
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, 
for the United States Department of Energyʼs National Nuclear Security Administration 

 under contract DE-AC04-94AL85000.

Eric Phipps
David Gay, Ross Bartlett

Optimization & Uncertainty Quantification Department
Sandia National Laboratories

Albuquerque, NM USA
etphipp@sandia.gov

A Software Engineering Approach to
Automatic Differentiation of C++

Applications with Sacado

AD R&D Dictated by Sandia’s
Computational Environment

•  Object oriented C++ simulation codes
– Operator overloading AD approach
– Sacado (part of Trilinos): Forward, Reverse & Taylor modes

•  Operator overloading introduces runtime overhead
– Many highly specialized AD types
– Compiler optimization (e.g., expression templates, expression-level reverse mode)
– C++ templates

•  Templating introduces developer overhead
– Only apply AD to hard nonlinear parts (e.g., element level)
– Manually differentiate remaining pieces
–  Incorporate derivatives into solvers via interfaces

•  Targeting implicit element-based codes
– We know the combinatorial structure

•  Global residual computation (ignoring boundary computations):

•  Time-step Jacobian computation:

•  Parameter derivative computation:

•  Hybrid symbolic/AD procedure
– Only use AD for element derivatives
– Element computations are narrow & shallow
– Avoids differentiating through MPI
– Demonstrated through Sandia’s Charon application code

Differentiating Element-Based
Simulation Codes

Manually Incorporating Derivatives for
Transient Sensitivity Analysis

• Spatially discretized PDE:
Vertical integration of Trilinos capabilities

• Rythmos time integration package
–  Implicit BDF time integration method
–  Staggered corrector sensitivity method (Barton)
–  Derivatives provided through interfaces

•  Temporal discretization (Backward Euler):

•  Forward sensitivity problem:

Application

Si interstitial (I) (+2,+1,0,–1,–2)

Vacancy (V) (+2,+1,0,–1,–2)

VV (+1,0,–1,–2)

BI (+,0,–)

CI (+,0,-)

VP (0,–)

VB (+,0)

VO (0,–)

BIB (0,–)

BIO (+,0)

BIC

Annihilation

Annihilation

Defect reactions

QASPR
Qualification of electronic devices in hostile environments

PDE semiconductor
device simulation

Stockpile BJT

Transient Sensitivity Analysis of a
Radiation Damaged Bipolar Junction Transistor

1st-order Finite Difference Accuracy

•  Bipolar Junction Transistor
•  Pseudo 1D strip (9x0.1 micron)
•  39 PDEs, linear 4-node finite elements, ~100k unknowns
•  126 parameters

Sensitivities show dominant physics

Comparison to FD:
  Sensitivities at all time points
  More accurate
  More robust
  14x faster!

Sensitivities computed at all times
FD perturbation size

Concluding Remarks
•  Extending our capabilities

– C++ templating enables easy incorporation of new AD types
• Second derivatives, Taylor polynomials, polynomial chaos expansions,…

– Solver algorithm R&D
• Transient adjoint sensitivities (Rythmos), optimization (MOOCHO, Aristos)

•  AD recognized as vehicle supporting transformation to predictive science
– Computational design, optimization and parameter estimation
– Stability analysis
– Uncertainty quantification
– Verification and validation

•  AD approach tailored Sandia computational environment
– Operator-overloading based AD tools & C++ templating
– AD applied selectively as a software engineering tool
– Software integration with solvers
– Requires close collaboration with application/solver developers

Points of Contact

•  Sacado available through Trilinos (starting with version 8.0)
–  trilinos.sandia.gov
– Coming to www.autodiff.org soon

•  Sacado developers
– Eric Phipps (etphipp@sandia.gov)
– David Gay (dmgay@sandia.gov)

•  Examples are best way to learn Sacado
– Simple examples for basic Sacado use
– Sacado FEApp example 1D finite element application for how to build this into a

large-scale application

Simple Sacado Example

#include "Sacado.hpp"	

// The function to differentiate	
template <typename ScalarT>	
ScalarT func(const ScalarT& a, const ScalarT& b, const ScalarT& c) {	
 ScalarT r = c*std::log(b+1.)/std::sin(a);	
 return r;	
}	

int main(int argc, char **argv) {	
 double a = std::atan(1.0); // pi/4	
 double b = 2.0;	
 double c = 3.0;	

 int num_deriv = 2; // Number of independent variables	
 Sacado::Fad::DFad<double> afad(num_deriv, 0, a); // First (0) indep. var	
 Sacado::Fad::DFad<double> bfad(num_deriv, 1, b); // Second (1) indep. var	
 Sacado::Fad::DFad<double> cfad(c); // Passive variable	

 // Compute function	
 double r = func(a, b, c);	

 // Compute function and derivative with AD	
 Sacado::Fad::DFad<double> rfad = func(afad, bfad, cfad);	

 // Extract value and derivatives	
 double r_ad = rfad.val(); // r	
 double drda_ad = rfad.dx(0); // dr/da	
 double drdb_ad = rfad.dx(1); // dr/db	

Simple Sacado Example

Steady-state mass transfer equations:

Scalability of This Approach
Scalability of the element-level derivative computation

Set of N hypothetical chemical species:

DOF per element = 4*N

Forward mode AD
✓ Faster than FD
✓ Better scalability in number of PDEs
✓ Analytic Derivative

Reverse mode AD
✓ Scalable adjoint/gradient

Charon Drift-Diffusion Formulation
with Defects

Defect Continuity

Include electron capture and hole capture by defect species
and reactions between various defect species

Electric potential

Electron emission/
capture

Current
Conservation for e-

and h+

Cross section

Activation Energy

Recombination/
generation source

terms

