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Partitioned Method for Interface Coupling

Consider two subdomains connected by an interface

Objective is a method that enables solving
independently on each subdomain

Compute a flux or force along the interface to
provide subdomain boundary conditions and
enforce suitable interface conditions

Assume scalar conservation equation as
governing equations

ϕ̇1 −∇ · F1(ϕ1) = g1 in Ω1

ϕ̇2 −∇ · F2(ϕ2) = g2 in Ω2

ϕ1 − ϕ2 = 0 on σ

F1 · n1 + F2 · n2 = 0 on σ

⌦1

⌦2

�

Model	1

L1u1 = g1 in 𝛺1

Model	2

L2u2 = g2   in 𝛺2

Interface	Conditions
u1 = u2   on 𝞼

f1 + f2 = 0 on 𝞼
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Lagrange Multiplier Formulation
Begin with a system for the monolithic problem

Weak system of equations∫
Ω1

ϕ̇1ψ1dΩ +

∫
Ω1

(F1(ϕ1) · ∇ψ1 − g1ψ1) dΩ =

∫
σ
λψ1dS ∀ψ1 ∈ V∫

Ω2

ϕ̇2ψ2dΩ +

∫
Ω2

(F2(ϕ2) · ∇ψ2 − g2ψ2) dΩ =

∫
σ
−λψ2dS ∀ψ2 ∈ W∫

σ
(ϕ1 − ϕ2)µdS = 0 ∀µ ∈ M.

Discretize each subdomain separately
with basis functions {Nk,i}

Mass matrix: Mk,ij =

∫
Ω
Nk,iNk,jdS

Coupling matrix: Gk,ij =

∫
σ
Nk,iN̂jdS

Semi-discrete system

M1ϕ̇1 + f1(ϕ1) = G
T
1λ

M2ϕ̇2 + f2(ϕ2) = −GT
2λ

G1ϕ1 −G2ϕ2 = 0
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Lagrange Multiplier Formulation

Index 2 Differential Algebraic Equation
(DAE)

Requires careful integration in time due to
hidden constraints

Not compatible with explicit treatment of
interface flux (λ)

We replace the original constraint with
G1ϕ̇1 −G2ϕ̇2 = 0

Assuming the initial data satisfies
G1ϕ1(0)−G2ϕ2(0) = 0, the two
constraints are equivalent

The new system enables a fully explicit
treatment of λ

Semi-discrete system

M1ϕ̇1 + f1(ϕ1) = GT
1λ

M2ϕ̇2 + f2(ϕ2) = −GT
2λ

G1ϕ1 −G2ϕ2 = 0

Modified semi-discrete system

M1ϕ̇1 + f1(ϕ1) = GT
1λ

M2ϕ̇2 + f2(ϕ2) = −GT
2λ

G1ϕ̇1 −G2ϕ̇2 = 0

SAND 2017-2783C 6



Lagrange Multiplier Formulation

Index 2 Differential Algebraic Equation
(DAE)

Requires careful integration in time due to
hidden constraints

Not compatible with explicit treatment of
interface flux (λ)

We replace the original constraint with
G1ϕ̇1 −G2ϕ̇2 = 0

Assuming the initial data satisfies
G1ϕ1(0)−G2ϕ2(0) = 0, the two
constraints are equivalent

The new system enables a fully explicit
treatment of λ

Semi-discrete system

M1ϕ̇1 + f1(ϕ1) = GT
1λ

M2ϕ̇2 + f2(ϕ2) = −GT
2λ

G1ϕ1 −G2ϕ2 = 0

Modified semi-discrete system

M1ϕ̇1 + f1(ϕ1) = GT
1λ

M2ϕ̇2 + f2(ϕ2) = −GT
2λ

G1ϕ̇1 −G2ϕ̇2 = 0

SAND 2017-2783C 7



Mortar Flux Recovery (MFR)

Expanding the system in terms of interface (σ) and internal (I)
degrees of freedom

Modified semi-discrete linear system
M1,II M1,Iσ 0 0 0

M1,σI M1,σσ 0 0 GT
1

0 0 M2,II M2,Iσ 0

0 0 M2,σI M2,σσ −GT
2

0 G1 0 −G2 0




ϕ̇1,I
ϕ̇1,σ
ϕ̇2,I
ϕ̇2,σ
λ

 =


f1,I (ϕ1)
f1,σ(ϕ1)
f2,I (ϕ2)
f2,σ(ϕ2)

0



Interface linear system A1 0 GT
1

0 A2 −GT
2

G1 −G2 0

 ϕ̇1,σ
ϕ̇2,σ
λ

 =

 f̃1(ϕ1)

f̃2(ϕ2)
0


A1 = M1,σσ −M1,σIM

−1
1,IIM1,Iσ

A2 = M2,σσ −M2,σIM
−1
2,IIM2,Iσ

f̃1 = f1,σ −M1,σIM
−1
1,IIf1,I

f̃2 = f2,σ −M2,σIM
−1
2,IIf2,I

⇓
λ(ϕ1, ϕ2) =

(
G1A

−1
1 G

T
1 +G2A

−1
2 G

T
2

)−1 (
G1A

−1
1 f̃1(ϕ1)−G2A

−1
2 f̃2(ϕ2)

)
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Mortar Flux Recovery (MFR)

MFR algorithm

1 Solve for λ

λ(ϕ
n
1 , ϕ

n
2 ) =

(
G1A

−1
1 G

T
1 +G2A

−1
2 G

T
2

)−1 (
G1A

−1
1 f̃1(ϕ

n
1 )−G2A

−1
2 f̃2(ϕ

n
2 )
)

2 Solve each subdomain equation independently

M1(ϕ
n+1
1 − ϕn1 ) = ∆t

(
f1(ϕ

n
1 ) +G

T
1λ(ϕ

n
1 , ϕ

n
2 )
)

M2(ϕ
n+1
2 − ϕn2 ) = ∆t

(
f2(ϕ

n
2 )−GT

2λ(ϕ
n
1 , ϕ

n
2 )
)

MFR is an explicit method to estimate Neumann flux on interface boundary

Equation for λ is similar to interface equation in FETI method∗
domain decomposition method with goal to increase concurrency
developed originally for elliptic problems
for time dependent problems, discretize in time then solve the monolithic problem implicitly

∗C. Farhat, F. Roux, A method of finite element tearing and interconnecting and its parallel solution algorithm, IJNME 32, 1991
∗C. Farhat, L. Crivelli, F. Roux, A transient FETI methodology for large-scale parallel implicit computations in structural mechanics, IJNME 37, 1994
∗A. Toselli, FETI domain decomposition methods for scalar advection-diffusion problems, CMAME 190, 2001
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Mortar Flux Recovery (MFR)
MFR algorithm

1 Solve for λ

λ(ϕ
n
1 , ϕ

n
2 ) =

(
G1A

−1
1 G

T
1 +G2A

−1
2 G

T
2

)−1 (
G1A

−1
1 f̃1(ϕ

n
1 )−G2A

−1
2 f̃2(ϕ

n
2 )
)

2 Solve each subdomain equation independently

M1(ϕ
n+1
1 − ϕn1 ) = ∆t

(
f1(ϕ

n
) +G

T
1λ(ϕ

n
1 , ϕ

n
2 )
)

M2(ϕ
n+1
2 − ϕn2 ) = ∆t

(
f2(ϕ

n
)−GT

2λ(ϕ
n
1 , ϕ

n
2 )
)

Two variations:
MFR 1 - {N̂i} on nodes MFR 2 - {N̂i} on faces
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Direct Flux Recovery (DFR) Approach

For comparison, we consider an alternative algorithm based
on an L2 projection of the fluxes:

Want to approximate ζi, the Neumann flux
along interface

M1ϕ̇1 = f1(ϕ1) + ζ1
M2ϕ̇2 = f2(ϕ2) + ζ2

Minimize the difference between flux density
ti and value from opposite side

||t1 − F2(ϕ2) · n||σ ||t2 − F1(ϕ1) · n||σ
Define interface mass matrices Mσ,i, then

ζ1 =Mσ,1t1 =
∫
σ F2(ϕ2) · nψ1dS

ζ2 =Mσ,2t2 =
∫
σ F1(ϕ1) · nψ2dS

x

x

ζ1 =

∫
σ
F2(ϕ2) · nψ1dS

R. K. Jaiman, X. Jiao, P. H. Geubelle, E. Loth, Assessment of conservative load transfer for fluid-solid interface with non-matching meshes. IJNME 64, 2005
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Direct Flux Recovery (DFR) Approach

Three variations on the method:

DFR 1

x

x

Evaluate F2(ϕ2) at integration
points on side 1 and integrate

ζ1 =

∫
σ
F2(ϕ2) · nψ1dS

DFR 2

x

x

x

x

Compute flux vector on combined
interface (ζ̂1) and L2 project back

to side 1

ζ̂1 =

∫
σ
F2(ϕ2) · nψ̂dS

ζ1 = Mσ,1

(
M̂

−1
σ ζ̂1

)

DFR 3

x

x

x

x

Compute flux vectors on combined
interface (ζ̂1, ζ̂2), average, then L2

project back to each side

ζ̂ = (ζ̂1 − ζ̂2)/2

ζ1 = Mσ,1

(
M̂

−1
σ ζ̂

)
ζ2 = −Mσ,2

(
M̂

−1
σ ζ̂

)
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Numerical Results: Patch Test

Manufactured solution: ϕk(x, t) = x+ y

ϕ̇k −∇ · (ε∇ϕk − vϕk) = gk

with ε = 0.001, v = (− sin(π/6), cos(π/6))

Stabilize with SUPG

Mesh MFR t = 1 DFR t = 1

Both methods recover linear manufactured solution to machine precision
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Numerical Results: Pure Advection

Rotating velocity field: v = (−y + 1
2
, x− 1

2
)

ϕ̇k +∇ · (vϕk) = 0

SUPG stabilization

Mesh DFR MFR

No artifacts due to interface, but some oscillations expected with SUPG stabilization
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Numerical Results: Pure Advection

Rotating velocity field: v = (−y + 1
2
, x− 1

2
)

ϕ̇k +∇ · (vϕk) = 0

SUPG stabilization

Single Domain DFR MFR

No artifacts due to interface, but some oscillations expected with SUPG stabilization
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Numerical Results: Manufactured Solution
ϕk(x, t) = x2y sin(2πx) sin(2πy) exp(t)

Mesh

ϕ̇k−∇·(ε∇ϕk − vϕk) = gk

v =
(
− sin(π

6
), cos(π

6
)
)

ε = 0.001

SUPG stabilization

In advection-dominated regime
methods show expected

convergence

MFR t = 1 DFR t = 1

L2 Error H1 Error
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Numerical Results: Manufactured Solution
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Mesh
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Numerical Results: Manufactured Solution

ϕk(x, t) = x2y sin(2πx) sin(2πy) exp(t)

Mesh

ϕ̇k−∇·(ε∇ϕk − vϕk) = gk

v =
(
− sin(π

6
), cos(π

6
)
)

ε = 0.1

Error grows with diffusion
coefficient

MFR t = 1 DFR t = 1
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Numerical Results: Manufactured Solution
Matching grid comparison to single domain - advection dominated

ϕk(x, t) = x2y sin(2πx) sin(2πy) exp(t)

Mesh DFR MFR

(−0.5, 1.5) (−5× 10−4, 5× 10−4) (−5× 10−4, 5× 10−4)

MFR recovers single domain solution
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Numerical Results: Manufactured Solution
Matching grid comparison to single domain - advection dominated

ϕk(x, t) = x2y sin(2πx) sin(2πy) exp(t)

Single Domain DFR MFR

(−0.5, 1.5) (−5× 10−4, 5× 10−4) (−5× 10−4, 5× 10−4)

MFR recovers single domain solution
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Numerical Results: Manufactured Solution
Matching grid comparison to single domain - advection dominated

ϕk(x, t) = x2y sin(2πx) sin(2πy) exp(t)

Single Domain DFR MFR

(−0.5, 1.5) (−5× 10−4, 5× 10−4) (−2× 10−14, 2× 10−14)

MFR recovers single domain solution
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Numerical Results: Manufactured Solution
Matching grid comparison to single domain - pure diffusion

ϕk(x, t) = x2y sin(2πx) sin(2πy) exp(t)

Single Domain DFR MFR

(−0.5, 1.5) (−4× 10−3, 2× 10−3) (−4× 10−3, 2× 10−3)

MFR recovers single domain solution
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Numerical Results: Manufactured Solution
Matching grid comparison to single domain - pure diffusion

ϕk(x, t) = x2y sin(2πx) sin(2πy) exp(t)

Single Domain DFR MFR

(−0.5, 1.5) (−4× 10−3, 2× 10−3) (−5× 10−15, 4× 10−15)

MFR recovers single domain solution
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Conclusions

Presented method for approximating Neumann flux across a
non-matching interface

Confirmed the potential of Lagrange-multiplier formulation for
partitioned solution of interface problems

Key idea is to consider alternative constraint, which enables explicit
treatment of Lagrange multiplier (MFR)

Compared to a family of L2-projection based methods described in the
literature (DFR)

MFR comparable to DFR for advection-dominated and pure
advection problems
DFR accuracy decreases for pure diffusion and
diffusion-dominated problems
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