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Abstract: This study aimed to organize a body of trajectories in order to identify, search for and classify both common and
uncommon behaviors among objects such as aircraft and ships. Existing comparison functions such as the Fréchet distance are
computationally expensive and yield counterintuitive results in some cases. We propose an approach using feature vectors whose
components represent succinctly the salient information in trajectories. These features incorporate basic information such as the
total distance traveled and the distance between start/stop points as well as geometric features related to the properties of the
convex hull, trajectory curvature and general distance geometry. Additionally, these features can generally be mapped easily to
behaviors of interest to humans who are searching large databases. Most of these geometric features are invariant under rigid
transformation. We demonstrate the use of different subsets of these features to identify trajectories similar to an exemplar,
cluster a database of several hundred thousand trajectories and identify outliers. © 2015 Wiley Periodicals, Inc. Statistical Analysis
and Data Mining: The ASA Data Science Journal 8: 287–301, 2015
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1. INTRODUCTION

The growth of remote sensing capabilities has resulted in
a well-documented explosion of image data [1]. However,
interpretation of these data mostly remains a manual activ-
ity. In recent years, we have seen rapid growth not only in
image resolution and field of view but also in sampling fre-
quency. This enables an interesting computational analysis
problem—trajectory analysis—that is inherently different
from the search for large, durable feature changes. Given
multiple data captures, we can track particular objects,
extract their locations and build up a series of timestamped
positions that compose a trajectory [2].

Of course, the problem of trajectory analysis is not only
of interest in the setting of overhead image analysis, but the
biology community also uses it to examine animal behav-
ior [3]. Molecular dynamics researchers use the trajectories
of atoms and molecules to study the behavior and con-
formations of proteins and polymers [4]. In general, any
multidimensional data set that has timestamped points can
be considered a trajectory through phase space.

One difficult but important example that we have chosen
to study is the classification of aircraft behavior based on
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flight trajectories. This problem is important due to various
reasons. First, there are a number of obvious security
reasons. It is useful to comb data to search for criminal
or terrorist activity. Understanding the patterns of both
normal and anomalous behavior is critical to optimizing
public air traffic resources. Obtaining the details of airline
performance and analyzing safety issue are also potential
applications [5]. Currently, much of the work searching for
specific behaviors in trajectories is done manually. If even
a part of the job of airline trajectory classification could be
done in an automated fashion, it could make human analysts
much more effective. Figure 1 gives an illustration of how
difficult even the manual analysis of a single day’s worth
of US air traffic could be.

The aircraft trajectory classification problem also has the
quality of having a complicated space of input and output.
Generally, the input consists of timestamped location and
altitude data from which other derived quantities such as
speed and heading can be calculated to a certain accuracy.
This input is often derived from multiple data sources and
has many errors and omissions. The outputs are dependent
on the problem of interest. This could include looking for
regular patterns, anomalous patterns [6] and patterns that
correspond to a specific behavior, clustering into groups, or
finding a flight similar to an input trajectory. The outputs
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Fig. 1 One day of civilian air traffic over the continental United States and Canada. This data set is derived from the Aircraft Situation
Display to Industry (ASDI) feed from the US Federal Aviation Administration. An average day’s air traffic contains between 40 000 and
50 000 separate flights and over 5 million distinct data points. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

described above are not necessarily well defined and in
some cases have a human-defined component to them. The
net result of these complexities is a potentially rich set of
ways to go about building the model that connects the inputs
and outputs.

There have been a number of approaches to the trajectory
problem including Fourier descriptors [7], earth mover’s
distance [8], hidden Markov models [9], Hausdorff-like
distances [10], Bayesian models [11] and other approaches.
Most of these describe a trajectory in its entirety or compute
the distance between two trajectories. We propose an alter-
native approach based on trajectory features. These features
have several desirable properties. First, features based on
some concise or spatially local property of a trajectory
appear to correspond well to how humans envision trajec-
tories. This idea is one of the key drivers behind this work
and makes some types of traditional statistical ground truth
studies more difficult. Second, most of the descriptors we
propose can be pre-calculated once for each trajectory, as
opposed to proximity measures such as the Hausdorff and
Fréchet distances that must be computed de novo for every
different pair of trajectories. The ability to do precompu-
tation makes our approach suitable for rapid lookup in a
database. Finally, for many practical questions of interest
that separate flight behaviors, these geometric descriptors
correspond fairly closely to one or more quantities that
describe the behavior of interest.

In this paper, we begin by describing some of the
related work that has been done in the area of comparing

trajectories specifically for aircraft as well as more gen-
eral work. In Section 3, we describe more carefully the
specific problems we are trying to solve by designing geo-
metric measures for aircraft trajectories. We present results
and discuss the quality of the different geometric measures
in Section 4. Finally, we summarize our work and offer
suggestions for future work in Section 5.

1.1. Notation

We will use the following conventions when describing
trajectories and their features.

• A trajectory T comprises n + 1 timestamped points
(x0, t0), (x1, t1), . . . , (xn, tn), where xi describes the
position of point i.

• Given T, angle θi is the turning angle from vector
(xi − xi−1) to (xi+1 − xi ). Informally, θi is the turn
between segments i and i + 1 in the trajectory.
Positive angles indicate counterclockwise turns.

• |T| is the total length of all the segments of T.

• ||xn − x0|| is the end-to-end distance of T.

• C(T) is the convex hull of the points in T. Points
c1, c2, . . . , cm ⊂ x0, . . . , xn form the vertices of C(T).
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Fig. 2 Illustration of the parts and properties of a trajectory that
we use to compute features. A trajectory T comprises n + 1 points
x0, x1, . . . , xn. In (a), we see a trajectory T labeled with its vertices
xi , turning angles θ1 . . . θn−1 and end-to-end distance ||x5 − x0||.
In (b), we see another trajectory U with vertices x0 . . . x13 and
convex hull C(U). We approximate the aspect ratio of C(U) as the
ratio of the lengths of its major and minor axes where the major
axis connects the centroid of C(U) with the most distant point on
C(U) and the minor axis connects the centroid with the nearest
point on C(U). [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

• A indicates the centroid of a polyline A. Thus, T is
the centroid of a trajectory T and C(T) is the centroid
of the convex hull of T.

Figure 2 show examples of many of the trajectory prop-
erties that are used to calculate features. Each trajectory
is colored red when it starts and blue when it ends. All
distances used in the air traffic examples are great circle
distances. bala

Unless otherwise indicated, the algorithms presented in
this paper are applied to the two-dimensional projection of
three-dimensional trajectories. In most cases, the extension
to higher dimensions is straightforward and in some cases,
this will be discussed.

1.2. Trajectory Data Set

We tested our algorithms and generated the results shown
in this paper using the Aircraft Situation Display to Industry
(ASDI) data set. This is an air traffic data set generated by
the US Federal Aviation Administration (FAA) that contains
most US civilian flights that have flight plans on file. We

obtain the data via a subscription through AirNav, LLC,
which disseminates the traffic data in Extensible Markup
Language (XML) format along with additional metadata
concerning each flight.

The ASDI data set comprises approximately 50 000
flights per day. At Present, we have approximately 6 months
of archived data. Each flight consists of a sequence of data
points generally spaced 10–120 s apart. Each data point
contains a flight ID, a timestamp, position data (latitude,
longitude, heading) and a large amount of supporting
metadata. Flights contain anywhere between ten and several
hundred data points. Although a majority of the data points
in most flights are uniformly spaced every 60 s, the data
contain occasional dropouts and irregularly spaced samples
depending on the contact between an aircraft and the ground
sensors that communicate with it.

Metadata in the ASDI data set often include altitude,
speed, departure/arrival airport, departure/arrival times and
so on. This can be very useful in classifying flights. How-
ever, the focus of this work is to study how geometric fea-
tures can be used to compare, contrast and identify flights.
We do not use any of the metadata for this task.

2. BACKGROUND

2.1. Previous Approaches

The fundamental computer science issues related to
comparing two trajectories have been studied for many
decades in their most general form. If one considers a
trajectory T = {(x0, t0), . . . , (xn, tn)} to simply be a set
of points in a D + 1-dimensional space, where D is the
spatial dimension and the additional dimension corresponds
to time, there are a significant number of application drivers
outside of aircraft trajectory comparison. These include
object recognition, handwriting analysis and many different
forms of time-series analysis.

There have been many different distances defined to
measure distance or divergence between two trajectories.
Perhaps the most straightforward measure of distance
between two curves is the Hausdorff metric [12]. For two
trajectories A and B, the Hausdorff distance is defined as the
greatest distance from any point on A to the nearest point
on B. This gives a rough sense of the distance between two
curves but neglects the direction and speed of travel along
both trajectories.

One of the most well-known metrics associated with
curve similarity that does take the direction into account
is the Fréchet distance. The Fréchet distance F(A, B) is
formally defined as

F(A, B) = inf
α,β

max
t∈[0,1]

d(A(α(t)), B(β(t))) (1)
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where α(t) and β(t) are continuous, non-decreasing
reparameterizations of A and B, respectively, onto the
interval [0, 1]. Eiter and Mannila [13] have extended this
definition in a straightforward manner to the case where
A and B are described by discrete points as polygonal
curves. Both variations of the Fréchet distance represent the
minimum length of a leash required for a man following
one curve to walk a dog that is following the other curve.

One problem that both the Hausdorff distance and
Fréchet distance have is that they do not allow for trans-
lational, rotational or reflectional invariance. That is, they
measure the distance between two curves given some prede-
fined position and orientation. If the curves to be compared
are not already arranged as desired, they must be aligned
before applying either the Fréchet or Hausdorff distance.
This is a difficult problem. Typically, one would have to
do a Procrustes type of analysis to align them [14] or use
an alternate method based on dynamic time warping [15]
or edit the distance [16] that tries to match the geometric
distance and curvature between points. Additionally, hidden
Markov models have also been used [17] to try to compare
and classify trajectories.

2.2. Why Something Different?

The measures described above were primarily designed
to do one-on-one comparisons between two trajectories,
but for very large-scale work in identifying behavior in
trajectories (> O(106) trajectories), they become difficult
to work with. Many of these distance metrics require O(ab)

operations to compute where a and b are the number
of discrete points in the trajectories being compared.
Furthermore, there is little that can be pre-computed for a
trajectory in isolation: every comparison must be computed
from scratch for every pair of trajectories being compared.
At a more abstract level, these measures operate directly on
trajectories as objects in a non-normed metric space. This
makes clustering an asymptotically more difficult operation
since spatial indices such as r-trees and kd-trees assume a
normed vector space. Finally, the aforementioned measures
each compare the entirety of two trajectories instead of
identifying and addressing features of interest. What would
be ideal is a way to measure similarity based on trajectory
characteristics that:

• Can be calculated once for each trajectory.

• Can be calculated for each trajectory in a time that is
linear in the number of trajectory points.

• Can be used to calculate similarity between two
trajectories in constant time.

• Can be used efficiently to cluster trajectories.

• Can have translational, rotational and potentially
scaling and reflection invariance properties.

• Is based on characteristics of the trajectories that can
effectively categorize behavior.

Our approach is to use simple scalar measures associated
with each trajectory (such as time and total distance)
and combine those values with geometric scalar quantities
that describe the relevant geometric characteristics of the
trajectory. This gives us a feature vector associated with
each trajectory that can be used to store information about
and do comparisons between different trajectories. These
comparisons between feature vectors can be done through a
specifically defined vector product in a time that is constant
with respect to the length of the trajectories themselves.
These features can also be used in traditional databases or
specially designed database machines to do lookups very
quickly on very large databases.

3. PROBLEM DEFINITION

We define here more precisely what we mean by
trajectory comparison. There are a few different types of
problems that involve trajectory comparison. Some of the
more important ones that we will cover are

• Can we find the trajectories in a database that are
most similar to a given trajectory?

• Can we find trajectories that exhibit a behavior of
interest without regard to translation, rotation or
scale?

• Can we divide trajectories into specific clusters?

• Can we find trajectories that are outliers with respect
to a given set of trajectories?

In order to solve these problems using the geometric feature
vector approach, we have to define the quantities that
will be useful to construct the feature vector. Although
there are a very large number of features that one could
choose, we focused on features that generally were wholly
or mostly insensitive to variations in sampling of points
along the trajectory. This allows comparisons between data
sets where the points are sampled at different rates or in a
nonuniform manner. The features fell into a few different
categories that are described below.
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3.1. Distance Measures

These measures include several straightforward measures
associated with the flight and include:

• End-to-end distance of the flight:

de(T) = ||xn − x0||

• Total distance traveled (length of trajectory):

dt (T) =
n−1∑
i=0

||xi+1 − xi ||

• Distance from a given fixed point or set of points

• Centroid of points:

T = 1

n

n∑
i=0

xi

The first two of these measures are simple but important
ones for characterizing flights, while the third can be
calculated for more specific concerns related to relevant
fixed points on the ground. The fourth, along with similar
measures defined later, consist of two values defining a
position (usually by longitude and latitude) and not just a
single value.

3.2. Heading Measures

We can also define measures associated with how straight
a flight is such as:

• Total curvature:

ctotal(T) =
∑

i

θi

• Total turning:

cabs(T) =
∑

i

|θi |

These measures turn out to be very useful either by them-
selves or in conjunction with other measures to separate
out different types of flights. In some cases, one would
potentially be interested in quantities such as an average
curvature associated with a flight. However, care must
be taken not to introduce a sampling bias into the quan-
tities by taking the average over the number of points.
Instead, an average over total flight distance would be more
appropriate.

3.3. Geometric Measures

These more sophisticated measures often say more about
the shape of the flight than the more basic measures listed
above and are key to some of the results described later in
the paper. These measures include

• Area covered by flight, defined here as the area of the
convex hull of the flight points.

• Aspect ratio of the convex hull of the flight. This
is defined as the ratio of the shortest to the longest
axis of the polygonal convex hull of the points. We
approximate the length of the shortest axis as

min
c∈C(T)

||C(T) − c||

or in words, the distance from the centroid of the con-
vex hull to the nearest point on the convex hull. This
includes any point on the convex hull, not just the
vertices. The length of the longest axis is defined as

max
i

||C(T) − xi ||

for xi on C(T). In the case of the farthest distance
from the centroid, we only need to consider the ver-
tices of the convex hull because of the convexity
property of the hull.

• Length of the perimeter of the convex hull.

• Centroid of convex hull C(T).

• Ratio of end-to-end distance traveled to total distance
traveled:

de(T)

dt (T)

.

• Radius of gyration of the points:√
1

n

∑
i

(xi − T)2

We also believe that the geometric measures described
above seem to capture more holistic views of the trajectories
and correspond closely to how humans view the trajectories.
However, the present work will not examine this hypothesis
and detailed comparisons to human studies will be left to
future work.

We will also use one final geometric measure based on
the concept of distance geometry [18] to describe complex
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shapes in more detail. We define it as follows. First,
parameterize a trajectory uniformly over the interval t ∈
[0, 1]. Then, choose a set of m intervals (tm1 , tm2) and
measure the distance between the corresponding points xm1

and xm2 . This set of m values can then be used as geometric
measures to describe the shape of the trajectory. These m

values represent a geometric measure that is invariant to
translation, rotation and reflection. Further, if we normalize
these m values by the largest value so that all of the
values are between 0 and 1, we obtain a measure that is
also scale invariant. The use of distance geometry as a
feature has the advantage that it is a somewhat universal
descriptor of shape and is useful especially when a priori
the features that would be best are not known. Its primary
disadvantage is that it tends to carry less information than
more specific features that can be calculated when there is
an understanding of what features would best identify the
qualities of interest in a trajectory.

3.4. Use of Feature Vectors

The feature vector representation enables two different
approaches to solve the problems listed above. The first
is the most straightforward. We can calculate the feature
vectors and then use traditional searching or clustering
algorithms using a distance metric defined by the feature
vectors.

However, there is another approach that turns out to be
faster and more general for some applications. If we choose
the feature vector carefully and build a distance metric on
those vectors that is expressible as an Lp norm, then we
can use a spatial indexing scheme such as an R-tree [19]
to store feature vector values, search for nearest neighbors,
and even do clustering.

4. RESULTS

4.1. Data Cleaning and Trajectory Assembly

The data points in the ASDI feed arrive sorted by
timestamp rather than by flight. Our first task was to
reorganize this stream into potential trajectories. We first
sort by flight ID to create streams belonging to different
flight IDs and then search each stream for large time breaks
between points that indicate multiple stops under a common
flight ID. We used a threshold value of 30 minutes to
identify these breaks. Values between 20 and 60 minutes
did not yield significantly different results.

Once we assembled these candidate trajectories, we ran
each one through a simple cleaning operation to remove
obviously bad data. We looked for and removed data
points that were an unreasonably large distance away

from their neighbors given the time separation between
them. In this case, ‘unreasonably large distance’ required
an airspeed 3–10 times faster than a typical airplane.
This was sufficient to remove the especially bad points.
There are certainly more sophisticated cleaning and filtering
operations available. We chose not to use them because we
want to test our measures for robustness against data that
may contain significant uncertainty or noise in the position
fields.

4.2. Simple Geometric Filtering

The first examples we show here are primarily intended
to test some of the more straightforward aspects of
geometric search and were computed by single passes
through data sets looking for specific values of parameters
that represent a given type of behavior.

4.2.1. Avoiding airspace

One possible question that we could ask regarding a col-
lection of flights is, ‘Is there a section of airspace that flights
seem to avoid?’ A geometric signature corresponding to
such a question could be described in a number of ways. A
simple way would be to look at flights that traveled a sig-
nificant distance (in order to exclude flights that are simply
flying circles as part of training), but traveled a distance that
was significantly larger than the distance between their take-
off and landing points. Furthermore, to exclude flights that
simply meander, one could put a constraint on the aspect
ratio of the convex hull, requiring the flights to be more
‘round’. These criteria turned up a sizable cluster of flights
on July 10, 2013, shown in Fig. 3. Upon further research,
we found out what the flights were avoiding. That day,
many flights were rerouted to avoid a large system of thun-
derstorms that swept eastward through Illinois and Indiana
all the way to Ohio and Pennsylvania. In Fig. 4, we display
the ‘avoiding’ trajectories again along with a weather map
from that day.

4.2.2. Holding pattern

Another distinctive pattern of interest in flight trajectories
is a holding pattern. We define this as a flight that flies for
some distance and then enters a circling pattern due to some
sort of landing delay. We translated this into two geometric
constraints. First, the flight had to have at least moderate
length (200 km) and a significant total curvature that would
be unusual for a point-to-point flight (at least 20π ).

This search returned many flights that had clearly been
instructed to circle while awaiting permission to land. We
decided to extend it for a more difficult test of our approach
to search for flights that entered holding patterns and were
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Fig. 3 Examples of flights found for the ‘avoiding’ specification. In this case, we required the end points of the flight to be at least 1000
km apart, the ratio of the end-to-end distance of the flight to the total flight distance to be less than 0.7 and the aspect ratio of the convex
hull to be at least 1

3 . [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

ultimately diverted to different airports. To accomplish this,
we added the constraint that the aspect ratio of the convex
hull of the trajectory must have an aspect ratio of at least
0.1. This value was chosen to eliminate what were essen-
tially straight flights that paused on approach to the original
airport. This search turned up one flight in our test data set
(see Fig. 5). When we examined the original metadata for
this Flight, we found that it was indeed inbound to Atlanta
when it entered a holding pattern and was finally diverted
to Chattanooga during early June of 2013.

4.2.3. Mapping flights

Given the advances in imaging technology and the
burgeoning business in online map services, there are a
significant number of planes flying in a back-and-forth scan-
ning, or boustrophedon, pattern. This type of flight will have
a significant length, but will be enclosed by a fairly compact

shape. For this search, we require a reasonably long total
distance, but a more compact shape than a straight flight.
An example of these flights is shown in Fig. 6. Because the
distinctive pattern of these flights was relatively easy for
the human eye to pick out, they were used to create ground
truth data for a sensitivity calculation that is described in
detail in subsection 4.4.

4.3. Distance Geometry

The distance geometry approach described in Section 3
deserves a more in-depth discussion. Most of the features
that have been used so far are those that are obviously rel-
evant for the problem of interest. This is a useful approach
when there is an understanding of the specific pattern of
interest. However, there are many cases where the problem
of interest might involve finding shape similarities that are
difficult to explicitly describe. In this case, using a generic
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Fig. 4 Most of the trajectories identified with the ‘avoiding’ specification were responding to this event: a severe weather system crossing
most of the midwestern United States from Illinois to New York. This weather map was captured at 8:30 PM Eastern Daylight Time
(UTC-5) on July 10, 2014. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

set of intra-trajectory distances to describe the shapes turns
out to be a powerful means of letting the computer deter-
mine similarity without the user defining it.

To demonstrate the distance geometry technique, we will
use one of the flights that was found above in the avoiding
airspace example cited above (Fig. 3). While the goal in that
example was achieved by describing the features, distance
geometry enables an even simpler solution. We begin with
the flight shown in Fig. 7(a), measure distances at various
points along the flight and build a feature vector with the
distances normalized to fall between 0 and 1. This gives
us a feature vector based solely on the relative distances
between different points in the trajectory. We then compare
this feature vector to those from other flights in the database
using the L2 norm to find flights with a similar shape.

In our example, we chose 10 different distances to use
as the intra-trajectory distances. Let T(t)(t ∈ [0, 1]) be the
entire trajectory parameterized by t . Let d : R

2 × R
2− > R

be a distance function between points (here, the familiar
Euclidean distance). We then define the following distances
as our features:

• End-to-end distance: d(T(0), T(1))

• Distances from midpoint to beginning and end:
d(T(0), T( 1

2 )) and d(T( 1
2 ), T(1))

• Thirds: d(T(0), T( 1
3 )), d(T( 1

3 ), T( 2
3 )), d(T( 2

3 ), T(1))

• Quarters: d(T(0), T( 1
4 )), d(T( 1

4 ), T( 1
2 )), d(T( 1

2 ),
T( 3

4 )), d(T( 3
4 ), T(1))

Although we could have estimated the distances at
the precise time points through interpolation between the
nearest discrete points, we simply chose the points closest to
the interval boundary under the assumption that the points
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Fig. 5 Examples of a flight found for the ‘holding and diverted’ specification. In this case, we required the end points of the flight to
be at least 200 km apart, the total amount of turning to be at least 20π radians and the aspect ratio of the convex hull to be at least 1

10 .
[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

were roughly equally spaced. This made the lookup very
fast and did not significantly change the outcome compared
with the precise interpolation between points.

The results for the distance geometry search are shown
in Fig. 7. There were a wide variety of results, all with
similar fundamental shapes but with a wide variety of
sizes and orientations. We had also originally attempted
these comparisons with curve alignment algorithms that
were based on dynamic programming techniques. Those
approaches took much longer due to their increased com-
putational complexity and failed to match the global
shape of the curves due to their focus on aligning local
structures.

It is important to note that while the distance geometry
approach was effective in some types of search and more
mathematically satisfying than many of the ad hoc features,
it actually performed worse than using ad hoc features when
the ad hoc features were able to be chosen to more directly
capture the behavior of interest. For many of the practical

problems we have studied, the use of more specific features
was much more effective as they contained much more
information about the classification of a trajectory into a
specific category.

4.4. Effectiveness of Feature Space Approach

Generally, testing the effectiveness of a new approach
to classifying data involves applying the approach on a
data set where the ground truth is well known. This is
especially difficult with the technique we have proposed
and the data set that we are using. First, this technique
is fundamentally based around finding similar shapes, and
there is a continuum of potentially similar shapes and ways
to measure similarity. Second, no ground truth is available
a priori. Moreover, the data are not labeled in a way that
useful shapes or behavior can be extracted automatically.
We must find our ground truth by hand. Given the sizes of
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km

500

Fig. 6 Examples of flights found for the mapping criteria. We require the flights to be longer than 255 miles, have a convex hull aspect
ratio greater than 1/20 and at least four 180 degree turns. A selected sample of the results is shown in the figure. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]

the initial data set of observed points (approximately 1–10
GB each), this is a very labor-intensive process.

We performed one sensitivity analysis on the task
of finding the mapping flights that were discussed in
subsection 4.2.3. The process for establishing ground truth
was as follows:

1. We began by setting broad search parameters that we
believed would be inclusive of almost every mapping
flight in the data of interest.

2. We then studied those results and extracted by hand
what we believed to be flights with a behavior of
interest (‘mapping’). This was not a very clearly
defined behavior, and in some cases, the acceptance
or rejection of a flight involved a somewhat arbitrary
analyst decision.

3. We then took the aircraft IDs of the flights that had
been previously identified as mapping flights and
searched through the entire database for additional
flights from those aircraft that had not been previ-
ously found as mapping flights.

4. All of the flights from any plane that had been iden-
tified as a mapping aircraft from that data set were
then considered mapping flights. This was then con-
sidered our ground truth data set.

We note that the procedure above has its own false posi-
tives. For example, if aircraft A flies a mapping trajectory in
one part of the country, our approach of including all of A’s
traffic in ground truth will necessarily include the segment
where A travels from one part of the country to another in
order to map some other territory. Our data set was too large
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Fig. 7 Examples of curve matching using the distance geometry algorithm. The curve to be matched is shown in (a). Two examples of
matched curves are shown in (b) and (c), although at very different scales than (a). The curve in (b) flies around the southern Louisiana
area, while the curve in (c) flies around Washington, DC. Finally, in (d), we see examples of flights diverting around New York City, in
both directions. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

to manually remove those. In the absence of an infallible
oracle, we chose to draw the line as described above.

We chose as our data set all of the flights in the July
2013 ASDI data set that were non-scheduled commercial

flights and that met the criteria for having enough data to
construct a reasonable trajectory. This data set consisted of
330 492 flights, with 819 being labeled as true positives for
classification of mapping flights.
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Table 1. Confusion matrix for mapping flight search.

Ground truth

True False

Test outcome Positive 331 1120
Negative 488 328 553

To establish parameters for what we would consider
mapping flights, we studied one day’s worth of mapping
flights, as this was a good surrogate for how such a
methodology might be used in practice. We chose three
features as identifying the mapping flights. These were

• A flight length of at least 0.04 radians (approximately
255 km)

• A convex hull aspect ratio of at least 0.05 (remove
straight flights)

• Four examples roughly ‘turning around’ behavior,
defined by an approximately 180circ change in
heading over a relatively short distance

The results are shown in Table 1. The algorithm
identified 331 of the true positives and had a total of 1120
false positives. This corresponds to a sensitivity of 40%
and a specificity of 99.66%. Given known errors in the
ground truth set and a somewhat subjective definition of
flights that counted as true positives, this demonstrates an
effective way of finding a significant fraction of the flights
of interest using the feature vector technique.

4.5. Other Advantages of Feature Space Approach

We have just demonstrated finding trajectories with
a certain shape by calculating a feature vector for
an exemplar and then comparing that exemplar to all
trajectories in the database one by one—an O(n) search
with respect to the size of the database. This becomes
expensive as the database grows to millions or billions
of trajectories, especially since each search has to be
computed from scratch. An approach that would allow us
to reuse calculations is to create a spatial index within
multidimensional feature space that will allow us to search
quickly for nearby flights.

There are many types of data structures for this type of
spatial indexing, including k–d trees [20] and R-trees [19].
These hierarchical structures allow in most cases for
logarithmic time search and insertion. If the specific
characteristics required for comparison are known a priori,
a multidimensional space of those geometric features can be
populated with the database of flights, and finding ‘similar

flights’ becomes a neighbor search that is simple to do on
the tree structure.

As an example of this, we demonstrate a somewhat more
sophisticated search. We start with the flight shown in
Fig. 8(a), a roughly figure-eight shape, which is somewhat
unusual among the flights in our database. It is more
difficult to write a feature descriptor for this flight. Instead
of writing the descriptor directly, we define the different
dimensions of the feature space to be features that we guess
will be relevant. For this test, we chose three features: the
total distance, the ratio of the end-to-end distance to the
total distance and the aspect ratio of the convex hull. We
built an index of more than approximately 50 000 flights
(about 1 day’s worth) and asked for the 10 closest points
in feature space. The flights corresponding to three of the
closest points are shown. Given the small dimension of
the feature space, some of the other neighbors did not
resemble the figure-eight shape as closely. On an interesting
note, we can also search for the flights that are ‘farthest’
away from the test flight above. In this case, the 10
flights farthest away were all long, straight trans-Atlantic
flights.

Representing the data as feature vectors in a normed
vector space also allows clustering to be done in a
number of different ways. There are a variety of traditional
dimensionality reduction techniques that project data down
from a high dimensional space to a two-dimensional space
so that clusters can be found through visual inspection or
by existing algorithms.

Finally, the feature space embedding enables an elegant
solution to a difficult problem: finding trajectories that are
outliers with respect to a set of other trajectories. Through
the feature space embedding method, one can search
for individual trajectories or small clusters of trajectories
that do not have many nearby neighbors. This gives a
quantitative definition of the notion of an outlier or outliers
with respect to a set of trajectories and their respective
features. Fig. 9 shows a collection of outlier trajectories
with respect to the distance geometry features.

5. CONCLUSIONS

For many cases, working in feature space rather than
the physical space in which trajectories are embedded is
a more effective way of finding trajectories that match
a given set of criteria than using dynamic programming
approaches that employ more local comparisons. This is
partially due to computational issues, but very preliminary
discussions have also indicated that these more global
geometric features also generally correspond better to how
people see trajectories. This is also more aligned with our
overall goal of building tools for analysts to use to find
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Fig. 8 Examples of curve matching using feature space search. The curve to be matched is shown in (a). The dimensions in the feature
space here represent total distance, the ratio of total distance to end-to-end distance and the aspect ratio of the convex hull. The 10
nearest-neighbor points in the feature space were searched for and three of the results are shown. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]

trajectories that correspond to specific behaviors and not
necessarily to narrowly defined numerical quantities.

We anticipate that follow-on work will focus on two
general areas. The first will center on computational

improvements that include implementation on a database
machine, a more thorough analysis of the information con-
tent in the different features and examination of more effi-
cient ways to break up the trajectories into segments to
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Fig. 9 A sample of 100 outlier trajectories discovered using DBSCAN clustering within feature space. Since DBSCAN defines outliers
as ‘points that are not part of any cluster’, this set was a natural consequence of the same clustering operation used earlier. [Color figure
can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

find smaller features. We also would like to work with ana-
lysts to understand better how people currently compare
trajectories based on their experience.
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