized.  For double precision vectors optimal vectorization is achieved if vectorization 

intensity is close to 8 and for single precision close to 16.    
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MiniFE was instrumented with TAU with the following build script which sets the necessary 

environment variable and replaces the mpiicxx in the makefile with tau_cxx.sh. 

 

#!/bin/bash 

source /projects/tau/tau.bashrc 

export TAU_MAKEFILE=$TAU/Makefile.tau-icpc-papi-mpi-pdt-openmp-opari 

export TAU_OPTIONS='-optVerbose' 

make CXX=tau_cxx.sh 

  

The instrumented executable produced a run profile on Compton.  However the profile did not 

readily provide the desired information for the most time consuming sparse Matrix-Vector 

operations in the conjugate gradient solve.  To focus on the section of code of interest, the TAU 

API for selective instrumentation was used to introduce in cg_solve.hpp calls to 

TAU_PROFILER_START and TAU_PROFILER_STOP functions bracketing the function call 

to matvec().   Execution of the instrumented miniFE on the MIC using similar parameters to that 

used for the data in Figure 4, gave the vectorization intensity of: 7.634e08/4.363e08 = 1.75.  

Since this value is not close to 8, the previous conclusion on the need to improve vectorization 

for the compute intensive MATVEC kernel is reinforced.   

 

6.2 AMG 

 
AMG is a parallel algebraic multigrid solver for linear systems arising from problems on 

unstructured grids. 

 

6.2.1 Hybrid (OpenMP+MPI) code performance 

 

The code uses OpenMP pragmas to invoke OpenMP threads for the Hypre library GMRES 

solver kernel operations.  For the Laplace solver benchmarked, the dominant GMRES  kernel 

OpenMP operations (called by hypre_GMRESSolve) are in the source code files in the directory 

src/seq_mv, in the files csr_matvec.c ( line numbers 344,317,215,134,126) and vector.c (line 

numbers 445, 419, 391, 320, 265. 

 

The code was compiled with Intel C++ compiler version: 'icpc (ICC) 13.0.1 20121010' and with 

compiler flags '-mmic -O3 -openmp' for running on the Xeon Phi in the native mode. The same 

compiler was used for generating the executable that was run on the host with the same compiler 

flags except ‘–mmic’ option.   The process/thread affinity settings used 

KMP_AFFINITY=compact, granularity=fine and I_MPI_PIN_DOMAIN=omp.   

 

The optimal combination of MPI tasks and OpenMP threads that gives the best performance was 

investigated with this benchmark. Taking the smallest run time among three trials, Figure 8 

shows the GMRES solve wall clock time.  The data for KNC shown on the left half of the chart 

and that for the host SB on the right half.   
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Figure 8 AMG performance on KNC (left) and SB (right) 

 

The best performance on KNC was with 30 MPI tasks and 8 threads per MPI task and in the SB 

32 and 1.  The host SB performance is 2X faster than KNC. 

 

6.2.2 Vampir Profile to gauge coarse and fine grain parallelization effectiveness 

 

A profile of AMG is needed to reveal various compute time components.  The profile may be 

strongly influenced by scale and input. The input data set used for this analysis is the 

Trinity/NERSC8 “single-node” benchmark as described at [5].  For AMG this data was gathered 

using, 6 nodes, 48 MPI  tasks and 2 OpenMP threads per task  on Sandia’s TLCC2 system called 

Chama with an mpiexec command as shown below: 

 

mpiexec –n 48 –npersocket 4 –bind-to-core ./amg2013 –P 4 4 3 –n 189 189 189 –solver 2 

 

ScoreP and Vampir are the tools used to gather the desired trace information.  ScoreP API is 

used to bracket only code section that is of interest.  SCOREP_USER_REGION_BEGIN and 

SCOREP_USER_REGION_END bracket the call to HYPRE_GMRESSolve function in the file 

amg2013.c Figure 9. Shows the function profile as percentage of the run time. 
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Figure 9 AMG profile showing percentage run time fractions 

From the run time fraction percentage we see that while there is substantial fraction of the run 

time in OpenMP ‘for’ loops it is not as high as we saw with miniFE and consequently we see 

small gains in run time when using MPI_tasks + OpenMP threads as opposed to only MPI tasks  

using the same number of cores in a given run.  We also see from the profile that the fraction of 

the run time spent in MPI is less than 6% which helps with using large number of MPI tasks on 

the Xeon Phi. 

 

6.2.3 Vectorization effectiveness 

 

Using the same input used for gathering the comparative performance between SB and KNC 

shown in Figure 8, picking the run with MPI tasks and OpenMP threads that yielded the best 

performance, the performance gain with compiler generated auto-vectorization for the host SB 

and the MIC measured on the Corner workstation is shown in Table 2. 
 

 Table 2 AMG compiler auto vectorization performance for SB and KNC 

Processor Total CG time (secs) with 

Auto Vectorization 

Total CG time (secs) with No 

Auto Vectorization 

Intel MIC (30 MPI tasks/8 

threads) 

3.342 3.124 

Intel Sandy Bridge(16 MPI 

tasks/2 threads) 

2.210 2.219 

 

Use of –vec-report3 compiler flag shows that the Intel icc compiler was unable to vectorize any 

of the loops in the most compute intensive function as per the profile shown in Figure 9, namely 

the functions in csr_matevc.c.    From Table 2, We see that both on SB and KNC very little gain 

in performance with vectorization is measured.  The repeatable (using 3 measurements not 

recorded here) slightly better performance without vectorization on the MIC is not fully 

understood.  We could measure the vectorization intensity with PMU counters as shown in the 

section on miniFE, but it may not add to our analysis of this application. 
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6.3 UMT 
The UMT benchmark is a 3D, deterministic, multigroup, photon transport code for unstructured 

meshes.  

 

6.3.1 Hybrid (OpenMP+MPI) code performance 

The optimal combination of MPI tasks and OpenMP threads that gives the best performance was 

investigated with this benchmark. Taking the smallest run time among three trials, Figure 10 and 

Figure 11 shows the two metrics of interest: CumulativeWork Time and AngleLoop Time.  The 

data for KNC shown on the left half of the chart and that for the host SB on the right half.   
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Figure 10 UMT performance (Cumulative Work Time) on KNC (left) and SB (right) 
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Figure 11 UMT performance (AngleLoop Time) on KNC (left) and SB (right) 
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6.3.2 Vampir Profile to gauge coarse and fine grain parallelization effectiveness 

 

Initial attempts on Chama to collect this profile with Vampir/ScoreP ran into some link time 

errors.  This will have to be pursued after either building a version of ScoreP that generates 

dynamic libraries or a setup on Chama that uses GNU compilers.  The data from Figure 10, 11 

suggest that fine grain parallelism with OpenMP is quite effective resulting in improved 

performance with up to 16 or 8 OpenMP threads on the MIC. 

 

6.3.3 Vectorization effectiveness 

 

Using the same inputs as used for the runs in Figure 11 and picking the combinations of MPI 

tasks and OpenMP threads that lead to the best performance the impact of vectorization on the 

MIC and on the host SB node was investigated.  The data recorded for the AngleLoop Time and 

the Cumulative Work time are shown in Table 3.  

 
 Table 3 UMT compiler auto vectorization performance for SB and KNC 

processor AngleLoop 

time/Cum.Work time 

(secs) with Auto 

Vectorization 

AngleLoop time/Cum.Work 

time (secs) with No Auto 

Vectorization 

Intel MIC (30 MPI tasks/8 

threads) 

8.10/23.61 11.98/27.09 

Intel Sandy Bridge(16 MPI 

tasks/2 threads) on Chama 

 

6.68/9.88 8.35/11.52 

 

Vectorization gives about 20% better performance for the SB and 32.4% for the KNC for the 

Angle Loop Time metric, which is of more interest in this application. 

 

6.4 GTC 

 
GTC is used for Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas. It is 

a fully self-consistent, 3D Particle-in-cell code (PIC) with a non-spectral Poisson solver and a 

grid that follows the magnetic field lines (twisting around the torus). It solves the gyro-averaged 

Vlasov equation in real space; the Vlasov equation describes the evolution of a system of 

particles under the effects of self-consistent electromagnetic fields. The unknown is the flux, 

f(t,x,v), which is a function of time t , position x, and velocity v, and represents the distribution 

function of particles (electrons and ions) in phase space. 

 

6.4.1 Hybrid (OpenMP+MPI) code performance 

 

Among all the applications studied here, GTC is best set up to use OpenMP for thread 

parallelization of many computationally intensive loops.  The compiler vector report indicates 

several of the loops in key functions like pushi, chargei get vectorized.   
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The code was compiled with Intel Fortran compiler ifort with compiler flags '-mmic -O3 -

openmp' for running on the Xeon Phi in the native mode.   The same compiler was used for 

generating the executable that was run on the host with the same compiler flags except ‘–mmic’ 

option.   The process/thread affinity settings used are: 

KMP_AFFINITY=compact,granularity=fine and I_MPI_PIN_DOMAIN=omp.   

 

The optimal combination of MPI tasks and OpenMP threads that gives the best performance was 

investigated with this benchmark. Taking the smallest run time among three trials, Figure 12 

shows the NERSC Time used as the metric for this benchmark.  The data for KNC shown on the 

left half of the chart and that for the host SB on the right half.   Some combination of MPI tasks 

and OpenMP threads (1/240, 2/120, 4/60) on the KNC  and (1/32, 2/16) on SB SEGFAULTED, 

but possible causes for this have not been investigated. 
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Figure 12 GTC performance (NERSC Time) on KNC (left) and SB (right) 

  

6.4.2 Vampir Profile to gauge coarse and fine grain parallelization effectiveness 

 

A profile ofGTC is needed to reveal various compute time components.  The profile may be 

strongly influenced by scale and input. The input data set used for this analysis is the 

Trinity/NERSC8 “single-node” benchmark as described at [5]. For GTC this data was gathered 

using, 8 nodes, 64 MPI  tasks and 2 OpenMP threads per task  on Sandia’s TLCC2 system called 

Chama with an mpiexec command as shown below: 

 

mpiexec –n 64 –npersocket 4 –bind-to-core ./gtcomp 

 

ScoreP and Vampir are the tools used to gather the desired trace information.  For GTC the entire 

code was instrumented with ScoreP.  Figure 13 shows the function profile as percentage of the 

run time. 
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Figure 13 GTC profile showing percentage run time fractions 

 

From the run time fraction percentage we see that substantial fraction of the run time is in 

OpenMP ‘for’ loops. On the MIC 30 MPI_tasks with 8 OpenMP threads gives a run time 80% 

longer than the best seen on the host SB.   This application demonstrated important performance 

elements for MIC, like good thread level parallelism, vectorization effectiveness and low MPI 

overhead. 

 

6.4.3 Vectorization effectiveness 

Using the same input used for gathering the comparative performance between SB and KNC 

shown in Figure 12,  picking the run with MPI tasks and OpenMP threads that yielded the best 

performance, the performance gain with compiler generated auto-vectorization for the host SB 

and the MIC measured on the Corner workstation is shown in Table 4. 

 
 Table 4 GTC compiler auto vectorization performance for SB and KNC 

Processor NERSC time (secs) with Auto 

Vectorization 

NERSC time (secs) with No 

Auto Vectorization 

Intel MIC (30 MPI tasks/8 

threads) 

39.735 46.869 

Intel Sandy Bridge(16 MPI 

tasks/2 threads) 

21.969 30.677 

 

Use of –vec-report3 compiler flag shows that the Intel ifort compiler was able to vectorize the 

key compute loops in chargei, pushi and shifti functions From Table 4. We see that both on SB 

18% gain and on KNC about 39% gain in performance with vectorization is measured.  We 

could measure the vectorization intensity with PMU counters as shown in the section on miniFE 

for the compute intensive chargei and pushi functions.  Initial attempts with TAU on Compton 

led to run time failures only when the PAPI counters were turned on.  This needs to be further 

discussed with the TAU developers.  We should also try VTune with the same PMU counters.  
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6.5 MILC 

 
The benchmark code MILC represents part of a set of codes written by the MIMD Lattice 

Computation (MILC) collaboration used to study quantum chromodynamics (QCD), the theory 

of the strong interactions of subatomic physics. It performs simulations of four dimensional 

SU(3) lattice gauge theory on MIMD parallel machines. "Strong interactions" are responsible for 

binding quarks into protons and neutrons and holding them all together in the atomic nucleus.  

The MILC collaboration has produced application codes to study several different QCD research 

areas, only one of which, ks_dynamical simulations with conventional dynamical Kogut-

Susskind quarks, is used here. QCD discretizes space and evaluates field variables on sites and 

links of a regular hypercube lattice in four-dimensional space time. Each link between nearest 

neighbors in this lattice is associated with a 3-dimensional SU(3) complex matrix for a given 

field. The version of MILC used here uses matrices ranging in size from 8
4
 to 128

4
. 

 

6.5.1 Hybrid (OpenMP+MPI) code performance 

 

As per the README file provided with this benchmark, OpenMP directives currently exist only 

in source code in the generic_ks directory (specifically, in the files d_congrad5_fn.c and 

dslash_fn2.c).   Since these two functions did not appear to consume significant fraction of the 

run time this benchmark is not well suited to investigate impact of a hybrid programming model.  

Also noted in the README file, the inlined SSE instructions available in MILC have been 

disabled as they have been observed to not always work between different compilers.  So this 

benchmark as set up is not suited for investigating vectorization.      

 

The code was compiled with Intel C compiler icc with compiler flags '-mmic -O3 -openmp' for 

running on the Xeon Phi in the native mode.   The same compiler was used for generating the 

executable that was run on the host with the same compiler flags except the ‘–mmic’ option.   

The process/thread affinity settings used KMP_AFFINITY=compact,granularity=fine and 

I_MPI_PIN_DOMAIN=omp.   

 

The optimal combination of MPI tasks and OpenMP threads that gives the best performance was 

investigated with this benchmark.  Taking the smallest run time among three trials, Figure 14 

shows the NERSC Time used as the metric for this benchmark.  The data for KNC shown on the 

left half of the chart and that for the host SB on the right half.   Some combination of MPI tasks 

and OpenMP threads (15/16, 30/8, 60/4) on the KNC produced an error message: “Can’t layout 

lattice, not enough factors of 5”. Possible ways to go past this hurdle with modifications to the 

input file was not pursued.   
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Figure 14 MILC performance (NERSC Time) on KNC (left) and SB (right) 

 

6.5.2 Vampir Profile to gauge coarse and fine grain parallelization effectiveness 

 

A profile of MILC is needed to reveal various compute time components.  The profile may be 

strongly influenced by scale and input. The input data set used for this analysis is the 

Trinity/NERSC8 “single-node” benchmark as described at [5]. For MILC this data was gathered 

using, 4 nodes, 24 MPI  tasks and 2 OpenMP threads per task  on Sandia’s TLCC2 system called 

Chama with an mpiexec command as shown below: 

 

mpiexec –n 64 –npersocket 3  –bind-to-core ./su3_rmd < n8_single.in 

 

ScoreP and Vampir are the tools used to gather the desired trace information.  For MILC the 

code was instrumented using a scoreP filter file to limit the size of the trace file.  In the filter file 

all the regions were excluded from tracing, except functions: MPI, OMP, update, main, 

update_h, f_meas_imp and load_ferm_link. Figure 15 shows the function profile as percentage 

of the run time. 
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Figure 15 MILC profile showing percentage run time fractions 

 

From the run time fraction percentage we see that only a very small fraction of the run time is in 

OpenMP ‘for’ loops.  We need to investigate if the version of MILC provided as part of the 

Trinity benchmarks is a version that has the latest development in introducing OpenMP 

constructs. On the MIC,  8 MPI_tasks  with 30 OpenMP threads gives a run time 2.6X the best  

seen on the host SB. MILC because of its importance to physicists  and because it consumes 

large node-hours on number of NSF/University/DOE ASCR systems has a long history of 

developments and performance enhancements. Further investigation of the port of MILC to MIC 

should be pursued in collaboration with the domain scientists with deep knowledge of this 

application. 

 

6.6 SNAP 

 
SNAP is a proxy application to model the performance of a modern discrete ordinates neutral 

particle transport application. SNAP may be considered an update to Sweep3D, intended for 

hybrid computing architectures. It is modeled on the Los Alamos National Laboratory code 

PARTISn.  PARTISn solves the linear Boltzmann transport equation (TE), a governing equation 

for determining the number of neutral particles (e.g., neutrons and gamma rays) in a 

multidimensional phase space.  SNAP itself is not a particle transport application; SNAP 

incorporates no actual physics in its available data, nor does it use numerical operators 

specifically designed for particle transport.  Rather, SNAP mimics the computational workload, 

memory requirements, and communication patterns of PARTISn.  The equation it solves has 

been composed to use the same number of operations, use the same data layout, and load 

elements of the arrays in approximately the same order.  Although the equation SNAP solves 

looks similar to the TE, it has no real world relevance. 
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6.6.1 Hybrid (OpenMP+MPI) code performance 

 

The solution to the time-dependent TE is a "flux" function of seven independent variables: three 

spatial (3-D spatial mesh), two angular (set of discrete ordinates, directions in which particles 

travel), one energy (particle speeds binned into "groups"), and one temporal. PARTISN, and 

therefore SNAP, uses domain decomposition over these dimensions to coherently distribute the 

data and the tasks associated with solving the equation. The parallelization strategy is expected 

to be the most efficient compromise between computing resources and the iterative strategy 

necessary to converge the flux. 

  

The iterative strategy is comprised of a set of two nested loops. These nested loops are 

performed for each step of a time-dependent calculation, wherein any particular time step 

requires information from the preceding one.  No parallelization is performed over the temporal 

domain. However, for time-dependent calculations two copies of the unknown flux must be 

stored, each copy an array of the six remaining dimensions.  The outer iterative loop involves 

solving for the flux over the energy domain with updated information about coupling among the 

energy groups.  Typical calculations require tens to hundreds of groups, making the energy 

domain suitable for threading with the nodes’ provided accelerator.  The inner loop involves 

sweeping across the entire spatial mesh along each discrete direction of the angular domain.   

The spatial mesh may be immensely large.  Therefore, SNAP spatially decomposes the 

problem across nodes and communicates needed information according to the KBA  method . 

KBA is a transport-specific application of general parallel wavefront methods. Lastly, although 

KBA efficiency is improved by pipelining operations according to the angle, current chipsets 

operate best with vectorized operations. During a mesh sweep, SNAP operations are vectorized 

over angles to take advantage of the modern hardware.  

 

The code was compiled with Intel Fortran compiler ifort with compiler flags '-mmic -O3 -

openmp' for running on the Xeon Phi in the native mode.   The same compiler was used for 

generating the executable that was run on the host with the same compiler flags except ‘–mmic’ 

option.   The process/thread affinity settings used are: 

KMP_AFFINITY=compact,granularity=fine and I_MPI_PIN_DOMAIN=omp.   

 

The optimal combination of MPI tasks and OpenMP threads that gives the best performance was 

investigated with this benchmark. Taking the smallest run time among three trials, Figure 16 

shows the Solve Time used as the metric for this benchmark.  The data for KNC shown on the 

left half of the chart and that for the host SB on the right half. 
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Figure 16 SNAP performance (Solve Time) on KNC (left) and SB (right) 

  

 

6.6.2 Vampir Profile to gauge coarse and fine grain parallelization effectiveness 

 

A profile of SNAP is needed to reveal various compute time components.  The profile may be 

strongly influenced by scale and input. The input data set used for this analysis is the 

Trinity/NERSC8 “single-node” benchmark as described at [5].  For SNAP this data was gathered 

using, 12 nodes, 48 MPI  tasks and 4 OpenMP threads per task  on Sandia’s TLCC2 system 

called Chama with an mpiexec command as shown below: 

 

mpiexec –loadbalance –n 48 ./snap ./small-4nodes-input ./small-4nodes.output 

 

ScoreP and Vampir are the tools used to gather the desired trace information.  For SNAP the 

entire code was instrumented with ScoreP.  Figure 17 shows the function profile as percentage of 

the run time. 
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Figure 17 SNAP profile showing percentage run time fractions 

 

For this particular analysis/input and run on Chama the large fraction of time spent in Allreduce 

suggests that this benchmark may need careful study before it can run efficiently on the MIC.  

The profile does show good use of OpenMP thread level parallelization in several functions. 

 

6.6.3 Vectorization effectiveness 

 

Using the same input used for gathering the comparative performance between SB and KNC 

shown in Figure 15, picking the run with MPI tasks and OpenMP threads that yielded the best 

performance, the performance gain with compiler generated auto-vectorization for the host SB 

and the MIC measured on the Corner workstation is shown in Table 5.  We see a 19.5% 

improvement with vectorization on the MIC and a 13.2% improvement on the host SB. 

 
 Table 5 SNAP compiler auto vectorization performance for SB and KNC 

Processor Solve time (secs) with Auto 

Vectorization 

Solve time (secs) with No 

Auto Vectorization 

Intel MIC (60 MPI tasks/4 

threads) 

3.4377e01 4.1082e01 

Intel Sandy Bridge(16 MPI 

tasks/2 threads) 

1.5965e01 1.8086e01 

 

We measured performance gain with vectorization of 18% on SB and about 39% on KNC.   We 

could measure the vectorization intensity with PMU counters as shown in the section on miniFE 

for the compute intensive chargei and pushi functions.  Initial attempts with TAU on Compton 

led to run time failures only when the PAPI counters were turned on.  This needs to be further 

discussed with the TAU developers.   

 

6.7 miniDFT 

 
MiniDFT is a plane-wave density functional theory (DFT) mini-app for modeling materials. 

Given a set of atomic coordinates and pseudopotentials,  MiniDFT computes self-consistent 
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solutions of the Kohn-Sham equations using either the LDA or PBE exchange-correlation 

functionals.  For each iteration of the self-consistent field cycle, the Fock matrix is constructed 

and then diagonalized.  To build the Fock matrix, Fast Fourier Transforms are used to transform 

orbitals from the plane wave basis (where the kinetic energy is most readily competed ) to real 

space (where the potential is evaluated ) and back.  Davidson diagonalization is used to compute 

the orbital energies and update the orbital coefficients. 

 

6.7.1 Hybrid (OpenMP+MPI) code performance 

 

The code was compiled with Intel Fortran compiler ifort with compiler flags '-mmic -O3 -

openmp' for running on the Xeon Phi in the native mode.   The same compiler was used for 

generating the executable that was run on the host with the same compiler flags except ‘–mmic’ 

option.   The process/thread affinity settings used are: 

KMP_AFFINITY=compact,granularity=fine and I_MPI_PIN_DOMAIN=omp.   

 

A special input file called Mg0442.in was constructed after discussions with the author of 

miniDFT at NERSC.  This was because the input files provided with the trinity benchmark could 

not be easily modified to permit runs within the 8GB GDDR5 on the MIC.  It is also not quite 

straight forward to construct weak-scaling-study inputs, as the computational complexity of the 

key compute kernels (FFT, solver) has non-linear dependence on key input parameters.   With 

the Mg0442.in as input, the optimal combination of MPI tasks and OpenMP threads that gives 

the best performance was investigated with this benchmark. Taking the smallest run time among 

three trials, Figure 17 shows the Benchmark_Time reported on output as the metric for this 

benchmark.  The data for KNC shown on the left half of the chart and that for the host SB on the 

right half.   Some combination of MPI tasks and OpenMP threads (1/240, 2/120, 4/60, 

8/30,15/16,30/8) on the MIC led to run time failures with the MKL Cholesky solver aborting the 

run.  This needs to be investigated with the Intel development team.   

 

  
Figure 18 miniDFT performance (Benchmark Wall time) on KNC (left) and SB (right) 

 

6.7.2 Vampir Profile to gauge coarse and fine grain parallelization effectiveness 

 

A profile of miniDFT is needed to reveal various compute time components.  The profile may be 

strongly influenced by scale and input.  The input data set used for this analysis is the 
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Trinity/NERSC8 “single-node” benchmark with input titania_3_120.in as described at [5].  For 

miniDFT  this data was gathered using, 3 nodes, 24 MPI  tasks and 2 OpenMP threads per task  

on Sandia’s TLCC2 system called Chama with an mpiexec command as shown below: 

 

mpiexec –n 24 –npersocket 4 –npernode 8  ./mini_dft –in titania_3_120.in   

 

ScoreP and Vampir are the tools used to gather the desired trace information.  For miniDFT the 

entire code was instrumented with ScoreP.  Figure 19 shows the function profile as percentage of 

the run time.  From the figure it is clear that OpenMP paralleized loops constitute a small 

fraction of the run time for miniDFT.   However as miniDFT calls MKL math kernels like 

ZGEMM and FFT it takes advantage of fine grain parallelism in MKL. 

 

 
Figure 19 miniDFT profile showing percentage run time fractions 

 

6.7.3 Vectorization effectiveness 

 

Using the same input used for gathering the comparative performance between SB and KNC 

shown in Figure 18, picking the run with MPI tasks and OpenMP threads that yielded the best 

performance, the performance gain with compiler generated auto-vectorization for the host SB 

was measured on the Corner workstation and is shown in Table 6.  We see a small 2% 

improvement with vectorization on the host SB node.  However this result is misleading in view 

of the percentage of the peak FLOPS achieved in this benchmark that is discussed in the 

following section 7.  miniDFT computations are dominated by highly tuned library functions like 

matrix multiply ( ZGEMM) and FFT.  This approach of gauging vectorization by comparing 

performance with and without the compiler flag “-no-vec” affects only loops in the source code 

that get vectorized and therefore highly optimized and vectorized library routines, which 

dominate miniDFT are unaffected by this compiler flag. 

 
 Table 6 miniDFT compiler auto vectorization performance for SB and KNC 

Processor Benchmark Wall  time (secs) 

with Auto Vectorization 

Benchmark Wall time (secs) 

with No Auto Vectorization 

Intel Sandy Bridge(8MPI 48.19 49.21 
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tasks/4 threads) 

 

6.8 NPB 
 

NPB is used as a sanity check to gain confidence in understanding hybrid code performance and 

tools for analysis.  NPB BT-MZ solves a discretized version of unsteady, compressible Navier-

Stokes equations in three spatial dimensions.  BT (Block Tri-diagonal) solves three sets of 

uncoupled systems of equations, first in the X dimension, then in the Y dimension, and finally in 

the Z dimension; these systems are block tri-diagonal with 5x5 blocks.  The benchmark performs 

200 time steps on a regular 3 dimensional grid.   The code is implemented in 20 or so Fortran77 

source modules.  Multi-zone versions of NPB (NPB-MZ) are designed to exploit multiple levels 

of parallelism in applications and to test the effectiveness of multi-level and hybrid 

parallelization paradigms and tools.  

 

Taking the smallest run time among three trials, Figure 20 shows the Benchmark Time, reported 

on output as a metric for this benchmark.  The data for KNC shown on the left half of the chart 

and that for the host SB on the right half.   NPB has both good coarse grain and fine grain 

parallelism.  The best performance on MIC is just 1.3X slower than best on SB node.  
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Figure 20 NPB BT-MZ performance (Wall Time) on KNC left and SB right 

 

6.8.2 Vampir Profile to gauge coarse and fine grain parallelization effectiveness 

 

A profile of NPB-MZ is needed to reveal various compute time components.  The profile may be 

strongly influenced by scale and input. The input data set used for this analysis is the CLASS B 

benchmark.  For NPB this data was gathered using, 1 node, 8 MPI  tasks and 2 OpenMP threads 

per task on Sandia’s TLCC2 system called Chama with an mpiexec command as shown below: 

 

mpiexec –n 8 ./bt-mz.B.8   
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ScoreP and Vampir are the tools used to gather the desired trace information.  For restricting the 

size of the trace file generated by scoreP the code was modified to do only 20 time steps instead 

of 200.  For NPB the entire code was instrumented with ScoreP.  Figure 21 shows the function 

profile as percentage of the run time. 

 

 
Figure 21 NPB BT-MZ profile showing percentage run time fractions 

 

6.8.3 Vectorization effectiveness 

 

Using the same input used for gathering the comparative performance between SB and KNC 

shown in Figure 20, picking the run with MPI tasks and OpenMP threads that yielded the best 

performance, the performance gain with compiler generated auto-vectorization for the host SB 

and the MIC measured on the Corner workstation is shown in Table 7.  We see a 7% poorer 

performance with vectorization on the MIC and a 6.2% improvement on the host SB.  Cause for 

the poorer performance on the MIC may be related to the large (16) threads per MPI task, but 

needs to be investigated further. 
 

 Table 7 miniDFT compiler auto vectorization performance for SB and KNC 

Processor Benchmark Wall time (secs) 

with Auto Vectorization 

Benchmark Wall time (secs) 

with No Auto Vectorization 

Intel MIC (15 MPI tasks/16 

threads) 

23.73 22.16 

Intel Sandy Bridge(16 MPI 

tasks/2 threads) 

17.47 18.56 

 

 

7. FLOPS PERFORMANCE 
 

A recent white paper by Leland et.al [5] investigates a response to a question raised in briefing to 

Dr. John Holdren, the President’s Science Advisor, on the National Strategic Computing 

Initiative being developed within the Office of Science and Technology Policy. The question, 

raised in implicit form, was whether we should focus on improving the efficiency of 

supercomputing  systems and their use rather than on building, larger and ostensibly more 

capable systems that are used at low efficiency.  In that context one of the metrics often 
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considered is the percentage of the peak FLOPS.  This is motivated by the increasing gap 

between sustained and peak performance and is quite relevant to an investigation on Intel MIC as 

it is the first X86-64 TFLOPS processor.  While the motivation for the above question was the 

behavior of applications at very large scale, increasingly with the new generations of many-core 

processor nodes often with a hardware FLOPS accelerator, achieving a good fraction of the peak 

node performance is hugely important. Data gathered with the Trinity “single-node” benchmarks 

sheds some light on this question.   This data was gathered on Cielo using the CrayPat tool.  

Figure 21 shows the measured performance as a percentage of the peak. 

 

 

 

 
Figure 22 Trinity “single node” benchmarks FLOPS performance on Cielo 

 

These results while signifying the need for significant performance optimization for the Trinity 

benchmarks, should be viewed in the light of percentage of peak floating point performance (5% 

— 20% and averages approximately 15%.) for highly tuned representative applications run on 

the NSF Blue Waters system at the NCSA  [7]. 

 

8. CONCLUSIONS AND FUTURE WORK 
The data from the sections above may be summarized comparing the ratio of the run time taking 

the best performance measured on MIC and the best performance on the host Sandy Bridge node.  

Table 8 provides such a summary. 

 
 Table 8 Wall clock run time ratio Knights Corner / Sandy Bridge node 

Benchmark miniFE AMG SNAP UMT GTC MILC miniDFT 

Best KNC/ 

Best SB 

0.8 2.01 2.95 1.38 1.95 2.32 3.30 

 

From the data in Table 8, Figure 21, and, the vectorization effectiveness investigated for the 

applications, a conclusion that emerges is that much effort is required to fully exploit the 

architectural features of MIC to bring the performance in par with what Sandia users are used to 
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seeing on the TLCC2 clusters like Chama.  We do recognize that the current targeted use of 

Xeon Phi is predominantly as a node accelerator to boost performance of compute intensive 

kernels.  In other words native mode is not the intended usage model for Knights Corner.  

Publications in the literature [8], that show case 2X performance on the Knights Corner over 

Sandy Bridge based nodes for certain classes of applications and algorithms is encouraging as it 

attest to the potential of this architecture for applications that can exploit the many-cores/thread 

architecture and also benefit from the 512 bit vector units.  Based on our experience with the 

Trinity benchmarks documented here, we may draw some conclusions in the light of our interest 

in the Knights Landing processor targeted for Trinity. 

 

1) The analysis procedures laid out here to evaluate hybrid programming models, namely 

investigations to find the right balance between MPI tasks and threads at a node would be 

a necessary step before looking to scale an application to 10,000 or so nodes.  The 

objective is to have as few MPI tasks as possible in a node to minimize data flow through 

the high speed inter node network. 

2) Performance profile as shown in the applications sections to identify time spent in the 

application kernels, OpenMP or other thread parallel compute loops, OpenMP or 

threading overheads, MPI and MPI overheads is essential to optimally map applications 

to these many-core architectures. 

3) Effective vectorization and procedures to measure it will be very important to close the 

gap between peak and sustained performance.  Working with Intel to expose PMU 

counters that help us measure various vector and memory usage performance metrics will 

be very fruitful. 

4) High performance thread level parallel MKL routines for the math kernels of interest to 

Sandia like sparse matrix-vector operations will facilitate rapid port of applications.  

5)  A simple model of the observed miniFE  KNC to Dual SB time ratio of 0.8 is: 

(threads_SB/threads_KNC)*(BW-per-Th_SB / BW-per-Th_KNC) ; i.e. greater 

parallelism helps when MPI & OpenMP overheads are very small 

6) For the other apps we are not seeing a performance improvement over dual SB due to 

different reasons:  higher MPI /OMP overhead with greater parallelism, compiler did not 

take advantage of 512 bit SIMD, lower MKL performance , higher serial fraction & 

poorer core performance 
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