Pathfinding Thermodynamically Reversible
Quantum Computation

Karpur Shuklat?* and Michael P. Frank3 "’

I Department of Physics, Carnegie Mellon University
2Department of Applied Mathematics, Flame University
3Center for Computing Research, Sandia National Laboratories

Presented at Brown University

NSF QLCI Workshop on the Identification and Control of
Fundamental Properties of Quantum Systems

. Sandia National Laboratories is a multi-
Da te. Jan Ua ry 24, 2020 mission laboratory managed and operated
by National Technology and Engineering
Approved for public Solutions of Sandia, LLC., a wholly owned
subsidiary of Honeywell International, Inc
release, for the U.S. Department of Eneray's
Natio IN clea rity Administration
SAND2020-0930 C ¥

t t DE-NA0003525.

% _ - Sandi
L Ijm Carnegie Mellon Umver51ty



Outline

e Landauer’s limit and the quest for reversible computing.

* Resource theory of quantum thermodynamics.

* Generalized reversible computing and dissipation bound on quantum computing.
 Modelling in quantum open systems.

» State space geometric properties of open systems and impact on generalized reversible

computing.
* Application to the dissipation delay product.

* Asynchronous ballistic quantum computing.



| andauer’'s Limit

 [andauer’s limitll: one bit of information lost in computational process dissipates
AE = kgT In 2 of energy as heat.

e Dissipation due to increase in entropy: AS = kglIn 2. Links information and physics!
 Ejection of information in correlated bitsl?: loss of prior correlations to environment.
* Ejection of uncorrelated bits to the environment does not contribute to change in entropy.

e No-hiding theoreml3l: information can’t be destroyed.

* Moves from system S to environment E. Global unitary evolution over H¢ @ HF.

* Information lost from original system can’t remain in SE correlations.

« Conventional computing: entirely irreversible. (Ex.: clearing memory.)

[1] — R. Landauer, IBM J. Res. Dev. 5, 163 (1961).

[2] — M. Frank, arXiv:1806.10183.
[3] = S. Braunstein and A. K. Pati, Phys. Rev. Lett. 98, 080502 (2007).



https://arxiv.org/abs/1806.10183
https://www.pitt.edu/~jdnorton/lectures/Rotman_Summer_School_2013/thermo_computing_docs/Landauer_1961.pdf
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.98.080502

Resource Theory

* Resource theory: all free states p € D(H) and free operations ® € Aut(D(H))

which can be implemented with no energetic cost or dissipation, with conditions.

* Ex.: Resource theory of bipartite entanglement. Free states: separable states. Free

operations: local unitaries & classical communication (LOCC). Necessary & sufficient

condition: [PY)XYPlap = | Plap ITT S(WPa) = S(Py4).

* Resource theory of quantum thermodynamics (RTQT):
* Free states for nontrivial BH: equilibrium thermal states {p;}.

* Free operations for nontrivial SH: all operations that preserve {f.}. Thermal operations.

e Condition for p = & under thermal operations: thermomajorization.

[4] = N. H. Y. Ng and M. P. Woods, in Thermodynamics in the Quantum Regime, edited by F. Binder et al. (Springer Nature, Cham, 2018);

see also arXiv:1805.09564.


https://arxiv.org/abs/1805.09564
https://link.springer.com/chapter/10.1007/978-3-319-99046-0_26

Thermal Operations and Thermomajorization

 Start: system S coupled to environment E. E starts in thermal state: pg 6.

 Thermal operations: all quantum channels £(ps): ps = Trg {(7515 (s ® Pz ¢) USET}.

* Energy-conserving unitary dynamics: global unitary evolution Usg across SE.
» Require |Usg, Hs + Hg| = 0 at all times.
* Maps thermal states to thermal states (but not necessarily the same one).

« Thermomajorization: necessary & sufficient for E(p) to map ps = Gs. For eigenvalues 4;(p) of p

with corresponding energies E; 5, require:

(Zie_ﬁEiﬁ , Zi/li(ﬁ)l> > (Zie‘ﬁ’fiﬁ , Zi/h(ﬁ)g

« 1;(p)*: order eigenvalues of p by decreasing value.



Classical Computing as a Lower Dissipative Bound

* Information processing expressed as a thermal operationl®. Dissipation:

AEq = kT (S(ps) = S(@5)) + S (TUsz (Bs ® o ® pi) Uswis' || @5 @ u @ fs )
e System S coupled to environment E and catalyst M; same as splitting E into M and E.
* Channel: E(ps): ps P 0 = Try Trg {USME (Ps @ pu & PE) ﬁSMET}-
e First term: information cost of classical IP. Second term: quantum [P.

o Classical IP 1s a lower dissipative bound! Quantum |IP can be equal at best.

e Classical IP: signal states correspond to orthogonal quantum states.

* Pure unitaries and single input & output operations match classical IP dissipation bound.

[5] — D. Bedingham and O. Maroney, New J. Phys. 18, 113050 (2016)



https://iopscience.iop.org/article/10.1088/1367-2630/18/11/113050/meta

Generalized Reversible Computing

* Reversible computing: reversibly transform computational

C1

states, instead of destructively overwriting them.

 Computational states c: states representing

computational information. @ @

* {c} partitions {p} in equiv. classes. All {5} in same class are

linked by unitary transform: have same entropy.

 GRC: Bijections on the probability-1 subset of {c}.

e Lower dissipative bound on classical RC can be zero!

 Quantum RC: bounded only by mutual entropy term.

Image modified from M. Frank, arXiv:1806.10183.



https://arxiv.org/abs/1806.10183

Resource Theory & Quantum Reversible Computing

e Key Issue: |P operations usually involve a catalyst machine, which sometimes

needs to be reset. Reset destroys correlations (mutual info.): dissipation!

* This is also the source of dissipation in irreversible (classical) computing.

 Thermal operations can provide a framework for quantum RC with dissipation
arbitrarily close to classical RC.

« Same idea as classical RC: preserve correlations. Rigorously proved[®l: examine the transition
Ps Q Py Q [w)w| = o5y & |Ww — AN w — A| for SME coupled to work bit |w). Resetting

condition: Trg Osy = Py -

* S(ps|| Trg 05p) can be arbitrarily close to zero: arbitrarily close to classical IP bound.

[6] — M. Miiller, Phys. Rev. X 8, 041051 (2018).



https://journals.aps.org/prx/abstract/10.1103/PhysRevX.8.041051
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Image taken from M. Miiller, Phys. Rev. X 8, 041051 (2018).


https://journals.aps.org/prx/abstract/10.1103/PhysRevX.8.041051

Modelling Reversible Computational Processes

 Standardl’l method: N density matrices encoding N-ary alphabet.
e Bijection between physical and computational states.

* Generalized classical reversible computing: more physical states than computational states.

* Need to generalize to GRC, thermal operations, and nonequil. dynamics.

 \Want physical state — computational state mapping to always commute with USE(MW). The

same physical state always maps to the same computational state.
* Can permit long-lived quantum coherences between physical states within an equiv. class.

* Want to represent these as thermal operations, possibly within a larger open system.

[7] — N. Anderson, Eur. Phys. J. B 91, 156 (2018).



https://epjb.epj.org/articles/epjb/abs/2018/07/b170716/b170716.html

(System) Kraus Operators

* -simal evolution for density matrices in open (noneq.) quantum systems:

Eaelps ()] = ps(t +dt) = zjk<ek‘ﬁSE(dt)‘ej> ps(t) (ej‘ﬁSE(dt)‘ek>

* Ej == /2 (ex|Usg|e;): (system) Kraus operators over environment eigenstates {|e;)}.
* Any map of the form pg(t) = X Ejk(t) ps(0) E'ijr(t) isa CPTP map.

o Ajk € Op(Hs): takes D(Hs) to itself, but expression depends on {|e;)}.

* Done via algebra operation Op(Hs) X Op(Hs) — Op(Hsy). Ejk & Ll(Op(}[S)).



The GKSL Superoperator

 GKSL superop.: time evolution generator at lowest order. Eg; =T +dt L + -+, and
L= dltlr_r)lo (Eqr — T)/dt.

* Kraus operators give evolution of p under quantum jump:
EO = ﬂS_iHS t—_z k Ej,k>0= /Kjkdtﬁ}k
J, k>0
 GKSL superoperator in terms of jump operators {F]k}

~ dp 0 o1 1 & ~at (ats A
L|ps] :=d_:=_l[H5’p5]+§zj,k>0Kjk (ZijPSij _{jk Fik, 5})



Spectrum of the GKSL Superoperator

 Formal solution to GKSL equation: ps(t) = et* p5(0).

* Examine spectral decomposition of £ via Choi-Jamiotkowski isomorphism: mapping of operators F**™

to vector space ™ employing Hilbert-Schmidt inner product.

* la)(b| » |la) ® |b); A~ |A)). Inner product ((A|B)) = Tr{ATB}.
» Steady state solutions: defined as |pgs)) == tlim et |ps(0))).

« System with multiple steady states: assuming L is unitarily diagonalizable, have:

Bs(O)) = e 1ps(0)) = Z et |2, ) (Falps(0))

a

* |X,), (¥.|, A, are right eigenstates, left eigenstates, and eigenvalues of L.

* R{A,} < 0: damped states. R{A,} = 0: steady states. (R{A,} > 0 blows up.)



Four-Corners Decomposition

« Multiple steady states forml8l asymptotic subspace As(H)

of nonzero steady states.

* Right eigenvec. of £ with pure imaginary eigenval. / PEE \

* Corresponding left eigenvec are system conserved currents.

« All initial states have components along these states.

e As(H) can have further nontrivial dynamics.

* Four-corners decomposition: decomposition of L in terms

of As(H') and conserved currents.

[8] — V. Albert, arXiv:1802.00010 (Ph.D. thesis, Yale). Image is from this.



https://arxiv.org/abs/1802.00010

Example Types of Asymptotic Subspaces

 Decoherent subspace: decoherence between steady states In / P \

dynamics purely within As(H).

* Decoherence-free subspace (DFS): no further decoherence.

* Noiseless subsystem (NS): As(H) is tensor product of DFS \ /
subspace and subspace spanned by different steady state. / \

« von Neumann algebra: As(H) is a direct sum of DFS or NS

blocks. =

« von Neumann algebra: C*-algebra which also includes all 4 that satisfy

(|Anlw) = (B|A|Y) for 1¢), 1) € F and {4, } € Ly (). \ |

Images from (or modified from) V. Albert, arXiv:1802.00010 (Ph.D. thesis, Yale).



https://arxiv.org/abs/1802.00010

Generalized Reversible Computing and Four Corners

e Classical reversible computing: surjective map from physical to / \

computational states, equivalence classes.

» All states within a class must have same noncomputational entropy: related

by a unitary transformation.

* We permit intra-class coherences: each class can be a DFS. \ /

 Each class in a given computational scheme must have same computational

entropy: each DFS block has same dimension. \

e -~ quantum channels performing classical RC can be represented by the von

Neumann algebra.

e Quantum GRC: permit inter-class coherences. \

Images modified from V. Albert, arXiv:1802.00010 (Ph.D. thesis, Yale).



https://arxiv.org/abs/1802.00010

Berry Curvature and the Quantum Geometric Tensor
* Distance In parameter space:

ds? = [l + dD) —pDII? = (9|0, ¢) dA* dAY = (v, + igy, ) dA* dAY

* 0,,. Berry curvature. g, = 9,4, — 0, A,

* 9uv = Y — Ay N Ay quantum geometric tensor. Metric on the manifold of states.
* [nterest Is In quantum geometric tensor induced by GKSL dynamics.
» Berry connection Ag 1y = {(9,]04]%,)-

» Induced QGT for vN algebra: Qup 4y = 0o Ag v + Aa v A Ag yy — (P1]005|5v)-



Dissipation-Delay Product

 Major quantity of interest for characterizing efficiency of reversible operations.

« Goal: characterizing general (protocol-based, device-independent) efficiency properties of reversible
operations.
* Dissipation-delay product: product of energy dissipation incurred by transition process
and delay of process.
e For perfectly unitary time evolution, dissipation is zero.

* |In principle, delay quantity I1s not subject to the quantum speed limit, but can be used as an initial

value for a non-tight bound.

 Want to quantify energy dissipation for reversible operation. Idea: use nonequilibrium quantum thermo.



Dissipation Length for Single Steady States

* [hermodynamic dissipation length:

minimal dissipation amount for

Processes.

 Construct similar manifold for set of all

possible Gibbs states.

e GGeodesics: minimal dissipation process.

 Derivedl® for GKSL dynamics with a

single steady state.

[9] — M. Scandi and M. Peranau-Lloblet, Quantum 3, 197 (2019). Image from here.


https://quantum-journal.org/papers/q-2019-10-24-197/

Ballistic Quantum Computing

* Current: primitive quantum gate operations driven by external control (e.g. RF

pulses). Several issues:

* Control interfaces can be highly complex and can be a source of decoherence.

 Circuit models aren't self-contained: difficult to examine physical properties (e.g. dissipation).

« Ballistic QC: qubits flying ballistically between devices in hardware circuit.

» (Gates as physical devices rather than operations; circuits as networks of connected devices

rather than sequences of operations.

» Devices carry local unitary transformations automatically via fixed, innate, designed-in H.



Asynchronous Ballistic Quantum Computing

* Dynamics implemented by the qubit-device interaction in the ballistic model will
generally be sensitive to their relative time of arrival.
* Devices that require multiple interacting qubits to arrive simultaneously will be physically
Impossible to satisfy. Chaotic effects & Heisenberg both yield intrinsic timing uncertainty.
* Asynchronous: require qubits to arrive at times that are widely separated.

 Need a model that can implement quantum gates even for somewhat noisy transmission

lines, and independent of exact qubit arrival times.

e Permits both stationary and flying qubits; interacting according to fixed U at each device.

e At each device, at most one flying qubit need interact at a time.



Constraints on ABQC Implementation Schemes

Dl—’_Dz
e Constraints on ABQC model, from both requirements < | / \Ds
D,
on QC and requirements on asynchronous classical — DS/
ballistic RCI2%. Constraints from QC: Q
Network of hardware devices
* Universal quantum gate set; robust or relatively noiseless \ /
channels propagating qubits; unitary invertibility. ) ‘)
N
* Additional constraints from asynchronous classical + = 0 =< +
. Scattering
ballistic RC (ABRC)!1H, : operator a :

J an S-matrix) \

[10] — M. P. Frank, in Proc. 2017 IEEE Int. Conf. Rebooting Comput., Institute of Electrical and Electronics Engineers, Incorporated, Red Hook (2017)

[11] — M. P. Frank, Asynchronous Ballistic Quantum Computing. Presentation: presented at the Quantum Coffee Hour, Sandia National Laboratories.


https://ieeexplore.ieee.org/document/8123659
https://cfwebprod.sandia.gov/cfdocs/CompResearch/docs/ABQCv2-ho2up.pdf

Physical Realizations

« ABQC from ABRC:
* General: devices implementing reversible trans. on finite
sets — implementing unitaries on H.

« Extend simulation results!*?l and ongoing experimental
tests on RC via superconducting circuits by quantizing
L? (Same as in circuit QED.)

e Ground-up model building might be simpler:

e S-matrix construction of general ABQC model?

* Use principles of ABQC to develop skyrmion-based

model?

[12] — W. Wustmann and K. Osborn, arXiv:1711.04339. Images from here.
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https://arxiv.org/abs/1711.04339

Conclusions and Next Steps

e Reversible computing: a new computing framework that can avoid dissipative costs

involved in conventional computing.

* Current work: extending RC to a proper open system / nonequilibrium quantum
thermodynamic footing. (Sandia Tracking #1068410)

e Gives us fundamental quantum thermo results “for free”; e.g. thermodynamic length for multiple SSs.
e Can give us a device-independent, protocol-based metric for efficiency of reversible operations!
* Next work: developing ABQC model.

* Developing ground-up skyrmion based model.

* Analogous to circuit QED, examining quantization conditions of classical ballistic RC model.






Nonequilibrium Landauer Limit

* Using RTQT, can get an explicit nonequilibrium Landauer bound[3!.

p(Q) = —In [Trs Trg {(ﬁs(o) X 1g) ﬁSET (]15 X ﬁE,ﬁ) ﬁSE}]

» Dissipation bound depends on subsystem non-unitarity of Ugg.
» Measure of non-unitarityl" on E: Ng = || X Ak (s |Use|s;){sj|Use|sx) — 1&]|.
* Ny = 0: no lower bound on dissipation.

. (Sa|ﬁSE|Sb): environment Kraus operators. Maps D(Hy) to itself via operator algebra.

[13] — J. Goold, M. Paternostro, and K. Modi, Phys. Rev. Lett. 114, 060602 (2015).

[14] — G. Guarnieri et al., New J. Phys. 19, 103038 (2017).


https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.060602
https://iopscience.iop.org/article/10.1088/1367-2630/aa8cf1/meta

Berry Phase and Berry Connection

 Time evolution via adiabatic approx. H(A*) parametrized by A*(t) € R™:

Y1) = e'Pnl®) exp {—ij dz En(l“)} [n(A9))
0

e Closed path in parameter space R": returning to starting conditions. Permits nonzero

gauge-invariant ¢,,: Berry phase.

* Degenerate eigenspaces: ¢,, upgraded to U(N) matrix. Non-Abelian Berry phase.

e Berry connection: gauge-dependent connection from Berry phase.

b (1) = jﬂc AEA; Ay = i{n()|3,|nD)



Practical Motivation for Reversible Computing

* Dennard scaling: power density of transistors remains constant as transistor size

decreases.

 Moore's law: number of transistors in given integrated circuit area doubles

(approximately) every 18 months.

« Dennard: ended by 200815, Moore: ending nowl!16!.

 Main challenge: energy efficiency! Reversible computing: avoids major source of energy

dissipation.

* Almost all quantum computing is reversible, but classical reversible computing is the lower bound case

on dissipation.

[15] — B. Deng et al., ACM Trans. Arch. Code Opt. 15, 8:1 (2018).

[16] — H. Khan, D. Hounshell, and E. Fuchs, Nature Electronics 1, 14 (2018).


https://www.nature.com/articles/s41928-017-0005-9
https://dl.acm.org/doi/10.1145/3177837

