An Explicit Mortar Flux Recovery Approach for Interface Coupling

K. Peterson, P. Bochev, P. Kuberry
Sandia National Laboratories

SIAM CSE
March 3, 2017
Consider two subdomains connected by an interface

- Objective is a method that enables solving independently on each subdomain
- Compute a flux or force along the interface to provide subdomain boundary conditions and enforce suitable interface conditions

\[\begin{align*}
\dot{\phi}_1 - \nabla \cdot F_1(\phi_1) &= g_1 \text{ in } \Omega_1 \\
\dot{\phi}_2 - \nabla \cdot F_2(\phi_2) &= g_2 \text{ in } \Omega_2 \\
\phi_1 - \phi_2 &= 0 \text{ on } \sigma \\
F_1 \cdot n_1 + F_2 \cdot n_2 &= 0 \text{ on } \sigma
\end{align*} \]
Partitioned Method for Interface Coupling

Consider two subdomains connected by an interface

- Objective is a method that enables solving independently on each subdomain
- Compute a flux or force along the interface to provide subdomain boundary conditions and enforce suitable interface conditions
- Assume scalar conservation equation as governing equations

\[
\begin{align*}
\dot{\varphi}_1 - \nabla \cdot F_1(\varphi_1) &= g_1 \quad \text{in} \quad \Omega_1 \\
\dot{\varphi}_2 - \nabla \cdot F_2(\varphi_2) &= g_2 \quad \text{in} \quad \Omega_2 \\
\varphi_1 - \varphi_2 &= 0 \quad \text{on} \quad \sigma \\
F_1 \cdot n_1 + F_2 \cdot n_2 &= 0 \quad \text{on} \quad \sigma
\end{align*}
\]
Lagrange Multiplier Formulation

Begin with a system for the monolithic problem

Weak system of equations

\[
\int_{\Omega_1} \dot{\phi}_1 \psi_1 d\Omega + \int_{\Omega_1} (F_1(\phi_1) \cdot \nabla \psi_1 - g_1 \psi_1) d\Omega = \int_{\sigma} \lambda \psi_1 dS \quad \forall \psi_1 \in V
\]

\[
\int_{\Omega_2} \dot{\phi}_2 \psi_2 d\Omega + \int_{\Omega_2} (F_2(\phi_2) \cdot \nabla \psi_2 - g_2 \psi_2) d\Omega = \int_{\sigma} -\lambda \psi_2 dS \quad \forall \psi_2 \in W
\]

\[
\int_{\sigma} (\phi_1 - \phi_2) \mu dS = 0 \quad \forall \mu \in M.
\]

Discretize each subdomain separately with basis functions \(\{N_{k,i}\}\)

Mass matrix: \(M_{k,ij} = \int_{\Omega} N_{k,i} N_{k,j} dS\)

Coupling matrix: \(G_{k,ij} = \int_{\sigma} N_{k,i} \hat{N}_j dS\)

Semi-discrete system

\[
M_1 \dot{\phi}_1 + f_1(\phi_1) = G_1^T \lambda
\]

\[
M_2 \dot{\phi}_2 + f_2(\phi_2) = -G_2^T \lambda
\]

\[
G_1 \phi_1 - G_2 \phi_2 = 0
\]
Lagrange Multiplier Formulation

Begin with a system for the monolithic problem

Weak system of equations

\[
\int_{\Omega_1} \dot{\varphi}_1 \psi_1 \, d\Omega + \int_{\Omega_1} (F_1(\varphi_1) \cdot \nabla \psi_1 - g_1 \psi_1) \, d\Omega = \int_{\sigma} \lambda \psi_1 \, dS \quad \forall \psi_1 \in V
\]

\[
\int_{\Omega_2} \dot{\varphi}_2 \psi_2 \, d\Omega + \int_{\Omega_2} (F_2(\varphi_2) \cdot \nabla \psi_2 - g_2 \psi_2) \, d\Omega = \int_{\sigma} -\lambda \psi_2 \, dS \quad \forall \psi_2 \in W
\]

\[
\int_{\sigma} (\varphi_1 - \varphi_2) \mu \, dS = 0 \quad \forall \mu \in M.
\]

Combined interface grid for Lagrange multiplier, with basis functions \(\{\hat{N}_i\} \)

Mass matrix: \(M_{k,ij} = \int_{\Omega} N_{k,i} N_{k,j} \, dS \)

Coupling matrix: \(G_{k,ij} = \int_{\sigma} N_{k,i} \hat{N}_j \, dS \)

Semi-discrete system

\[
M_1 \dot{\varphi}_1 + f_1(\varphi_1) = G_1^T \lambda
\]
\[
M_2 \dot{\varphi}_2 + f_2(\varphi_2) = -G_2^T \lambda
\]
\[
G_1 \varphi_1 - G_2 \varphi_2 = 0
\]
Lagrange Multiplier Formulation

- Index 2 Differential Algebraic Equation (DAE)
- Requires careful integration in time due to hidden constraints
- Not compatible with explicit treatment of interface flux (λ)

Semi-discrete system

\[M_1 \dot{\varphi}_1 + f_1(\varphi_1) = G_1^T \lambda \]
\[M_2 \dot{\varphi}_2 + f_2(\varphi_2) = -G_2^T \lambda \]
\[G_1 \dot{\varphi}_1 - G_2 \dot{\varphi}_2 = 0 \]
Index 2 Differential Algebraic Equation (DAE)
Requires careful integration in time due to hidden constraints
Not compatible with explicit treatment of interface flux (λ)
We replace the original constraint with
\[G_1 \dot{\varphi}_1 - G_2 \dot{\varphi}_2 = 0 \]
Assuming the initial data satisfies
\[G_1 \varphi_1(0) - G_2 \varphi_2(0) = 0 \]
the two constraints are equivalent
The new system enables a fully explicit treatment of Λ

Semi-discrete system
\[
\begin{align*}
M_1 \dot{\varphi}_1 + f_1(\varphi_1) &= G_1^T \lambda \\
M_2 \dot{\varphi}_2 + f_2(\varphi_2) &= -G_2^T \lambda \\
G_1 \varphi_1 - G_2 \varphi_2 &= 0
\end{align*}
\]

Modified semi-discrete system
\[
\begin{align*}
M_1 \dot{\varphi}_1 + f_1(\varphi_1) &= G_1^T \lambda \\
M_2 \dot{\varphi}_2 + f_2(\varphi_2) &= -G_2^T \lambda \\
G_1 \varphi_1 - G_2 \varphi_2 &= 0
\end{align*}
\]
Mortar Flux Recovery (MFR)

Expanding the system in terms of interface (σ) and internal (I) degrees of freedom

Modified semi-discrete linear system

\[
\begin{pmatrix}
 M_{1,II} & M_{1,I\sigma} & 0 & 0 & 0 \\
 M_{1,\sigma I} & M_{1,\sigma \sigma} & 0 & 0 & G_T^1 \\
 0 & 0 & M_{2,II} & M_{2,I\sigma} & 0 \\
 0 & 0 & M_{2,\sigma I} & M_{2,\sigma \sigma} & -G_T^2 \\
 0 & G_1 & 0 & -G_2 & 0 \\
\end{pmatrix}
\begin{pmatrix}
 \dot{\phi}_{1,I} \\
 \dot{\phi}_{1,\sigma} \\
 \dot{\phi}_{2,I} \\
 \dot{\phi}_{2,\sigma} \\
 \lambda \\
\end{pmatrix}
= \begin{pmatrix}
 f_{1,I}(\varphi_1) \\
 f_{1,\sigma}(\varphi_1) \\
 f_{2,I}(\varphi_2) \\
 f_{2,\sigma}(\varphi_2) \\
 0 \\
\end{pmatrix}
\]

Interface linear system

\[
\begin{pmatrix}
 A_1 & 0 & G_T^1 \\
 0 & A_2 & -G_T^2 \\
 G_1 & -G_2 & 0 \\
\end{pmatrix}
\begin{pmatrix}
 \dot{\phi}_{1,\sigma} \\
 \dot{\phi}_{2,\sigma} \\
 \lambda \\
\end{pmatrix}
= \begin{pmatrix}
 \tilde{f}_1(\varphi_1) \\
 \tilde{f}_2(\varphi_2) \\
 0 \\
\end{pmatrix}
\]

\[
A_1 = M_{1,\sigma\sigma} - M_{1,\sigma I} M_{1,II}^{-1} M_{1,I\sigma} \\
A_2 = M_{2,\sigma\sigma} - M_{2,\sigma I} M_{2,II}^{-1} M_{2,I\sigma} \\
\tilde{f}_1 = f_{1,\sigma} - M_{1,\sigma I} M_{1,II}^{-1} f_{1,I} \\
\tilde{f}_2 = f_{2,\sigma} - M_{2,\sigma I} M_{2,II}^{-1} f_{2,I}
\]
Mortar Flux Recovery (MFR)

Expanding the system in terms of interface (σ) and internal (I) degrees of freedom

Modified semi-discrete linear system

\[
\begin{pmatrix}
M_{1,II} & M_{1,\sigma} & 0 & 0 & 0 \\
M_{1,\sigma I} & M_{1,\sigma \sigma} & 0 & 0 & G_1^T \\
0 & 0 & M_{2,II} & M_{2,\sigma \sigma} & 0 \\
0 & 0 & M_{2,\sigma I} & M_{2,\sigma \sigma} & -G_2^T \\
0 & G_1 & 0 & 0 & 0 \\
\end{pmatrix}
\begin{pmatrix}
\dot{\phi}_{1,I} \\
\dot{\phi}_{1,\sigma} \\
\dot{\phi}_{2,I} \\
\dot{\phi}_{2,\sigma} \\
\lambda \\
\end{pmatrix} =
\begin{pmatrix}
f_{1,I}(\varphi_1) \\
f_{1,\sigma}(\varphi_1) \\
f_{2,I}(\varphi_2) \\
f_{2,\sigma}(\varphi_2) \\
0 \\
\end{pmatrix}
\]

\[
A_1 = M_{1,\sigma \sigma} - M_{1,\sigma \sigma}M_{1,II}^{-1}M_{1,\sigma I} \\
A_2 = M_{2,\sigma \sigma} - M_{2,\sigma \sigma}M_{2,II}^{-1}M_{2,\sigma I} \\
\tilde{f}_1 = f_{1,\sigma} - M_{1,\sigma I}M_{1,II}^{-1}f_{1,I} \\
\tilde{f}_2 = f_{2,\sigma} - M_{2,\sigma I}M_{2,II}^{-1}f_{2,I} \\
\lambda(\varphi_1, \varphi_2) = (G_1A_1^{-1}G_1^T + G_2A_2^{-1}G_2^T)^{-1} \left(G_1A_1^{-1}\tilde{f}_1(\varphi_1) - G_2A_2^{-1}\tilde{f}_2(\varphi_2) \right)
\]
Mortar Flux Recovery (MFR)

MFR algorithm

1. Solve for λ

$$
\lambda(\varphi_1^n, \varphi_2^n) = \left(G_1 A_1^{-1} G_1^T + G_2 A_2^{-1} G_2^T\right)^{-1} \left(G_1 A_1^{-1} \tilde{f}_1(\varphi_1^n) - G_2 A_2^{-1} \tilde{f}_2(\varphi_2^n)\right)
$$

2. Solve each subdomain equation independently

$$
M_1(\varphi_1^{n+1} - \varphi_1^n) = \Delta t \left(f_1(\varphi_1^n) + G_1^T \lambda(\varphi_1^n, \varphi_2^n)\right)
$$

$$
M_2(\varphi_2^{n+1} - \varphi_2^n) = \Delta t \left(f_2(\varphi_2^n) - G_2^T \lambda(\varphi_1^n, \varphi_2^n)\right)
$$

- MFR is an explicit method to estimate Neumann flux on interface boundary
- Equation for λ is similar to interface equation in FETI method*
 - domain decomposition method with goal to increase concurrency
 - developed originally for elliptic problems
 - for time dependent problems, discretize in time then solve the monolithic problem implicitly

* C. Farhat, L. Crivelli, F. Roux, A transient FETI methodology for large-scale parallel implicit computations in structural mechanics, IJNME 37, 1994
* A. Toselli, FETI domain decomposition methods for scalar advection-diffusion problems, CMAME 190, 2001
Mortar Flux Recovery (MFR)

MFR algorithm

1. Solve for λ

$$
\lambda(\varphi_1^n, \varphi_2^n) = \left(G_1 A_1^{-1} G_1^T + G_2 A_2^{-1} G_2^T\right)^{-1} \left(G_1 A_1^{-1} \tilde{f}_1(\varphi_1^n) - G_2 A_2^{-1} \tilde{f}_2(\varphi_2^n)\right)
$$

2. Solve each subdomain equation independently

$$
M_1(\varphi_1^{n+1} - \varphi_1^n) = \Delta t \left(f_1(\varphi^n) + G_1^T \lambda(\varphi_1^n, \varphi_2^n)\right)
$$

$$
M_2(\varphi_2^{n+1} - \varphi_2^n) = \Delta t \left(f_2(\varphi^n) - G_2^T \lambda(\varphi_1^n, \varphi_2^n)\right)
$$

Two variations:

MFR 1 - $\{\hat{N}_i\}$ on nodes

MFR 2 - $\{\hat{N}_i\}$ on faces
For comparison, we consider an alternative algorithm based on an L^2 projection of the fluxes:

- Want to approximate ζ_i, the Neumann flux along interface

 \[M_1 \dot{\varphi}_1 = f_1(\varphi_1) + \zeta_1 \]
 \[M_2 \dot{\varphi}_2 = f_2(\varphi_2) + \zeta_2 \]

- Minimize the difference between flux density t_i and value from opposite side

 \[||t_1 - F_2(\varphi_2) \cdot n||_\sigma \quad ||t_2 - F_1(\varphi_1) \cdot n||_\sigma \]

- Define interface mass matrices $M_{\sigma,i}$, then

 \[\zeta_1 = M_{\sigma,1} t_1 = \int_\sigma F_2(\varphi_2) \cdot n \psi_1 dS \]
 \[\zeta_2 = M_{\sigma,2} t_2 = \int_\sigma F_1(\varphi_1) \cdot n \psi_2 dS \]

R. K. Jaiman, X. Jiao, P. H. Geubelle, E. Loth, Assessment of conservative load transfer for fluid-solid interface with non-matching meshes. IJNME 64, 2005
Direct Flux Recovery (DFR) Approach

Three variations on the method:

- **DFR 1**: Evaluate $F_2(\varphi_2)$ at integration points on side 1 and integrate

\[\zeta_1 = \int_\sigma F_2(\varphi_2) \cdot n\psi_1 \, dS \]

- **DFR 2**: Compute flux vector on combined interface ($\hat{\zeta}_1$) and L^2 project back to side 1

\[\hat{\zeta}_1 = \int_\sigma F_2(\varphi_2) \cdot n\hat{\psi} \, dS \]

\[\zeta_1 = M_{\sigma,1} \left(\hat{M}_{\sigma}^{-1} \hat{\zeta}_1 \right) \]

- **DFR 3**: Compute flux vectors on combined interface ($\hat{\zeta}_1, \hat{\zeta}_2$), average, then L^2 project back to each side

\[\hat{\zeta} = (\hat{\zeta}_1 - \hat{\zeta}_2)/2 \]

\[\zeta_1 = M_{\sigma,1} \left(\hat{M}_{\sigma}^{-1} \hat{\zeta} \right) \]

\[\zeta_2 = -M_{\sigma,2} \left(\hat{M}_{\sigma}^{-1} \hat{\zeta} \right) \]
Numerical Results: Patch Test

Manufactured solution: \(\varphi_k(x, t) = x + y \)

\[\dot{\varphi}_k - \nabla \cdot (\epsilon \nabla \varphi_k - \mathbf{v} \varphi_k) = g_k \]

with \(\epsilon = 0.001 \), \(\mathbf{v} = (-\sin(\pi/6), \cos(\pi/6)) \)

Stabilize with SUPG

Both methods recover linear manufactured solution to machine precision
Numerical Results: Pure Advection

Rotating velocity field: \(\mathbf{v} = (-y + \frac{1}{2}, x - \frac{1}{2}) \)

\[\dot{\varphi}_k + \nabla \cdot (\mathbf{v} \varphi_k) = 0 \]

SUPG stabilization
Numerical Results: Pure Advection

Rotating velocity field: \(\mathbf{v} = (-y + \frac{1}{2}, x - \frac{1}{2}) \)

\[\dot{\varphi}_k + \nabla \cdot (\mathbf{v} \varphi_k) = 0 \]

SUPG stabilization

Mesh

DFR

MFR

Time t=0.591
Numerical Results: Pure Advection

Rotating velocity field: $\mathbf{v} = (-y + \frac{1}{2}, x - \frac{1}{2})$

$\dot{\varphi}_k + \nabla \cdot (\mathbf{v} \varphi_k) = 0$

SUPG stabilization

No artifacts due to interface, but some oscillations expected with SUPG stabilization
Numerical Results: Pure Advection

Rotating velocity field: \(\mathbf{v} = (-y + \frac{1}{2}, x - \frac{1}{2}) \)

\[\dot{\varphi}_k + \nabla \cdot (\mathbf{v} \varphi_k) = 0 \]

SUPG stabilization

No artifacts due to interface, but some oscillations expected with SUPG stabilization
Numerical Results: Pure Advection

Rotating velocity field: \(\mathbf{v} = (-y + \frac{1}{2}, x - \frac{1}{2}) \)

\(\dot{\varphi}_k + \nabla \cdot (\mathbf{v} \varphi_k) = 0 \)

SUPG stabilization
Numerical Results: Pure Advection

Rotating velocity field: \(\mathbf{v} = (-y + \frac{1}{2}, x - \frac{1}{2}) \)

\[\dot{\varphi}_k + \nabla \cdot (\mathbf{v} \varphi_k) = 0 \]

SUPG stabilization

Mesh

DFR

MFR
Numerical Results: Pure Advection

Rotating velocity field: \(\mathbf{v} = (-y + \frac{1}{2}, x - \frac{1}{2}) \)

\[\dot{\varphi}_k + \nabla \cdot (\mathbf{v} \varphi_k) = 0 \]

SUPG stabilization

No artifacts due to interface, but some oscillations expected with SUPG stabilization
Numerical Results: Pure Advection

Rotating velocity field: \(\mathbf{v} = (-y + \frac{1}{2}, x - \frac{1}{2}) \)

\(\dot{\varphi}_k + \nabla \cdot (\mathbf{v} \varphi_k) = 0 \)

SUPG stabilization

No artifacts due to interface, but some oscillations expected with SUPG stabilization
Numerical Results: Pure Advection

Rotating velocity field: \(\mathbf{v} = (-y + \frac{1}{2}, x - \frac{1}{2}) \)

\[\dot{\varphi}_k + \nabla \cdot (\mathbf{v} \varphi_k) = 0 \]

SUPG stabilization

No artifacts due to interface, but some oscillations expected with SUPG stabilization
Numerical Results: Pure Advection

Rotating velocity field: \(\mathbf{v} = (-y + \frac{1}{2}, x - \frac{1}{2}) \)

\[\dot{\varphi}_k + \nabla \cdot (\mathbf{v} \varphi_k) = 0 \]

SUPG stabilization

Mesh

DFR

MFR

\(\text{time } t=5.317 \)
Numerical Results: Pure Advection

Rotating velocity field: \(\mathbf{v} = (-y + \frac{1}{2}, x - \frac{1}{2}) \)

\[\dot{\varphi}_k + \nabla \cdot (\mathbf{v} \varphi_k) = 0 \]

SUPG stabilization

No artifacts due to interface, but some oscillations expected with SUPG stabilization
Numerical Results: Pure Advection

Rotating velocity field: \(\mathbf{v} = (-y + \frac{1}{2}, x - \frac{1}{2}) \)

\[\dot{\phi}_k + \nabla \cdot (\mathbf{v} \phi_k) = 0 \]

SUPG stabilization

Mesh

DFR

\text{time } t=6.283

MFR

\text{time } t=6.283
Numerical Results: Pure Advection

Rotating velocity field: \(\mathbf{v} = (-y + \frac{1}{2}, x - \frac{1}{2}) \)

\[\dot{\varphi}_k + \nabla \cdot (\mathbf{v} \varphi_k) = 0 \]

SUPG stabilization

Single Domain

DFR

MFR

No artifacts due to interface, but some oscillations expected with SUPG stabilization
Numerical Results: Manufactured Solution

\[\varphi_k(x, t) = x^2 y \sin(2\pi x) \sin(2\pi y) \exp(t) \]

\[\dot{\varphi}_k - \nabla \cdot (\epsilon \nabla \varphi_k - \mathbf{v} \varphi_k) = g_k \]

\[\mathbf{v} = \left(-\sin\left(\frac{\pi}{6}\right), \cos\left(\frac{\pi}{6}\right) \right) \]

\[\epsilon = 0.001 \]

SUPG stabilization

In advection-dominated regime methods show expected convergence
Numerical Results: Manufactured Solution

\[\varphi_k(x, t) = x^2 y \sin(2\pi x) \sin(2\pi y) \exp(t) \]

\[\varphi_k - \nabla \cdot (\epsilon \nabla \varphi_k - \mathbf{v} \varphi_k) = g_k \]
\[\mathbf{v} = 0 \quad \epsilon = 0.001 \]

For pure diffusion DFR loses accuracy
Numerical Results: Manufactured Solution

\[\varphi_k(x, t) = x^2 y \sin(2\pi x) \sin(2\pi y) \exp(t) \]

\[\dot{\varphi}_k - \nabla \cdot (\epsilon \nabla \varphi_k - \mathbf{v} \varphi_k) = g_k \]

\[\mathbf{v} = 0, \epsilon = 0.001 \]

For pure diffusion DFR loses accuracy
Numerical Results: Manufactured Solution

\[\varphi_k(x, t) = x^2 y \sin(2\pi x) \sin(2\pi y) \exp(t) \]

\[\dot{\varphi}_k - \nabla \cdot (\epsilon \nabla \varphi_k - \mathbf{v} \varphi_k) = g_k \]

\[\mathbf{v} = \left(-\sin\left(\frac{\pi}{6}\right), \cos\left(\frac{\pi}{6}\right) \right) \]

\[\epsilon = 0.1 \]

Error grows with diffusion coefficient.
Numerical Results: Manufactured Solution

Matching grid comparison to single domain - advection dominated

$$\varphi_k(x, t) = x^2y \sin(2\pi x) \sin(2\pi y) \exp(t)$$

Mesh

DFR

MFR

SAND 2017-2783C 32
Numerical Results: Manufactured Solution

Matching grid comparison to single domain - advection dominated

\[\varphi_k(x, t) = x^2 y \sin(2\pi x) \sin(2\pi y) \exp(t) \]

Single Domain

DFR

MFR

\((-0.5, 1.5)\)

\((-5 \times 10^{-4}, 5 \times 10^{-4})\)

\((-5 \times 10^{-4}, 5 \times 10^{-4})\)
Numerical Results: Manufactured Solution

Matching grid comparison to single domain - \textit{advection dominated}

\[\varphi_k(x, t) = x^2 y \sin(2\pi x) \sin(2\pi y) \exp(t) \]

Single Domain
DFR
MFR

\[(-0.5, 1.5) \quad (-5 \times 10^{-4}, 5 \times 10^{-4}) \quad (-2 \times 10^{-14}, 2 \times 10^{-14}) \]

\textit{MFR recovers single domain solution}
Numerical Results: Manufactured Solution

Matching grid comparison to single domain - pure diffusion

$$\varphi_k(x, t) = x^2 y \sin(2\pi x) \sin(2\pi y) \exp(t)$$

Single Domain

DFR

MFR

$(-0.5, 1.5)$

$(-4 \times 10^{-3}, 2 \times 10^{-3})$

$(-4 \times 10^{-3}, 2 \times 10^{-3})$
Numerical Results: Manufactured Solution

Matching grid comparison to single domain - pure diffusion

\[\varphi_k(x, t) = x^2 y \sin(2\pi x) \sin(2\pi y) \exp(t) \]

Single Domain DFR MFR

(-0.5, 1.5) \((-4 \times 10^{-3}, 2 \times 10^{-3})\) \((-5 \times 10^{-15}, 4 \times 10^{-15})\)

MFR recovers single domain solution
Conclusions

Presented method for approximating Neumann flux across a non-matching interface

- Confirmed the potential of Lagrange-multiplier formulation for partitioned solution of interface problems
- Key idea is to consider alternative constraint, which enables explicit treatment of Lagrange multiplier (MFR)
- Compared to a family of L^2-projection based methods described in the literature (DFR)
 - MFR comparable to DFR for advection-dominated and pure advection problems
 - DFR accuracy decreases for pure diffusion and diffusion-dominated problems