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1: Summary 

In order to fully appreciate the fundamental limitations and advantages of classical reversible computing (CRC), and in 

order to understand how to practically implement CRC, it’s imperative to first be able to express CRC operations from 

first principles. To easily exploit information theoretic aspects of quantum thermodynamics, the most natural framework 

to express CRC operations is in the language of quantum maps. However, although the principles of the Landauer cost in 

a quantum nonequilibrium framework have been known for some time [1], this has not yet translated into the development 

of actual models for CRC in terms of quantum maps. Furthermore, to examine the properties of CRC “in action”, we want 

to be able to characterize the effects that environmental noise may play at fundamental levels. 

Here, we identify as a  the development of quantum-embedded models of CRC operations, 

and the use of this model to examine intrinsic (device-independent) thermodynamic properties of CRC operations. In 

particular, we seek to express logical operations and the effects of noise in terms of quantum maps. We can then use 

these expressions to characterise minimal entropy production for such operations, describe how to implement shortcuts-

to-adiabaticity (STA), and most importantly develop practical physical models which can implement such operations. Our 

 is to apply the framework of Lindbladians with multiple asymptotic states [2‒4] to developing 

models of CRC operations, which gives us a natural framework to express these operations in an open quantum system; 

and to use this framework to describe entropy production and thermodynamic dissipation for CRC operations. 

2: Background 

In order to exploit the quantum thermodynamic framework, we need to express classical reversible operations in terms of 

quantum maps. In real devices, several quantum states (possibly quite a large number of them) can map to the same 

computational state; in this light, we can follow models of reversible computing [5] where density matrices are surjective 

onto computational states. For a physically realistic system, we must also contend with environment-induced noise and 

systems where the initial conditions may result in dissipation into the environment. The effects of this system-environment 

interaction are captured in the theory of open quantum systems.  

One standard framework for examining evolution in an open quantum system is the Gorini-Kossakowski-Sudarshan-

Lindblad (GKSL) superoperator ℒ [6,7], which describes the time evolution of a density matrix under the Born-Markov 

approximation. For some initial state 𝜌in, the asymptotic states 𝜌∞ of ℒ are the states that the system reaches in the 

infinite time limit: 𝜌∞ ≔ 𝑒𝑡ℒ[𝜌in]. Although usually systems with only a single asymptotic state are considered, one of the 

authors (V. V. Albert, alongside B. Bradlyn, M. Fraas, and L. Jiang) recently developed [2‒4] a framework of GKSL-

evolving systems with multiple asymptotic states. Particularly notable about this framework is that the asymptotic states 
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form a subspace 𝖠𝗌(𝖧) in the overall dynamics, which can support unitary evolution and more complicated sub-subspace 

structures within it. 

3: Applying Multiple Steady States to Classical Reversible Computing 

Crucially for our purposes, 𝖠𝗌(𝖧) provides a natural way to express CRC operations using the surjective framework in [5]. 

In the so-called multi-block case [2], the asymptotic subspace dynamics is represented by blocks (sub-subspaces), where 

density matrices within each block can have coherences internally (intra-block) but not between each other (inter-block). 

Taking inspiration from the expression of classical reversible operations via quantum maps in closed systems [8] and from 

the surjective framework, we can assign each block to a single computational state. Then, evolutions which preserve the 

multi-block structure represent non-computational evolutions which may mix density matrices within an equivalence class, 

while evolutions which don’t conform to the multi-block structure represent computational operations. Examining the 

properties of these two different types of operations will help us understand the thermodynamic properties of classical 

reversible computing out of equilibrium and in open systems. 

Several recent and important results [9-11] for systems with single asymptotic states are ripe for extension to multiple 

steady states, and allow us to characterise a variety of thermodynamic properties of classical reversible computing. The 

application of the multi-block framework to CRC operations, and the characterization of thermodynamic properties via 

this application, forms the research challenge we identify and the research program we propose. To give a non-exhaustive 

list of the specific questions in this program: 

 One important question is the question of minimal energy dissipation for both of these types of processes. One technique 

to characterize this dissipation is by the technique of thermodynamic length [9] in open quantum systems under GKSL 

dynamics. Here, minimal dissipation of the time evolution of a Hamiltonian in an open quantum system is provided by 

examining the geodesic on the manifold of all possible thermal states. A complementary technique is to examine the 

thermodynamic uncertainty relation, which provides an uncertainty relation between precision and entropy production. 

Here, the uncertainty relation is characterized [10] by the covariance between the different currents in the asymptotic 

state. The extension of both of these results to systems with multiple asymptotic states (and specifically to the multi-

block case) can allow us to characterize the dissipation properties of both the intra-block and inter-block operations. 

 The resource theory of quantum thermodynamics provides a description of the thermal cost of single operations via the 

second laws of thermodynamics generated from the relative Rényi entropies. This has been recently used [11] to 

characterize the work cost of operations on qubits. Amongst other things, resource theory and thermo-majorization have 

demonstrated that an analogous concept to reversible computing can serve to permit thermal operations on qubits to 

have arbitrarily small work cost. One of the many benefits that extending this analysis to the multi-block case in open 

quantum systems can have is to help characterize the one-shot thermodynamic properties of both the intra-block and 

inter-block operations. 

 Combination of these analyses with shortcuts to adiabaticity (STA) [12] and/or quantum speed limits (QSL) [13]. STA 

is a technique in which the final spectral distribution of an adiabatic process is achieved in a much faster time, by 

introducing an extra term in the overall Hamiltonian driving the dynamics of the system. Relatedly, the quantum speed 

limit gives us a description of the minimal length of time that a transformation between states may take for any given 

Hamiltonian. Exploring these questions in the context of CRC operations, and in particular providing a description of 

these processes within the asymptotic state subspace 𝖠𝗌(𝖧), can shed some light onto quantities of interest for 

engineering classical reversible computing systems. One such example would be dissipation as a function of delay. 
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