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Thermal challenge problem: Summary
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Abstract

This paper summarizes the approaches used to address the thermal validation challenge problem. The approaches differ in their char-
acterization of the thermal properties and uncertainty, the definitions and use of validation metrics, the use of validation experimental
data to characterize or improve the model predictions, and the assessment of regulatory compliance. All approaches estimated regulatory
failure with the resulting estimated probabilities varying by an order of magnitude.
Published by Elsevier B.V.
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1. Introduction

The thermal challenge problem [10] is one of three prob-
lems addressed in this special issue on validation. The
mathematical model and the solution provided by Dow-
ding et al. [10] are based on one-dimensional, linear heat
conduction in a solid slab, with heat flux boundary condi-
tions. Experimental data from a series of material charac-
terization, validation, and accreditation experiments
related to the mathematical model were provided by Dow-
ding et al. [10]. The authors [1–7] who address this problem
were asked to evaluate the validity of the provided mathe-
matical solution for use in a specified application with a
defined regulatory criterion, and were asked to use the
solution to predict regulatory compliance.

Multiple approaches were used by Brandyberry [1], Fer-
son et al. [2], Higdon et al. [3], Hills and Dowding [4], Liu
et al. [5], McFarland and Mahadevan [6] and Rutherford
[7] to address the thermal challenge problem. While many
of the approaches possess some commonality, differences
in the philosophy, focus, and details were observed. For
example, the approaches of Higdon et al. [3] and Liu
0045-7825/$ - see front matter Published by Elsevier B.V.
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et al. [5] applied Bayesian analysis in the development of
calibrated model correction terms and updated parameter
distributions, using the ensemble and accreditation data,
with little emphasis placed on validation metrics. This
approach provides estimates of uncertainty in the model
predictions and is based on a multivariate extension of
the methodology developed by Kennedy and O’Hagan
[8]. Paper [6] used a similar Bayesian approach, but also
used statistical inference to assess model validity. The
approaches of Brandyberry [1], Ferson et al. [2], Hills
and Dowding [4] and Rutherford [7] are based on a non-
Bayesian point of view, with several addressing model
validity though the use of statistical inference, and several
using statistical or engineering tools to characterize or
improve the model’s agreement with the data.
2. Summary of approaches

Tables 1 and 2 summarize major features of the
approaches, and serve as an outline for the following dis-
cussion. Table 1 is partitioned into two basic approaches;
Bayesian and non-Bayesian. The table addresses issues
related to the three hierarchical validation steps discussed
by Hills et al. [9]: (1) the use of material characterization,
(2) ensemble and accreditation validation metrics, (3) and
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Table 1
Thermal Challenge Problem: Summary

Bayesian Approach Non-Bayesian Approach

The Use of Material Characterization Data

Used to define prior distributions [3,5] Used to define distributions [1,2,4,6,7]
T dependence handled through model bias terms and

Bayesian estimation [3,5,6];
T dependence not included (pooled data) [2,4];

T dependence handled though censored data [1,6,7];
Censored samples [5,6] Model predictions based on effective k as a function of temperature or time [2,4]

Quantitative Ensemble and Accreditation Validation Metric

None [3,5] Based on means: univariate [1], multivariate [4,6];
Based on distributions [2,4,7]

Prediction of Uncertainty of Regulatory Compliance

Includes uncertainty due to estimation of thermal properties
and model bias parameters [3,5,6]

Includes uncertainty due to estimation of thermal properties [4];

Includes uncertainty due to estimation of model bias parameters [7];
Includes uncertainty in the form of the distributions [3,5] Analyzes impact of uncertainty in thermal properties on validation steps [2]

Brandyberry [1], Ferson et al. [2], Higdon et al. [3], Hills and Dowding [4], Liu et al. [5], McFarland and Mahadevan [6], Rutherford [7].

Table 2
Thermal Challenge Problem: Additional Details

Approaches to Reduce Computational Complexity (Surrogate Models)

SVD basis function with GP weights [3]
GP model [5]
Cluster based approximation [1]
Sensitivity analysis [4]

Additive Function or Effective Property Approach for Bias Correction

Application specific basis functions with GP weights [3]
GP model [5]
Linear in T [1]
Linear in input parameters [6,7]
k = f(T) [2,4]

Calibrated using Ensemble/Accreditation Data

Yes [3,5–7]
No [1,2,4]

Brandyberry [1], Ferson et al. [2], Higdon et al. [3], Hills and Dowding [4], Liu et al. [5], McFarland and Mahadevan [6], Rutherford [7].
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the prediction of regulatory assessment. Table 2 provides
additional detail on aspects of the validation approaches.

2.1. Material characterization

Several features of the approaches used for material
characterization are summarized in Table 1. All authors
characterized the uncertainty in the thermal conductivity
and volumetric heat capacity though statistical character-
ization of the provided data. Statistics of the material char-
acterization data were used to develop prior distributions
for the thermal properties for Bayesian analysis [3,5]. One
paper [5] based these priors on normal distributions with
statistics estimated using the characterization data.
Another paper [3] defined the priors using uniform distri-
butions with ranges based on those observed in the charac-
terization data. The prior distributions were later updated
[3,5] through Bayesian analysis; using the ensemble and
accreditation data with Markov Chain Monte Carlo anal-
ysis and Metropolis updates. The methodology used by
Higdon et al. [3] and Liu et al. [5] required no assumption
about the form of the posterior distributions. One paper [6]
used Bayesian analysis to update only the means of the
thermal properties and assumed uniform priors that were
not conditioned on the characterization data.

In the cases of those participants who did not use Bayes-
ian analysis, the property distributions were estimated and
held fixed for the analysis of the ensemble, accreditation,
and regulatory steps. Two papers [2,4] based their material
characterization on independent, normally distributed,
thermal properties (the challenge problem definition [10]
stated that the uncertainties in the thermal parameters k,
qCp, were independent). Paper [2] also provided analysis
based on resampling values from the observed distributions
of thermal properties. Paper [1] assumed normally distrib-
uted conductivity for all data levels and for heat capacity at
the low data level, but developed empirical distributions
based on the raw data for heat capacity at the medium
and high data levels. Papers [4,6] evaluated the goodness
of the fit of the resulting normal distributions to the data
using standard statistical measures, whereas several
authors provided no justification for the assumption of
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normally distributed thermal properties. One paper [7] used
kernel density estimation to characterize uncertainty in the
thermal properties.

The heat conduction model provided by Dowding et al.
[10] for assessment was based on constant thermal proper-
ties. Many of the authors (see Tables 1 and 2) observed a
temperature-dependence in the thermal conductivity,
which can lead to bias in the model predictions. All authors
developed or suggested approaches to account for model
bias due to this temperature-dependence, or due to this
and other forms of model bias. Authors [2,4] presented
methods to account for this dependence through time or
temperature-dependent effective thermal conductivity to
be use with the linear heat conduction model supplied by
Dowding et al. [10]. Other authors [1,3,5–7] included addi-
tive correction terms to the predicted temperatures of the
supplied linear heat conduction model to account for
model bias. This approach required that parameters be
estimated for the correction terms, which was performed
using the ensemble and accreditation data. Uncertainty in
the estimated parameters is an integral part of the Bayesian
analysis approach and was also addressed using statistical
methods by several of the other approaches. Two authors
[2,4] also presented results obtained when the means and
variances of the thermal properties were evaluated using
characterization data obtained at all temperatures, without
additional ensemble or accreditation data calibration, or
without the evaluation of effective properties, to illustrate
the effects on the uncertainty in the prediction of regulatory
temperature. Pooling the thermal conductivity data for all
temperatures resulted in larger estimated variances for the
thermal conductivity than those approaches which did not
pool the data in this fashion. Censoring (sampling property
data over a limited range of temperature) was used by
many [1,5–7] to decrease the possible temperature depen-
dence effect of the thermal properties, and to increase the
relevance of the resulting property distributions to the
ensemble, accreditation, and regulatory steps.

2.2. Validation and accreditation

Two papers [4,6] applied validation metrics with the
ensemble and accreditation data that were based on stan-
dard multivariate statistics such as the v2 and Hotelling’s
T2 statistic. One paper [1] applied univariate metrics at
each measurement time for the medium and high data lev-
els. The metrics compare measurements or means of mea-
surements to expected values obtained from the models.
Several papers [2,4,7] provided new or used existing statis-
tical metrics to compared distributions, which characterize
not only how well a model predicts mean behavior, but also
how well the structure of uncertainty is predicted (i.e., the
shape of the probability density or cumulative density func-
tions). Two of the papers that used a Bayesian approach
[3,5] did not present model validation metrics. These
approaches focused on the development of model correc-
tion terms and updated parameter distributions, calibrated
using the ensemble and accreditation data. While the
Bayesian approaches did not explicitly define validation
metrics, the magnitude of the resulting corrections to the
predicted temperatures, and the associated estimates of
uncertainty in these corrections, can be used as an indicator
of model validity.

Of the authors that provided validation metrics, only
Hills and Dowding [4] and Rutherford [7] found strong sta-
tistical evidence to reject the model supplied by Dowding
et al. [10] based on the application of the metrics to the
ensemble and accreditation data. All authors, however,
developed or suggested corrected models to be used to
assess regulatory performance.

2.3. Prediction of regulatory performance

All participants estimated the probability of meeting the
regulatory criteria using various forms of Monte Carlo
methods. For comparison, one paper [4] also used a first-
order sensitivity analysis and assumed normal distributions
for the regulatory predictions. With the exception of two
papers [1,7], uncertainties in the characterization of the
probability density functions for the thermal properties
were included in the regulatory analysis, or their impact
investigated. Bayesian approaches [3,5] included the impact
of this uncertainty as a natural product of the methodol-
ogy. One paper [6] presented a heuristic approach to
account for this uncertainty through a distribution of the
variances of the thermal property distributions. The uncer-
tainty was estimated separately from their Bayesian analy-
sis. Confidence intervals or levels of confidence on the
predicted probability of failure were provided by Brandy-
berry [1], Ferson et al. [2], McFarland and Mahadevan
[6] and Rutherford [7].

2.4. Computational cost

Several approaches were used to reduce the computa-
tional cost (number of evaluations of the solution of the
mathematical model) for parameter estimation, validation,
and regulatory prediction. While the analytical solution
provided for the challenge problem required minimal com-
putational resources to evaluate, many authors addressed
the issue of computational cost, as real-world applications
often utilize computational expensive solutions. For such
applications, less computationally expensive surrogate rep-
resentations of the solution are often desirable for sampling
based approaches to uncertainty quantification. Gaussian
process (GP) models were used as surrogate representa-
tions of the solutions of the mathematical model by two
participants [3,5]. The use of GP models as surrogates for
Monte Carlo simulation was introduced by Sacks et al.
[11] and is well cited in the literature. The uncertainties in
the GP model parameters are estimated as a product of
the Bayesian analysis [8]. A cluster-based method, first used
for nuclear risk assessment, was presented by paper [1].
This method uses an analytical solution of a low fidelity
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approximation to the mathematical model with Monte
Carlo simulation to identify clusters of temperatures, and
more importantly, clusters of model parameters that span
the cumulative density function for temperature for the
low fidelity solution. Means or end points of these param-
eter clusters are then used as input for the solution of the
full fidelity model, to approximate the cumulative probabil-
ity distribution of the predicted temperature. A first-order
sensitivity analysis approach was also presented by paper
[4] to reduce model complexity by assuming that perturba-
tions of model predictions evaluated around the mean of
the parameter values, are approximately linear in the
parameters. The covariance matrix for the model predic-
tions was estimated using this approximation. The uncer-
tainties associated with this approximation were not
investigated.
2.5. Model bias

Several approaches were used to account for observa-
tions of model bias (also denoted model form bias [1],
model discrepancy [3,7], or model inadequacy [6]). These
approaches were based on the evaluation of effective
parameters or the development of calibrated correction
functions. The modified models were used by some authors
for regulatory assessment, whereas others used these pre-
dictions for both regulatory assessment and validation
using the ensemble and accreditation data. Authors
[1,3,5–7] developed model correction functions that were
calibrated using the ensemble and/or accreditation data.
These correction functions were additive in the sense that
they were added to the predicted temperatures of the solu-
tions to the mathematical (or surrogate) model. The func-
tions used to represent bias include Gaussian process
models [3,5,6], and functions that are linear in temperature
or in the model input parameters [1,6,7]. When used with
Table 3
Regulatory compliance

Authors P (T > 900 �C), data level

Low Medium

Brandyberry [1] 0.22 0.26
0.23 0.26
0.12 0.08
0.13 0.10

Ferson et al. [2] 0.28 0.22
0.25

0.10 0.05

Higdon et al. [3] 0.07 0.03

Liu et al. [5] 0.02
McFarland and Mahadevan [6]
Rutherford [7]
Bayesian analysis, the probability distributions associated
with the uncertainty in the bias function parameters were
also provided. Papers [5,6] developed a bias term that
was based on a GP model of the configuration inputs,
whereas Higdon et al. [3] used a set of kernel basis func-
tions. Two papers [2,4] reduced model bias error by using
a temperature (or time) dependent thermal conductivity
without ensemble or accreditation data calibration.
2.6. Data level

Many papers demonstrated the impact of low, medium,
and high levels of data on the validation process or the reg-
ulatory predictions. Papers [1,6] quantified the impact on
validation through the use of statistical power. Statistical
power quantifies the probability of failing to reject an inva-
lid model (Type II error) and is dependent on the quantity
of data used and the assumptions made concerning the
structure and statistics of the uncertainty. Several authors
repeated the analysis of regulatory performance using the
low, medium, and high data levels to assess sensitivity on
dataset size (see Table 3 and Section 4).
2.7. Regulatory compliance

The final task addressed was to evaluate the model at the
regulatory criteria specified for the challenge problem,
assess whether the criteria were met, and address confi-
dence in the assessment. The estimated probabilities of
the various approaches are listed in Table 3. Note that all
approaches estimated that the probability was greater than
the value 0.01 specified as the regulatory criterion [10].
There were considerable differences in the probabilities,
with the results ranging from 0.02 to 0.28. Probabilities less
than 10% were estimated by Brandyberry [1], Ferson et al.
[2], Higdon et al. [3], Hills and Dowding [4] and Liu et al.
Comments

High

0.24
0.16 Interpolated surrogate model
0.06 Bias correction
0.05 Bias correction, interpolated surrogate model

0.25
Thermal properties sampled from data

0.05 Effective conductivity

0.03
0.17 Sensitivity analysis
0.25 Monte Carlo
0.09 Effective conductivity, sensitivity analysis
0.14 Effective conductivity, Monte Carlo

0.04
0.17
0.15
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[5]. These lower probabilities were derived from
approaches that accounted for the thermal dependence of
the conductivity or approaches that included additive bias
terms. Probabilities of failure larger than 20% were esti-
mated by Ferson et al. [2] and Hills and Dowding [4] for
approaches that sampled the characterization data over
the entire temperature range (resulting in broader probabil-
ity density functions), coupled with approaches that did
not attempt to correct for possible model form error. Note
that regardless of approach, the added uncertainties associ-
ated with characterization of thermal properties and the
parameters that appear in bias correction terms will result
in additional uncertainties in the prediction of regulatory
compliance. Thus, even if the model accurately represents
the physics, the characterization and inclusion of these
additional uncertainties will lead to uncertainties associ-
ated with prediction that were not present in the analysis
performed by Dowding et al. [10] in developing the chal-
lenge problem.

3. Discussion and conclusions

The approaches used to address the thermal challenge
problem included those that followed the step-by-step val-
idation hierarchical process discussed in the introductory
paper [9], or focused on improving model performance
through additive corrective terms, calibrated using the
ensemble and accreditation data, with less emphasis on
the intermediate steps of validation. Many of these
approaches were based on long-established engineering
techniques and statistical inference, whereas other
approaches were based on Bayesian analysis. The results
summarized in Tables 1–3 and discussed above suggest
the following:

1. A wide range of approaches were used to characterize
the uncertainty in the thermal properties of the materi-
als, from the assumption of normally distributed proper-
ties with or without justification, to sampling from the
characterization data, to kernel density estimation using
the observed characterization data, to Bayesian analysis
using the observed ensemble and accreditation data to
update priors for the thermal properties.Several authors
observed temperature dependence in the thermal con-
ductivity data. Approaches used to handle this depen-
dency ranged from the simple pooling of thermal
conductivity data over all temperature, to censoring
the thermal data to include observations over a limited
range of temperatures, to the development of effective
temperature-dependent thermal conductivity approxi-
mations. The censored or effective thermal conductivity
approaches resulted in smaller variances for thermal
conductivity than did the pooled approach.

2. Some authors developed additive correction terms to
account for observed differences (bias) between the pre-
dictions of the model and the ensemble and accredita-
tion data. Some of the approaches also characterized
and addressed the impact of the uncertainty in the esti-
mation of the bias terms on validation and the predic-
tion of regulatory performance.

3. Two basic approaches were used by those that defined
validation metrics to assess the models based on the
ensemble and accreditation data. The first compared
means of the model output to multivariate values or
means of the ensemble and accreditation experimental
observations. The second compared distributions of
the model output to distributions estimated based on
the ensemble and accreditation data.

4. All approaches predicted a failure to meet the regulatory
criterion. Generally, those approaches that attempted to
either account for temperature-dependent thermal con-
ductivity through a temperature or time dependent effec-
tive thermal conductivity, or those that developed model
bias correction terms using the ensemble and accredita-
tion data, predicted smaller probabilities of failure than
those that did not. Most of these approaches included
the effect of uncertainty due to the estimation of param-
eters in the correction terms. Because the true probabil-
ity of failure associated with the mathematical and
statistical models used to generate the data for the chal-
lenge problem was not, and will not be made available
to the participants, the potential benefits of these
approaches to improve prediction were not assessed.

5. The predicted probability of failure for the regulatory
design ranged from 0.02 to 0.28. This order-of-magni-
tude range suggests that there is considerable subjectiv-
ity in the validation process, when the validation
problem is defined to include many of the uncertainties
associated with possible model form error, material
characterization, validation, and prediction of regula-
tory (or design) performance. It is reasonable to expect
additional subjectivity if the added complexities associ-
ated with experimental uncertainty, physics-related
model conceptualization, other sources of epistemic
uncertainty, and the integration of suites of validation
experiments addressing different physics with the associ-
ated different sources of uncertainty, are included.

There were major issues for which there was a consensus
in approaches and one issue for which there was a differ-
ence of opinion:

1. All participants developed and characterized statistical
models for the uncertainties in the model input parame-
ters (thermal properties) using the provided data.

2. All participants used uncertainty quantification methods
to propagate the uncertainties in model input parame-
ters through the mathematical model (or surrogates),
to estimate probability distributions for predictions of
temperatures associated with the ensemble and accredi-
tation experiments, and for the prediction of regulatory
temperature. Several participants also developed esti-
mates of uncertainty in the resulting probability
distributions.
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3. The participants who developed validation metrics
for the ensemble and accreditation experiments included
the effect of the uncertainties in the model input param-
eters in the evaluation of these metrics. The metrics were
all probability-based.

4. There was disagreement as to the proper role of calibra-
tion to improve agreement between the model predic-
tions and the ensemble or accreditation data, and on
the assessment of model validity and the prediction of
regulatory performance when such prediction requires
extrapolation from the conditions of the validation
experiments.

One of the desired goals of the workshop and this spe-
cial issue was to increase awareness of methodologies asso-
ciated with various approaches to model validation,
including the quantification of the impact of uncertainties
in the model validation process on the prediction of regula-
tory performance. The diversity of approaches and results,
for such a simple and carefully defined validation problem,
suggests that there is work do be done to reduce the subjec-
tivity of the validation process. The presentation of these
multiple approaches at a single workshop and in this spe-
cial issue, represents an important step toward this goal,
and toward the communication of the benefits of different
approaches to various aspects of model validation under
a common framework.
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Babuška, R. Tempone, Validation challenge workshop, Comput.
Methods Appl. Mech. Engrg. 197 (29–32) (2008) 2375–2380.

[10] K.J. Dowding, M. Pilch, R.G. Hills, Formulation of the thermal
problem, Comput. Methods Appl. Mech. Engrg. 197 (29–32) (2008)
2385–2389.

[11] J. Sacks, W.J. Welch, T.J. Mitchell, H.P. Wynn, Design and analysis
of computer experiments, Stat. Sci. 4 (1989) 409–423.


	Thermal challenge problem: Summary
	Introduction
	Summary of approaches
	Material characterization
	Validation and accreditation
	Prediction of regulatory performance
	Computational cost
	Model bias
	Data level
	Regulatory compliance

	Discussion and conclusions
	Acknowledgements
	References


