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Abstract In this second portion of a two-part analysis of a scalable computa-
tional approach to stochastic unit commitment, we focus on solving stochastic
mixed-integer programs in tractable run-times. Our solution technique is based on
Rockafellar and Wets’ progressive hedging algorithm, a scenario-based decomposi-
tion strategy for solving stochastic programs. To achieve high-quality solutions in
tractable run-times, we describe critical, novel customizations of the progressive
hedging algorithm for stochastic unit commitment. Using a variant of the WECC-
240 test case with 85 thermal generation units, we demonstrate the ability of our
approach to solve realistic, moderate-scale stochastic unit commitment problems
with reasonable numbers of scenarios in no more than 15 minutes of wall clock
time on commodity compute platforms. Further, we demonstrate that the result-
ing solutions are high-quality, with costs typically within 1-2.5% of optimal. For
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larger test cases with 170 and 340 thermal generators, we are able to obtain solu-
tions of identical quality in no more than 25 minutes of wall clock time. A major
component of our contribution is the public release of the optimization model, as-
sociated test cases, and algorithm results, in order to establish a rigorous baseline
for both solution quality and run times of stochastic unit commitment solvers.

1 Introduction

While there is a significant body of research on stochastic unit commitment (SUC)
in the power systems literature (see [21,24,17,14] for a representative sample),
these efforts have not yet been successfully transferred to real-world industrial
contexts. This is due in large part to the well-known computational difficulty of
stochastic unit commitment, where even small cases with a handful of scenarios
can take hours to solve [18]. A survey of prior algorithmic approaches to SUC is
provided in [13]. An analysis of this survey indicates that the current state-of-the-
art for SUC can tackle approximately 50 scenarios on instances with approximately
a hundred thermal generation units, achieving solutions in several hours of run
time. Further, many of those studies consider short (24-hour) time horizons (there
are exceptions; e.g., [3] considers an entire week for a multi-stage model to be used
for bidding), or use simplified models of industrial unit commitment problems.

The primary purpose of this paper is to detail a research effort dedicated to de-
veloping a SUC solver ultimately capable of achieving solutions in tractable (e.g.,
less than 30 minute) run-times, given realistic numbers of time periods (e.g., 48)
on realistic and industrial-scale power systems. In this context, a ”solution” refers
to a feasible non-anticipative commitment schedule, with associated expected cost
and optimality bound. We demonstrate significant progress toward this goal, con-
sidering a variant of the well-known deterministic WECC-240 test case [15]. We
leverage modest-scale parallelism to achieve the goal run-times, employing com-
modity computing capabilities that an ISO / utility either presently possesses
or is likely to acquire in the near future. Fundamentally, our primary goal is to
demonstrate the viability of SUC in a real-world applications context.

Our computational experiments proceed in the context of load scenarios gen-
erated via the approximation procedure described in the companion paper [5].
Accurate assessment of stochastic unit commitment solvers requires accurate load
scenarios, as the latter can potentially impact algorithm performance. We limit
the investigations of solver performance to given, pre-specified sets of load sce-
narios. Issues relating to scenario reduction and sampling, out-of-sample solution
validation, and quantification of cost savings are beyond the scope of the present
contribution. Rather, we focus on the goal of demonstrating that operational run-
times can be achieved for SUC instances with reasonable numbers of realistic load
scenarios — a key step toward ultimate commercial adoption of both the underlying
uncertainty model and solver.

Secondary goals of this paper are (1) to construct a realistic, validated, industrial-
scale, and publicly available SUC model along with sets of corresponding instances
and (2) to establish performance baselines for these instances, in terms of both
solution quality (i.e., lower and upper bounds) and run time. The availability
of such instances and corresponding performance baselines — particularly with
high-accuracy scenario sets — is critical to driving SUC solver research, in order to
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quickly identify and focus on the most promising algorithmic alternatives. To date,
SUC research has not been performed in such a context, i.e., direct and accurate
comparisons of solver run-times are absent in the literature.

The remainder of this paper is organized as follows. We describe the core
deterministic and stochastic optimization models used in our analysis in Section 2.
Our solution approach is detailed in Section 3. Our case study data, based on
the deterministic WECC-240 test case, is described in Section 4. We describe
computational experiments and associated results in Section 5. We then conclude
with a summary in Section 6.

2 Unit Commitment Models

We now introduce the core optimization models used in the analysis. We begin by
introducing the deterministic unit commitment (UC) optimization model in Sec-
tion 2.1. We then discuss the extension of this core model to a two-stage stochastic
programming context in Section 2.2.

2.1 Core Deterministic UC Model

Various deterministic models for UC have been proposed in the literature, e.g.,
see [12,9].) As a basis for our stochastic unit commitment model, we adopt the
deterministic UC model introduced by Carrion and Arroyo (CA) [2]. We defer to [2]
for details of the core UC decision variables and constraints. We have extensively
validated our UC model against Alstom’s e-terramarket commercial UC model, to
ensure correctness, inclusion of industrially relevant constraints, and validity for
practice. We note that specific variable and constraint encodings used by Alstom
were not available to us. Rather, we ensured that the solutions resulting from the
two models were identical, to within numerical tolerances. We have implemented
our version of the CA deterministic UC model in the open-source Pyomo algebraic
modeling language [8].

The computation experiments focus on reliability unit commitment. Integra-
tion of uncertainty into the day-ahead market (DAM) UC requires modification of
core market structure, which is beyond the scope of the present paper. However,
in the interest of verifying that SUC could be solved in a DAM context, we treat
all generators as available for commitment. No modification of market structures
would be needed to use stochastic UC in the reliability unit commitment (RUC),
i.e., the process executed by an ISO following the close of the DAM and prior to
next day operations. In practice, a large proportion of the UC decision variables
are fixed as a result of the DAM UC, such that the number of “free” commitment
variables in the RUC is significantly reduced (e.g., typically half or more genera-
tors are committed in the DAM UC). As a result, our computational time results
should be treated as very conservative for purposes of the RUC.

The choice of the CA deterministic UC model over alternatives reported in the
literature was based on preliminary computational experiments on an internal set
of test cases. However, our specific choice is not critical to the scalability results
reported subsequently in this paper. Other researchers have reported that alter-
natives to the CA model can yield faster solution times [12,9]. Ultimately, if those
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reductions hold for our UC test cases, then the run times reported subsequently
for our PH solution algorithm would be further improved. In other words, the run
times reported in Section 5 should be treated as upper bounds relative to the full
range of possibilities that exist in the deterministic UC literature.

2.2 Two-Stage Stochastic UC Model

Following [21] and others, we extend a basic deterministic UC model into a two-
stage stochastic UC model. To construct the stochastic UC model, the variables
in the core deterministic UC model are partitioned into two stages, mirroring the
structure of the corresponding real-world decision process. The first-stage vari-
ables consist of the thermal generator on/off state indicator variables, one for each
hour in the planning horizon (in the CA UC formulation, startup and shutdown
variables are implicit — this is not the case in other deterministic UC models). All
remaining variables, including thermal generator dispatch levels, reserve alloca-
tions, and cost computations, are classified as second-stage variables. First-stage
variables are required to be non-anticipative in a two-stage stochastic program,
such that their value does not depend on the scenario that is ultimately realized.
Given a set S of scenarios and their attached probabilities, in our case obtained
using the procedures described in the companion paper [5], a two-stage stochas-
tic UC model can be constructed by creating an instance of a deterministic UC
model for each scenario s € S. To enforce non-anticipativity across the first-stage
variables, we then impose equality constraints among the instances of the corre-
sponding variables in all scenarios. The resulting model is known as an explicit
extensive form of the corresponding two-stage stochastic program, in which the
first-stage decision variables (for reasons that are discussed in Section 3) are repli-
cated for each scenario instance. We take minimization of the sum of first stage
cost (e.g., startup, no-load, and shutdown costs) plus expected second stage cost
(e.g., production cost) as the optimization objective. However, we note that our
SUC model and solver extends trivially to risk-oriented optimization metrics such
as Conditional Value-at-Risk (CVaR). For further details regarding the structure
and properties of two-stage stochastic programs, we refer to [19].

To present our solution algorithm for stochastic UC described in Section 3, we
make use of an abstract formulation of a two-stage stochastic program. In this ab-
stract formulation, z and y represent vectors of first stage (e.g., unit commitment)
and second stage decisions, respectively. The functions f(x) and gs(x,y) respec-
tively compute the first stage (e.g., startup and shutdown) and second stage costs
for a scenario s. If the future were known with certainty, there would be only one
scenario, s, and the resulting optimization problem could be written as:

min f(z) + gs(z,9) | (z,9) € Qs. (1)

The notation (z,y) € Qs abstractly captures the requirement that any combination
of feasible first stage and second stage decision vectors must satisfy all constraints
imposed by the laws of physics and system operating policies under scenario s.
In the case of SUC, each scenario corresponds to the deterministic, RUC that is
presently solved in ISO and utility daily operations.

Of course, the future cannot be known with certainty, so one must determine
a non-anticipative z and corresponding scenario-specific ys such that (1) the sum
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of first stage costs plus the expected second stage costs is minimized and (2)
(z,ys) € Qs for all s € S. This formulation is given as follows:

min Z ps [f(@s) + gs(@s,ys)] st (2)
seS
(l’s,ys) EQs, VSES (3)
Ts = Zpixi, VseS (4)
€S

The objective function given by (2) represents the expected cost and the con-
straints (3) summarize logical and physical system requirements. Constraints (4)
enforce the requirement that all scenarios have an identical, non-anticipative x
vector. There are other ways to implement the non-anticipativity requirement,
but this method is appropriate in the context of the PH solution algorithm, as
discussed in Section 3.

Building on the Pyomo implementation of the core deterministic UC model,
we have implemented our two-stage stochastic UC model in the open-source PySP
package for stochastic programming [23]. Both Pyomo and PySP are distributed
as part of the Coopr optimization software package (https://software.sandia.
gov/trac/coopr).

3 Solution Approach Based on Progressive Hedging

Following a brief survey of prior efforts involving the solution of stochastic UC
models in Section 3.1, we describe the basic progressive hedging solution algorithm
in Section 3.2. We then discuss specializations of the core progressive hedging algo-
rithm to two-stage stochastic UC in Section 3.3. Issues related to the deployment
and parallelization of the algorithm are detailed in Section 3.4. Computation of
lower bounds on solution quality is briefly discussed in Section 3.5.

3.1 Background

As we report below in Section 5.3, the extensive form of the two-stage SUC is prac-
tically insoluble via direct methods such as commercially available MIP solvers.
Similar findings are reported throughout the SUC literature, e.g., see [13]. To
achieve tractable run-times for two-stage SUC, decomposition techniques must be
leveraged. Two dominant classes of decomposition techniques for general two-stage
stochastic programs are time stage-based and scenario-based. The exemplar stage-
based technique is the L-shaped method (Benders decomposition) [20]. Exemplars
of scenario-based decomposition include progressive hedging (PH) [16] and dual
decomposition [1].

One advantage of scenario-based decomposition techniques over their stage-
based counterparts is a more uniform distribution of work load in parallel com-
puting environments. In particular, the computational difficulty of the master
problem in the L-shaped method can grow significantly as the number of itera-
tions increases, while the sub-problems are typically comparatively easy. Another
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advantage is that they are easily implemented in situations where software for solv-
ing the deterministic version of the problem already exists, and may have been
highly customized for efficient solution — as is the case for unit commitment.

As discussed in [13, p.17], most prior analyses of stochastic unit commitment
consider direct solution of the extensive form. Even those studies that use decom-
position schemes are limited in the sizes of the test cases considered — typically
no more than 100 generators, with 24 time periods, and fewer than 50 scenarios.
Further, the reported run-times for the largest of these cases exceeds 30 minutes,
and more typically an hour. Scalability to larger numbers of scenarios and time
periods is thus a major and open concern, prior to serious consideration by indus-
try of stochastic UC models and algorithms. Recent algorithmic advances in SUC
are reported in [10] and [11].

3.2 Progressive Hedging
PH decomposes the extensive form of a stochastic program by scenario, initially

relaxing the non-anticipativity constraints. Non-anticipativity is then restored via
an iterative multiplier update scheme. The basic PH algorithm operates as follows:

—

Initialization: v <— 0 and w} <~ 0,Vs € S

Iteration 0: Vs € S,

zg = argming , f(z) + gs(z,y) | (z,y) € Qs

Aggregation: TV = ) s psx¥

Iteration Update: v +— v +1

Multiplier Update: w” < w%~! + p(z¥~1 —z"71), Vs € S

Iteration v: Vs € S,

a¥ = argmingy [f(z) + gs(z,y) + wla + Ll|lz — 27 H|? | (z,y) € Qs)

7 gonvgrgence Check: If all solutions z% are identical, halt. Otherwise, go to
tep 3.

N

In the PH pseudocode above, we superscript the multipliers w, the first-stage
scenario solutions z, and the first-stage variable averages T by the iteration counter
v; the w and x are additionally subscripted by the scenario s € S. Following ini-
tialization, PH solves the scenario sub-problems, in order to form an initial “best
guess” at a solution that is non-anticipative. PH then updates the estimates of the
multipliers wj required to enforce non-anticipativity, using a penalty parameter
p. We observe that while p is a scalar in the pseudocode shown above, in general
it can have a different value for each variable. Following the multiplier update,
PH solves variants of the scenario sub-problems that are augmented with a linear
term in z proportional to the multiplier wj and a quadratic proximal term penal-
izing deviation of z¥ from ¥~ !. These additional terms, in conjunction with the
multiplier updates, are designed to gradually reduce any differences in zs as PH
progresses, eventually yielding a non-anticipative solution x. PH can be trivially
accelerated by executing the independent sub-problem solves in Steps 2 and 6 in
parallel, with a barrier synchronization immediately following each step. While
the pseudocode provided above is specific to two-stage stochastic programs, the
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algorithm generalizes to multi-stage contexts. Finally, we note that in PH itera-
tions v > 1, individual scenario sub-problem solves can be warm-started using the
solution for the corresponding scenario from the previous PH iteration; feasibil-
ity is guaranteed, as only the objective function is altered between PH iterations.
Such warm-starting has significant practical impact when solving mixed-integer
stochastic programs.

While PH is provably convergent in the case of non-linear (and therefore linear)
stochastic programs, this is not the case for mixed-integer stochastic programs. In
particular, the presence of integer decision variables can induce cycling behavior.
However, effective techniques for detecting and breaking cycles have been recently
introduced [22]. Further, accelerators are typically necessary to improve PH con-
vergence, in order to achieve practical run-times. These include variable fixing
(freezing the values of variables that have converged for the past k PH iterations)
and slamming (forcing early convergence of specific variables that have minimal
impact on the objective). Both of these techniques are described fully in [22].

3.3 Specialization to Stochastic UC

PH was first applied to the SUC problem by Takriti et al. [21], who examined
a variant of PH designed to address the possibility of non-convergence in the
mixed-integer case. Goez et al. [7] also examine PH for SUC, and compare it with
alternative heuristics. While both research groups report promising results, the
test cases used are not fully described nor publicly available. Further, in the case
of Takriti et al., the experiments were performed on now-dated hardware. Lacking
the ability to examine test cases in detail, it is difficult to assess the specific set
of features employed in the core deterministic UC models (e.g., the presence of
ramping constraints that are binding and the use of complex, realistic represen-
tations of startup costs), which in turn have a major impact on computational
difficulty. Takriti et al. report experiments on instances with approximately 100
thermal units and 20 scenarios, with a 168 hour planning horizon; they report typ-
ical runs took six hours of CPU time and 100 PH iterations. Goez et al. consider a
test case with 32 thermal units, 72 time periods, and approximately 30 scenarios;
no run time statistics are reported. In both studies, no configuration or tuning
experiments are reported.

PH performance is known to be critically dependent upon the value of the p
parameter. Poor choices can lead to non-convergence, or extremely slow conver-
gence. In our PH configurations, we use variable-specific p values for generation
unit commitment on/off variables. For a given thermal generator g, we compute
the production cost p, associated with the average power output level. We then in-
troduce a global scaling factor «, and compute generator-specific values pg = ap,,.
This strategy for setting p falls in a broad class known as “cost-proportional” p,
shown to be an effective technique for PH parameterization [23,22].

Another technique we use to improve the performance of PH for stochastic UC
is the use of approximate sub-problem solutions in early algorithm iterations. The
cost of obtaining optimal solutions to scenario sub-problems is prohibitive in early
iterations, and is further not needed — precise estimates of the penalty terms wy
are not necessary. Consequently, for PH iterations 0 and 1, we set the optimality
tolerance (i.e., the “mipgap”) for scenario sub-problem solves to a value ~o1. For
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PH iterations > 2, we then linearly scale yo1 as a function of the current value
of PH convergence metric § with a minimum value equal to the default mipgap
tolerance of the sub-problem solver employed, e.g., le-5 in the case of CPLEX.
This technique is fully documented in [22]. We observe that a lower mipgap is
less costly in later PH iterations due to the use of variable fixing strategies, which
we now describe. Specifically, our PH implementation for SUC fixes generator
commitment variables that have converged to a consistent value for the past p PH
iterations. The intuition here is that if a particular variable has converged for a
number of PH iterations, it is likely to remain fixed in subsequent iterations. The
technique, while heuristic, has the benefit of reducing the size of the scenario sub-
problems, in turn reducing solve times. Finally, we note that non-anticipativity is
enforced only for the generation commitment variables, and not for auxiliary first
stage variables (e.g., startup costs) that are fully determined by the commitments.
A basic implementation of PH is provided by the PySP stochastic programming
library [23]. The library additionally includes extensions to facilitate variable fix-
ing and mipgap manipulation. We additionally developed customized extensions
to compute the generator-specific py values for use in PH. This extension also
implements the additional tuning mechanisms described in Section 5.

3.4 Parallelization and Deployment

As indicated above, parallelization of PH is conceptually straightforward — the
sub-problem solves at Steps 2 and 6 are independent, and can execute on distinct
processing elements. In a parallel PH environment, a client process is responsible
for initiating the request for sub-problem solves, computing the solution averages
7", and updating the multipliers wy. Relative to the (mixed-integer) sub-problem
solves, these actions consume a small fraction of the overall run time. Rather,
parallel efficiency is limited by the difference between the average and maximum
sub-problem solve time, which in practice can be significant. Because the primary
performance metric is wall clock time, as opposed to sustained usage of all pro-
cessors, we ignore issues relating to parallel efficiency in our experiments. Ideally,
asynchronous extensions could be employed to further reduce PH run times. Fi-
nally, we use the parallel PH execution capabilities available in the PySP stochastic
programming library [23], which are in turn built on the Python Remote Objects
library (http://pypi.python.org/pypi/Pyro). Pyro provides for parallel execution
on distributed memory clusters and multi-core workstations.

3.5 Computation of Lower Bounds

Mirroring the case for deterministic unit commitment, a goal of stochastic unit
commitment solvers is to provide both an implementable solution and some quan-
tification of its optimality. Recently, we showed in [6] that a valid lower bound in
the stochastic mixed-integer case can be obtained in any iteration v of PH, simply
by solving the optimization problems of the form

min f(z) + gs(x,y) + w’zs,Vs € S (5)
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and computing the probability-weighted average of the resulting costs. We report
these bounds in our computational experiments, considering only the bound as-
sociated with the final PH iteration. Although not analyzed in this paper, there
exists a strong relationship between p and the quality of both lower and upper PH
bounds, as documented in [6].

Mirroring the case of the basic PH algorithm, the lower bound computation
is straightforward to parallelize. The PH bound can be computed even when (as
is the case for the experiments reported below) the scenario sub-problems are
not solved to optimality, specifically by subtracting the absolute gaps from the
resulting costs. As is the case with standard PH primal iterations, we warm-start
lower bound scenario sub-problem solves with the corresponding primal scenario
solution from the associated PH iteration — although the effectiveness of the warm-
start is diminished in this context. Finally, we note that all fixed variables must
be (temporarily) freed when solving lower bound scenario sub-problems.

4 WECC-240 Case Study

As a basis for a test case, we choose the WECC-240 instance introduced in [15],
which provides a simplified description of the western US interconnection grid. This
instance consists of 85 thermal generators. Because it was originally introduced
to assess market design alternatives, we have modified this instance to capture
characteristics more relevant to reliability unit commitment, which were absent
or incomplete in the original data. These include startup, shutdown, and nominal
ramping limits, startup cost curve data, and minimum generator up and down
times. A full description of the modifications, and the case itself, can be obtained
by contacting the authors. The choice of WECC-240 as a baseline test case was
driven by the desire to develop a publicly releasable test case. At present, our ISO
New England (ISO-NE) test case (corresponding to the load scenario generation
process described in the companion paper [5]) contains proprietary data.

We consider three primary SUC test instances in our experiments, which we
construct by scaling ISO-NE load scenarios to match WECC-240 system load
characteristics. Additional cases, one for each day in 2011, are available from the
authors. Scenarios in the base case, denoted WECC-240-r1, are generated by ran-
domly perturbing load from the original WECC-240 case (for a chosen day) by
+ 10%. The base case is used for tuning PH parameters. Out-of-sample testing
is then performed on two cases based on scenarios constructed via the process
described in the companion paper [5]. These cases are denoted WECC-240-r2 and
WECC-240-r3, and respectively represent low-variance and high-variance load sce-
nario sets for ISO-NE (corresponding to Figures 6 and 7 in [5]). For each case, we
consider instances with 3, 5, 10, 25, 50, and 100 scenarios.

In terms of problem scale, the resulting instances consist of 85 x 48 = 4080
non-anticipative binary first-stage commitment variables. The extensive form of
the 100-scenario instance contains 2,894,281 variables, 6,944,701 constraints, and
24,072,401 non-zeros, and clearly represents a significant computational challenge.

Finally, we have created larger versions of the base WECC-240 test case, using
the following process. First, we generate n copies of each thermal generator in
the fleet, and scale the load for each time period in each scenario by n. Second,
for each of the resulting thermal generators, we randomly sample a scaling factor



10 Kwok Cheung et al.

B € [1.0,1.05]. We then scale all cost information associated with the generator,
relative to the original WECC-240 case, by 3; this specifically includes the startup
cost parameters and all parameters associated with the production cost curves.
While the intent of this perturbation is to make the resulting cases more realis-
tic, a side effect is mitigation of solution symmetry induced by the presence of
substitutable generators. We specifically focus on variants of the WECC-240-r2
case in our experiments, although additional instances are available. We denote
the instances corresponding to n = 2 and n = 4 by WECC-240-r2-z2 and WECC-
240-r2-z4, respectively. These instances respectively possess 170 and 340 thermal
generators, corresponding to fleet sizes present in smaller ISO-scale systems (e.g.,
ISO-NE).

5 Empirical Results

We now analyze the performance of the PH algorithm for two-stage SUC. We
initially consider the WECC-240-r1 case, for purposes of parameter tuning and
analysis. We then fix the PH configuration and examine performance on the out-
of-sample and more realistic WECC-240-r2 and WECC-240-r3 cases. Finally, we
analyze scalability to the larger WECC-240-r2-z2 and WECC-240-r2-z4 cases.

5.1 Computational Platforms

Our experiments are executed on two distinct compute platforms. The first rep-
resents a commodity higher-end workstation, and consists of eight 8-core AMD
Opteron 6278 2.4GHz processors with 512GB of RAM. Such a workstation is
representative of the type of resource that is likely to be currently available or
available in the near term to typical utilities and ISOs, and can be purchased
for less than $20K USD. This platform allows for modest-scale parallelism. The
second platform, used exclusively for the larger 50 and 100-scenario instances, is
Sandia National Laboratories Red Sky cluster, whose individual blades consist of
two quad-core 2.3GHz Intel X5570 processors and 12GB of RAM. We observe that
the dependency of the results on this particular HPC architecture is negligible, in
that a small-scale cluster with similar processors could achieve identical perfor-
mance. Finally, we note that when using CPLEX to solve scenario sub-problems,
results on Intel processors complete in roughly 60% of the time observed on AMD
processors with similar clock speeds.

All parallel PH jobs are allocated a number of processes equal to the number
of scenarios, plus additional processes for executing the PH master algorithm and
coordinating communication among the sub-problem ”solver server” processes.
We use CPLEX 12.5 as the extensive form and scenario sub-problem solver, with
default parameter settings unless otherwise noted.

5.2 Individual Scenario Sub-Problem Difficulty

The overall run-time of PH is largely a function of the difficulty of individual
scenario sub-problems, both with and without the augmented objective terms.
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Table 1 Solve time (in seconds) and solution quality statistics for the scenario sub-problems
associated with the 100-scenario WECC-2/0-r1 instance.

MIP Gap (%) Solve Time (Avg. / Max.)
PH Iteration 0 PH Iteration 1
0.03 34.44 / 53.81 5.12 / 7.70
0.025 61.99 / 123.53 6.11 / 9.87
0.02 205.75 / 604.86  9.42 / 25.74

Thus, we begin the empirical analysis of PH performance considering CPLEX run-
times on scenario sub-problems. Specifically, we consider our 100-scenario WECC-
240-r1 instance, executing PH in serial for one iteration using a p scaling factor
equal to 1 and no variable fixing. Warm-starting between iterations 0 and 1 is
enabled, to reflect the actual PH configuration used in subsequent experiments.
We vary the mipgap termination threshold + over {0.02, 0.025, 0.03}. As the
results discussed below indicate, solution times with smaller v are prohibitive in
the context of PH. For each invocation of CPLEX, we allocate 2 threads; larger
thread counts are not realistic in operational environments, where the number
of scenarios is likely to exceed the number of available compute cores. In our
experiments, PH is executed in serial, to prevent core contention.

In preliminary experimentation, we observed that CPLEX 12.5 performance is
significantly improved on a range of deterministic UC instances when the following
two options are employed. First, we enable the relaxation induced neighborhood
search (RINS) heuristic [4], to be applied every 100 nodes in the branch-and-
cut tree. Second, we set the search emphasis to “moving best bound” (option
3). Lacking either of these options, the run-times reported below are significantly
inflated. Run-time is impacted to a significantly lesser degree by two additional
CPLEX options that we employ: limiting the number of cut passes at the root
node to 1, and disabling presolve repetition.

Statistics for the scenario sub-problem solve times (in seconds) are reported
in Table 1. We report average and maximum statistics, particularly as the latter
is a key driver in parallel synchronous PH performance. The results immediately
highlight the absolute difficulty of the deterministic single-scenario instances as-
sociated with the WECC-2/0-r1 case, which is consistent with results reported for
similarly sized instances [2,12]. Given target run-times on the order of 30 min-
utes for SUC solvers to be considered viable in deployment contexts, it is clear
that v < 0.02 is impractical; individual scenario solve times necessarily bound the
time of individual PH iterations. In auxiliary experimentation, we observe that the
allocation of additional threads does not drop the solve times appreciably, such
that the additional cores can more effectively be allocated to disparate scenario
sub-problem solves.

Based on the results presented above, we limit scenario sub-problem solve times
in any PH iteration to 2 minutes in the PH tuning experiments described below
in Section 5.4, and focus on cases when v equals either 0.025 or 0.03. Values of ~
significantly larger than 0.03 — even in early PH iterations — yield very poor PH
behavior, for the following reason. In the WECC-2/0-r1 instance, feasible solutions
are quickly found — leveraging the characteristic that the majority of generators
can be committed for all time periods, while maintaining a low power output level.
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Table 2 Solution quality statistics for the extensive form of the WECC-240-r1 instance, given
2 hours of run time.

# Scenarios  Objective Value  MIP Lower Bound Gap % Run Time (s)

3 64279.18 63708.67 0.89 7291
5 62857.52 62052.75 1.26 7309
10 61873.01 60769.78 1.77 7444
25 61496.24 59900.40 2.59 7739
50 61911.74 59432.08 4.01 8279
100 62388.85 3500.70 94.39 9379

Table 3 Solution quality statistics for the extensive form of the WECC-240-r1 instance, given
4 hours of run time.

# Scenarios  Objective Value ~ MIP Lower Bound Gap % Run Time (s)

3 64278.20 63797.72 0.75 14491
5 62740.67 62180.86 0.89 14723
10 61563.10 60835.45 1.18 14630
25 61455.55 59963.78 2.36 14960
50 61911.74 59540.87 3.83 15480
100 62388.85 59548.23 4.51 16562

Taken across all scenarios, this can result in premature convergence of PH, to this
trivial and highly sub-optimal solution.

Finally, we note that the use of the CPLEX RINS and moving-best-bound
options empirically result in rapid reductions in the upper bound, relative to the
default settings that more rapidly increase the lower bound. This difference is key,
in that it moves PH away from the trivial solutions described above. There are
two non-exclusive strategies for achieving a target v, and we have focused on those
that reduce the optimality gap through identification of high-quality incumbent
solutions.

5.3 Solving the Extensive Form

Next, we analyze the computational difficulty of the extensive form of the WECC-
2/0-r1 instance, as a function of the number of scenarios considered. The results
serve as a performance baseline for the PH algorithm, and additionally provide an
indication of absolute instance difficulty.

We execute all experiments associated with extensive form solves on a 64-core
AMD workstation, allocating the maximum possible number of threads (64) to
each CPLEX run. Mirroring the case for individual scenario solves, enabling the
RINS heuristic and moving best-bound emphasis yields significant improvements
in solution quality relative to the default parameter settings. Consequently, we
employ identical CPLEX parameter settings to those described in Section 5.2. For
each instance, we perform runs with a limit of 2 and 4 hours of wall clock time. For
each run, we record the optimality gap reported at termination, the incumbent
objective function value, the final lower bound, and the observed wall clock time.
The latter can differ from the allocated time limit due to the granularity with
which CPLEX checks the overall run time against the allocated limit. The results
for the 2 and 4 hour run limits are reported in Table 2 and Table 3, respectively.
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Examining the results, we immediately observe the absolute difficulty of the
WECC-240-r1 extensive forms. In no case was an optimality gap less than 0.75%
observed, and for the larger instances — despite the overall run-time and num-
ber of cores available to CPLEX — the gaps are significant. For the 50 and 100
scenario instances, processing had not progressed beyond the root node of the
branch-and-cut tree, and the root relaxation (LP solve) time consumed a signifi-
cant proportion of the run-time (e.g., 6084 seconds in the 100-scenario case). We
highlight such behavior to illustrate that parallelism opportunities for a direct
solve of the stochastic UC extensive form are limited, given current mixed-integer
solver technology. As reported for individual scenario instances, identification of a
feasible solution is relatively straightforward in the case of WECC-240-r1, specifi-
cally a trivial solution in which the majority of generators are committed at low
output levels for all time periods. Improvement of this trivial solution often does
not occur until beyond an hour of wall clock time, particularly for instances with
25 or more scenarios. Clearly, the difficulty of the root linear programming relax-
ation solve alone precludes direct solution of the stochastic UC in an operational
context. However, the results do provide a key performance baseline.

5.4 Parameter Tuning for PH

As discussed in Section 3, there are three key parameters underlying our PH al-
gorithm for stochastic UC: the scale factor « used to compute the p values for
individual generator commitment variables, the choice of initial sub-problem mip-
gap v, and the discrete variable fix lag u. We now analyze the performance of
the PH algorithm for various choices of these parameters, to illustrate their influ-
ence on performance in terms of both solution quality and run-time. For brevity,
we do not perform a fully crossed experiment, but rather explore a subset of pa-
rameter settings based on experience with tuning PH in other domains and the
sub-problem solve time statistics reported in Section 5.2. In all experiments, we
enable the cycle detection logic available in PySP’s PH implementation. If cycles
are detected, they are heuristically broken simply by selecting the generator com-
mitment variable involved in the cycling (representing a single time period), and
fixing the commitment value to maximum observed (0 or 1) across all scenarios.
For details of cycle detection logic, we defer to [22].

The initial experiments consist of the following PH configuration: a = 1.0,
u = 3 for iteration counter v > 1, immediate fixing at PH iteration 0 of all variables
with converged value equal to 0, and an initial mipgap v = 0.03. We limit the
total number of PH iterations to 100, and record the terminating value of the
convergence metric, the final objective function value (which is expected cost), the
total number of variables fixed, and the overall wall clock time. We execute the full
set of scenario instances on a 64-core workstation, and only 50 and 100 scenario
instances on the Red Sky cluster. Note that if full convergence is achieved, the
objective function values correspond to non-anticipative solution. The objective in
this experiment is to examine the overall nature of PH convergence on stochastic
UC, for a relatively basic configuration. Convergence acceleration mechanisms are
discussed subsequently in Section 5.5.

The results of this first experiment are reported in Table 4. We observe that
in all cases, PH converges to a non-anticipative solution in at most 33 iterations
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Table 4 Solve time (in seconds) and solution quality statistics for PH executing on the WECC-
240-r1 instance, with a« = 1.0, p = 3, and v = 0.03

# Scenarios  Convergence Metric ~ Obj. Value PH L.B. # Vars Fx. Time

64-Core Workstation Results

3 0.0 (in 23 iters) 64727.714 63188.709 4080 155
5 0.0 (in 26 iters) 62911.104 61609.576 4080 163
10 0.0 (in 26 iters) 61493.375 60347.220 4080 227
25 0.0 (in 27 iters) 60990.111 59875.661 4080 364
50 0.0 (in 17 iters) 60721.319 59527.252 4076 584
100 0.0 (in 23 iters) 61156.832 59880.559 4080 1218
Red Sky Results
50 0.0 (in 29 iters) 60676.383 59670.142 4062 514
100 0.0 (in 33 iters) 61122.781 60148.285 4073 672

and in no more than 20 minutes of wall clock time. The number of variables fixed
at convergence is typically large, which is suggestive of rapid and largely natural
convergence of the scenario sub-problems to a non-anticipative solution. Cycles
are infrequently detected and broken, and are more common in cases with fewer
numbers of scenarios. With the exception of the smaller 3 and 5-scenario instances,
the PH solutions are significantly better than the extensive form solutions reported
in Tables 2 and 3, even considering those allocated 4 hours of wall clock time. All
run times are within the range required for operational deployment. Further, we
observe that the 50 and 100-scenario results obtained on a 64-core workstation
are obtained under conditions in which there is significant core contention among
the PH processes. For example, in the 100-scenario run, 200 threads associated
with CPLEX are created at each PH iteration, to be allocated across 64 cores. In
contention-free contexts, the run times are no more than 11 minutes.

To assess solution quality in absolute terms, we additionally compute lower
bounds using the procedure described in Section 3.5. Specifically, we compute the
lower bound using PH following only the final iteration, as opposed to during each
iteration. For this computation, we allocate each sub-problem solve a limit of 300
seconds of wall clock time. Relative to the extensive form lower bounds reported in
Tables 2 and 3, the PH bounds are of lower quality for the smaller (3, 5, and 10 sce-
nario) instances. However, the trend reverses for the larger instances, such that the
PH bounds dominate on the larger 50 and 100 scenario instances. Further, we note
that the relative computational effort required to compute the PH bounds is very
modest (5 minutes of wall clock time), and significantly larger run-times will lead
to improved improved lower bounds. In all but one case, the absolute optimality
gaps for the PH solutions are less than 1,500 (and more typically 1,000) relative to
objective function values of approximately 60,000 — representing optimality gaps
of between 1.5% and 2.5%.

Next, in an effort to improve solution quality, we replicate the prior experiment
with one exception: we decrease the p scale factor from o = 1.0 to a = 0.5. As
reported in [22], lower values of p can improve solution quality, albeit possibly at
the expense of increased run-times. The results are shown in Table 5. Relative to
the results obtained using o = 1.0, we achieve fully non-anticipative solutions in
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Table 5 Solve time (in seconds) and solution quality statistics for PH executing on the WECC-
240-r1 instance, with a = 0.5, p = 3, and v = 0.03

# Scenarios  Convergence Metric ~ Obj. Value PH L.B. # Vars Fx. Time

64-Core Workstation Results

3 0.0 (in 26 iters) 64518.666 63123.404 4079 137
5 0.0 (in 24 iters) 62941.233 61751.435 4075 144
10 0.0 (in 35 iters) 61451.731 60418.577 4078 220
25 0.0 (in 48 iters) 60988.949 59930.202 4079 400
50 0.0 (in 40 iters) 60676.135 59591.983 4062 694
100 0.0 (in 24 iters) 61209.183 60024.991 4080 1342
Red Sky Results
50 0.0 (in 49 iters) 60623.569 59732.214 4078 472
100 0.0 (in 53 iters) 61172.185 60217.081 4060 667

Table 6 Solve time (in seconds) and solution quality statistics for PH executing on the WECC-
240-r1 instance, with a = 0.5, p = 3, and v = 0.025

7# Scenarios ~ Convergence Metric ~ Obj. Value PH L.B. # Vars Fx.  Time

64-Core Workstation Results

3 0.0 (in 37 iters) 64244.647 63219.026 4080 213
5 0.0 (in 26 iters) 62739.635 61800.037 4077 319
10 0.0 (in 27 iters) 61450.749 60436.535 4080 261
25 0.0 (in 38 iters) 60990.129 59912.846 4071 418
50 0.0 (in 39 iters) 60675.517 59602.647 4080 652
100 0.0 (in 18 iters) 61184.361 60014.741 4069 1374
Red Sky Results
50 0.0 (in 40 iters) 60623.297 59749.630 4079 453
100 0.0 (in 57 iters) 61126.760 60198.469 4074 667

approximately the same run-times. While the solutions are of similar quality (with
each configuration achieving the better solution approximately half of the time),
the lower bounds obtained with o = 0.5 are uniformly improved relative to the base
a = 1.0 configuration. This is consistent with the empirical observation reported
in [6]: smaller p values generally yield improved lower bounds in PH. The relative
consistency of wall clock times despite the increased number of PH iterations is due
to the fact that lower a values yield smaller iteration-to-iteration perturbations
to the scenario sub-problems, which in turn increases the effectiveness of warm-
start solutions and consequently reduces the sub-problem solve times. In contrast,
larger values of o can induce large sub-problem perturbations, such that sub-
problem solve times can often significantly exceed (if a limit were not imposed)
the values reported in Table 1.

In the next experiment, we reduce v from 0.03 to 0.025. Lower ~ results in
improved sub-problem solutions, albeit at increased run-time costs. Intuitively,
we expect increases in PH run-times, but with generally improved solutions. The
results, shown in Table 6, indicate improved solutions, similar lower bound quality,
but no significant increase in run time. The absolute run-times do not exceed 22
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Table 7 Solve time (in seconds) and solution quality statistics for PH executing on the WECC-
240-r1 instance, with a = 0.5, u = 6, and v = 0.025

# Scenarios  Convergence Metric ~ Obj. Value PH L.B. # Vars Fx. Time

64-Core Workstation Results

3 0.0 (20 iters) 64213.397 63235.381 4080 508
5 0.0 (in 18 iters) 62642.531 61767.253 4079 674
10 0.0 (in 35 iters) 61396.553 60476.604 4066 648
25 0.0 (in 22 iters) 60935.040 59992.622 4066 761
50 0.0 (in 15 iters) 60625.149 59631.839 4034 1076
100 0.0 (in 25 iters) 61155.387 60014.571 4080 1735
Red Sky Results
50 0.0 (in 16 iters) 60623.343 59779.813 4007 404
100 0.0 (in 25 iters) 61120.943 60275.744 4080 549

minutes in cases where there is significant multi-core contention; in contention-free
situations, the run-times do not exceed 11 minutes.

Finally, we replicate the previous experiment, with the exception that we in-
crease the PH variable iteration fix lag x from 3 to 6. Increased fix lags should lead
to better solutions, as aggressive fixing runs the risk of premature convergence of
particular generator commitments. The results, reported in Table 7, confirm our
intuition: p = 6 results in consistently improved solutions and lower bounds at the
expense of increased computation time.

5.5 Convergence Accelerators for PH

Our results demonstrate that careful tuning of the PH configuration can yield
“natural” convergence to a fully non-anticipative solution. However, in general,
additional mechanisms may be employed in cases where this does not occur. One
example, variable slamming — discussed in Section 3.2, forces non-anticipativity
for non-converged variables if the convergence metric associated with PH stops
decreasing or decreases at an insufficiently fast rate. Another option is to ter-
minate PH once a sufficient number of first-stage variables have been fixed, and
solve a restricted extensive form with the remaining variables free. These acceler-
ators can be used to reduce computation times further than those reported in the
experiments above, but perhaps at the expense of solution quality.

5.6 Out-of-Sample Testing

To demonstrate that the performance associated with our PH configurations is
not due to specialized tuning on the specific WECC-240-r1 case, we now fix the
configuration with @ = 0.5 and v = 3. Instead of a fixed v, we employ an adaptive
~ strategy, in which we set the initial v equal to the average gap associated with
solutions obtained after 2 minutes of wall clock time following the iteration 0
solves. In practice, the initial ~ is sensitive to the scenario set and test case under
consideration, such that a priori fixed values can lead to either very poor-quality
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Table 8 Solve time (in seconds) and solution quality statistics for PH executing on 50-scenario
WECC-240-r2 and WECC-240-r3 instances, with a« = 0.5, u = 3, and an adaptive vy strategy.

Instance Convergence Metric ~ Obj. Value PH L.B. # Vars Fx. Time

64-Core Workstation Results

WECC-240-r2 0.0 (in 61 iters) 59154.305 58129.192 4076 843
WECC-240-r8 0.0 (in 29 iters) 87611.436 86464.088 4080 684

Red Sky Results

WECC-240-r2 0.0 (in 27 iters) 58951.140 58268.300 3991 814
WECC-240-r8 0.0 (in 53 iters) 87644.537 86533.268 4080 626

Table 9 Solve time (in seconds) and solution quality statistics for PH executing on 50-scenario
WECC-240-r2-z2 and WECC-240-r2-z4 instances, with o = 0.5, p = 3, and an adaptive
strategy.

Instance Convergence Metric ~ Obj. Value PH L.B. # Vars Fx.  Time

Red Sky Results

WECC-240-r2-z2 0.0 (in 22 iters) 117794.429  116538.868 8159 741
WECC-240-r2-z4 0.0 (in 19 iters) 232189.338  228992.984 16311 1421

initial solutions. Further, this strategy empirically works well for a broad range of
instances, including the larger test cases we consider next in Section 5.7.

We test this PH configuration on 50-scenario versions of our WECC-240-r2 and
WECC-240-r3 test cases; the results of these runs are summarized in Table 8. Per-
formance statistics are qualitatively similar across a range of out-of-sample 50 and
100 scenario cases associated with our WECC-240 test case. The results indicate
that performance of PH extends to these out-of-sample instances. In particular,
run-times do not exceed 15 minutes (and are more typically on the order of 10 min-
utes), and lower bound quality is maintained at approximately 1 to 2.5%. Perhaps
counterintuitively, the specifics of the load scenarios (e.g., low versus high variabil-
ity) do not appear to impact PH convergence or solution quality in a systematic
manner.

5.7 Scalability Tests

All of the PH configuration tuning and testing of enhancements for SUC described
thus far has been conducted on an realistic generator fleet from the WECC, using
realistic and high-accuracy load scenarios constructed from historical data asso-
ciated with ISO-NE. We now consider PH performance on our larger z2 and z/
variants the base WECC case, to assess the potential to scalability to larger sys-
tems. Recall that these two test case variants respectively possess 170 and 340
thermal generators, with the latter approximating the fleet size of ISO-NE. We
only consider runs on the Red Sky cluster, due to the significant increase in sce-
nario sub-problem difficulty (taking advantage of the faster Intel processors). We
limit the PH iteration 0 sub-problem solve times to 180 and 240 seconds for the
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z2 and z4 cases, respectively. Finally, we note that the number of non-anticipative
(first stage) binary commitment variables for these cases is 8,160 and 16,320, re-
spectively.

The results of the scalability tests, for 2 and z4 variants of the base WECC-
240-r2 case, are reported in Table 9; performance is qualitatively similar for a
range of other cases based on different load scenario sets. The number of PH
iterations required for convergence does not differ from the results observed for
the base WECC-240 experiments. Run times for z2 instances are typically less
than 13 minutes, and the resulting solutions are typically within 1.5% of optimal.
Run-times for the larger x4 instances increase slightly, to typically less than 25
minutes, yielding solutions within 2% of optimal.

Overall, the results demonstrate the ability of a tuned PH configuration to
obtain provably high-quality solutions (within 2% of optimal), on industrial-scale
SUC test cases with a moderate number of realistic load scenarios, in less than 25
minutes of wall clock time — leveraging only modest commodity (cluster or shared-
memory) parallel computing resources. Fundamentally, this level of performance
indicates that both the run-time and scenario generation barriers (the latter is
addressed in the companion [5]) to commercial adoption of SUC are mitigable in
practice. Finally, we recall that the day-ahead UC process generally results in a
significant (between 50% and 75%) number of fixed commitments, which must be
honored in the reliability UC. Thus, the run-time results reported in this paper
represent worst-case performance in the case of reliability SUC. In practice, the
number of binary commitment decision variables is significantly smaller, yielding
faster scenario sub-problem solve times and consequently accelerated PH solve
times.

6 Conclusions

Driven by the desire to directly incorporate representations of uncertainty, many
researchers have explored development of algorithms for solving the stochastic
unit commitment problem. Yet, these advances have not yet impacted practice,
primarily due to the computational challenge of the problem. In this paper, we de-
scribe a decomposition-based strategy for solving the stochastic unit commitment
problem, based on the progressive hedging algorithm of Rockafellar and Wets.
Leveraging various advances over the past decade in the configuration, tuning,
and lower bounding of progressive hedging for the SUC, we demonstrate tractable
(< 15 minute) solve times on the WECC-240 test case with a reasonable num-
ber of scenarios. Further, the results scale to test cases with 170 and 340 thermal
generators, where we obtain solutions in less than 25 minutes of run time. The
resulting solutions are provably within 1% to 2.5% of optimal.

These performance levels can be achieved with both small-scale multi-core
workstations and commodity distributed memory clusters. Both platforms repre-
sent computing capabilities either currently deployed at ISOs and utilities, or are
likely to be deployed in the near future. Associated with our results are an exten-
sive set of test cases for medium to large-scale SUC, filling a critical gap in the
literature and establishing a performance baseline for SUC solvers.

We are presently engaged in efforts to increase the scalability of our approach,
focusing on larger-scale, proprietary, ISO test cases and scenarios concurrently
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considering uncertainty in load and renewables output. The PH algorithm we de-
scribed is immediately extensible to the multi-stage case, which may have relevance
for day ahead unit commitment, but could also important for intra-day, as well as
longer term planning.
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