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Abstract M.

In this talk, | survey recent work exploring various ways in which traditional
concepts of classical reversible computing can be usefully generalized
without requiring full-blown quantum computing. First, | show that the
traditional Landauer-Fredkin-Toffoli model of unconditionally logically-
reversible operations is not, in fact, the most general concept of classical
logical reversibility that is sufficient to avoid entropy ejection from the
computational state; more generally, we can consider a logically reversible
computation composed of what | call conditioned reversible operations,
whose preconditions for reversibility are satisfied with certainty by

design. This model facilitates simpler designs for reversible hardware, and is
well-suited to modeling adiabatic circuits. Next, | describe an asynchronous
model of ballistic reversible computing, which reduces clocking overhead
compared to staged adiabatic approaches, while avoiding the chaotic
instabilities of synchronous ballistic models. Finally, | discuss a concept of
chaotic reversible computing, another approach for reducing clocking in
which a deep combinational network can be updated in a single step via an
adiabatic transformation of a chaotically-fluctuating dynamical system.
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Talk Outline HE.

= Motivation:

= The end of scaling, and implications for supercomputing
= Need for practical classical reversible computing

= Landauer’s Principle from fundamental physics

= Asimple, rigorous proof of a general formulation
= Examples of reversible computing hardware
= Generalized Reversible Computing Theory

= Conditional logical reversibility

= Foundation for designing fully adiabatic computing mechanisms
= Asynchronous Ballistic Reversible Computing

= General model, proof of universality

= Possible superconducting implementations
= Chaotic Reversible Computing

= Sketch of another approach for reducing clocking overhead
= Conclusion

Semiconductor Roadmap is Ending... @

= Thermal noise on gates of Data source: International Technology Roadmap for Semiconductors, 2015 edition
minimum-width segments of ITRS2015 ¥ C1? Node Energy vs. Gate Energy ~8-ITRS FO3 node energy
FET gates leads to channel PES 1000000 —+—ITRS gate energy (est.) |
fluctuations when l_:"g S 1-2eV —

* Thus, ITRS has minimum gate 1 key
energy asymptoting to ~2 eV
Also, real logic circuits incur
many further overhead factors:
= Transistor width 10-20 X min.
= Parasitic (junction, etc.) transistor
capacitances (2 X )
= Multiple (~2) transistors fed by
each input to a given logic gate
= Fan-out to a few (~3) logic gates
= Parasitic wire capacitance (~2 X)
Due to all these overheads, the
energy of each bit in real logic
circuits is man Flmes larger 1- Landauer; Limit for 1 bit fost to roomtemperature
than the min.-width gate energy
= 375-600 X (!) larger in ITRS'15

= .. Practical bit energy for irreversible
logic asymptotes to ~1 keV!

Practical, real-world logic circuit
designs can’t just magically cross
this ~¥500 X architectural gap! n "
= . Thermodynamic limits imply Only reversible computing can take us from ~1 keV at the
much larger practical limits! end of the CMOS roadmap, all the way down to « kT.

* The end is near!

= Increases leakage, impairs (includ Y
practical device performance 100000 | Cludes circyjt-|g
vel ovi
erhead factoy s)

10000 -

1000
L =
(gates of Mminimy, -Size tr,
ansjst
to

100 -

rS) 1lal

Thermal Noise "Danger Zone": ~20-80 kT 1

Energy (in &T, with T=300K)

1z

2015 2020 2025 2030
“Year of Introduction per ITRS 2015
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| . . f T S
Implications for FLOPS & power i =
Note: The limits suggested by the diagonal lines do not
even include power for interconnects, memory, or cooling!
Prohibitively Large Total System Power Levels! >10GW today
GW LEs00 >1GW in 2030
2015 MRS .
HPC Evolution P >1MW near
MW LE<05 —e— 2030 MRS w;}}' thermal noise
—s— 2030 mn. gateE 1 10s of kW
Landuaer at Landauer
kW 1.E=03
= Top 100 Supercomputers

W LE=00

Power Dissipation [W)

The “Forever

mW 1.E-03 Forbidden Zone”
for All Irreversible
Computing

UW 1E-06

1000000 1E+09 1E+12 1E+15 1E+18 1E+21

MFLOP/s GFLOP/s TFLOPR/s PFLOP/s EFLOP/s ZFLOP/s

What would it
FLOPS/s take for a

zettaFLOP?

Thermodynamics and Information

Physical entropy quantifies uncertainty about
the detailed microstate of a system.
= First postulated by Boltzmann (H-theorem)
= Integral to modern physics (Von Neumann entropy)
= Depends on modeler’s state of knowledge (Jaynes)
The reversibility (injectivity) of microphysics
underlies the Second Law of Thermodynamics.
= Entropy of a closed system cannot decrease!
= Conserved by unitary quantum time-evolution.
= Entropy can increase if we have any uncertainty
about the dynamics, or do not track it in detail
At the most fundamental level, physical
information cannot be destroyed.

= Only reversibly transformed, and/or transferred
between different subsystems...

Wi
S[p] = E,[logp™']
S >0 S
1.03 k 1.03 k

Bijective microphysics >
No “true” entropy change

Sp= Sp =
0.69 k 6 0k

v

Irreversible microphysics
- Entropy would decrease
(Second Law of Thermo.
would be violated)

@
S = 2 @ sp=
1.03 k e e 129k
6,
@

True dynamics uncertain
(or not tracked in detail)

-> Entropy increases
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Proving Landauer’s Limit

= Follows directly from thermodynamics! 128k 128k

* A computational state c; is just an
equivalence class of physical states ¢);
= On the left we see two computational

states cg, c1, each with probability 0.5 H =
= The computational subsystem has an ‘(’)’;_t
= i

induced information entropy H(c).
= Here, itis H(c) =log2 = 1bit=klIn2.

* Thus, the non-computational subsystem \Cl
(everything else) has expected entropy \?fj m/
Sne =S(¢lc) =S(p) —H(c)=S—H N 0.59 k 128k §
hd

= The conditional entropy of the physical

state ¢, given the computational state c. ASnc = —AH = 1 bit = 0.69 k

= Thus, if the computational entropy decreases (note here AH = —1 bit),
= The non-computational entropy must increase by AS,,. = —AH (here, k In 2).

= So, to lose a computational bit, we must eventually dissipate energy
AEg4iss = kT In 2 as heat to some environment at some temperature T.

Thermodynamically Reversible

_ () =,
Erasure of an Uncorrelated Bit
Potp1 Pot+p1 Potp1 Po + p1

2 2 2 2

Digital bits in
(“Logical” bits)

al Subsystem

OFO
020

Computational
Subsystem {Comput.

Bit B

Physical bits in
Non-computation- { Envir. E

Input is
provided

0 7]
L2

0

X_

Represents available

extropy / free energy ~ Transfer of

in the overall system

digital bit

to the
environment
(can be
reversible)

Chaotic
mixing

L o

AS = 0 bit

Transfer
of entropy
back to the
digital state

Overall map including mixing is non-injective

No autocorrelation between initial & final state

Not “logically reversible” in traditional sense
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Logically Irreversible, Oblivious

Erasure of a Correlated Bit

BE

Poo T+ Po1 T P10 T+ P11

PotP1
2 Compu- Poo t P11
. i Poo t P11
Input is tation : 2
provided H
Digital bits in Input I || ? || v v v >
Computational
Subsystem 0 0 -
(“Logical” bits) Result R N >
_________________________________ CNOT_ ___ S O
Physical bits in
Non-computation- { Envir. E 0 - O [ ? I O >
al Subsystem Represents available L
extropy / free energy Transfer of But: Environ.
in the overall system computed bit re-random-
to the environment  jzes the bit!

(can be reversible at
the immediate level) AS = 1 bit

Moving a computed, correlated bit to an (unpredictable!) thermal environment
necessarily, inevitably loses its correlations, and thus increases entropy!

Logically Rev.er5|ble, Non-obI|V|ou-s iy
Decomputation of a Correlated Bit
Poo t P11
Po + p1 2

Compu- [ pecom-

tation | putation Po Tt P1 th

Input is
0prowded f,\ /
Digital bits in Input I | | >
Computational )
Subsyst
ubsystem ) posult R =2 >

(“Logical” bits) U™
________________________________PNP_T___QNQI ________________

Physical bits in

Non-computation- { Envir. E 4 'TI A —>
al Subsystem No external / |_|7 \x
extropy needed Environment
can evolve
chaotically... Po t p1
+ —_—
Poo Pt ps=o0bit 2

2

Decomputing correlated bits, instead of ejecting them to the thermal
environment, avoids losing correlations & increasing entropy!
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Reversible Computing with Adiabatic Circuits .
= Fredkin and Toffoli, 1978 (001:10.1007/978-1-4471-0129-1_2) ¢
3

Some early history (pre-2000):
= Seijtz et al., 1985 (CaltechCSTR:1985.5177-tr-85) T = !

r w
Figure reproduced with permission

= Several papers at PhysComp ‘92:

= Koller and Athas (DOI:10.1109/PHYCMP.1992.615554)
« Hall: Merkl (DOIs:10.1109/PHYCMP.1992.615549;
all; Vierkie 10.1109/PHYCMP.1992.615546)

= General-purpose reversible methods, but for combinational logic only
= Younis & Knight, 1993 (http://dl.acm.org/citation.cfm?id=163468)
= First fully-reversible, fully-adiabatic sequential circuit technique (CRL)

= Younis & Knight, 1994 Pendulum

Tick FlatTop XRAM
= Simplified 3-level adiabatic CMOS E , E
design family (SCRL) — Buggy though. g i |
= Subsequent work at MIT by myself : “ ;
and other students, 1995-99

= Several reversible and/or adiabatic demonstration chips

. . . . ") Sl
Conventional vs. Adiabatic Charging @&
For charging a capacitive load € through a voltage swing V
= Conventional charging: = |deal adiabatic charging:
= Constant vo/tage source = Constant current source
Q=CV Q=CV
— —
\ :I_C I R C
* Energy dissipated: = Energy dissipated:
1 ) Q%R RC
Ediss’ =5 CV? 3R =IPRe==—=CV2—
Note: Adiabatic charging beats the energy _ e _ lL
efficiency of conventional by advantage factor: E3da  2RC
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2LAL Shift Register Structure =

= 1-tick delay per logic stage:

7

o

OUt gy

iyl

= Logic pulse timing and signalpropagation:

0123 .. 0123 ..
LN_/

inp'\_/ |

b3
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Simulation Results (Cadence/Spectre) s
Power vs. freq., TSMC 0.18, Std. CMOS vs. 2LAL = Graph shows per-FET power
2LAL = Two-level adiabatic logic (invented at UF, ‘00) dissipation vs. frequency
1.E-05 = in an 8-stage shift register.
= At moderate fregs. (1 MHz),
1E-06 l‘l\ = Reversible uses < 1/100t" the
’ "\ power of irreversible!
3 | = At ultra-low power levels
£ 1.E07 P x; (1 pW/transistor)
L = Reversible is 100 X faster than
5 1.E-08 irreversible!
- = Minimum energy dissipation
5  1E09 per nFET is < 1 electron volt!
® A <% \..\ = 500 X Jower dissipation than
-% 1E-10 DL < best irreversible CMOS!
K] ’ \ 7() \\: 21 = 500 X higher computational
ici ]
'S JEA1 " o 0l energy efficiency!
g - 2 S Y = Energy transferred per nFET
0 N \ A 1 **&i\_/‘ per cycle is still on the order
S 1B *’,, ™ has 0.25y of 10 fJ (100 keV)
o \ = So, energy recovery efficiency
[ )y
S 1E13 N N W'/ is on the order of 99.999%!
z N %‘ « Quality factor Q = 100,000!
\ — Note this does not include any of
1E-14 N the parasitic losses associated
1E409 1E+08 1.E+07 1E+06 1E+05 1E+04 1.E+03 distripation yer though ¢

Frequency, Hz ﬁ
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Spectrum of Trapezoidal Wave e
= Relative to mid-level crossing, waveform is an odd function
= Spectrum includes only odd harmonics f, 3f, 5f, ...
= Six-component Fourier series expansion is shown below
= Maximum offset with 11f frequency cutoffis < 1.7% of V4

©=v 1. w2 g4 Sin 30 sin56 sin76 L sin 96 _sin 116
1% = —T——|SIn - -
re 12" g2 32 52 72 92 112
— ldeal voltage

Six-component Fourier series | 15%
. Error (right axis)
= — —_— 10
g A 6 =180°
8 05
2
o 0.0%
8
4] 0.5
g
= 1o

0 1 2 3 4
Time (ticks)

Ladder Resonator Structure B

= Can build trapezoidal resonator w. a ladder
circuit made of parallel passive bandpass

filters, each a sinusoidal LC resonator
= Each “rung” of ladder passes a different odd (5()(5()()
multiple of the fundamental clock frequency f Ly C,
= Adjust L/C ratio to obtain a target Q value on w =

each path, given parasitic R,C values /56666 | LC
= Excite the circuit with a driving signal Small-signal 1 C
containing the right distribution of trapezoidal 3 3

frequency component amplitudes driver
= Each frequency component gets amplified by (external) 66 c Ga
the Q value of its corresponding rung L5 CS
s e g th s e R Load G
= For high Q, clock period must be long L, c, g
compared to the total parasitic RC...

= Max. possible Q,, = — . Lperiodn (SE)(S()O I
Ly Gy

2m (RC)parasitic

(for Vag = 1.75V 1) . 466666—1 }-— = l E
harmonic component Example values: Q = R.1IC
mode (n) frequencyf amplitude Va inductance L capacitance C L11 C11

1 230kHz  1000.00mV  691.98nH 691.98nF
3 690kHz 111.11mV  230.66nH 230.66nF
5 1150kHz -40.00mV 138.40nH 138.40nF Ladder Resonator
7 1610kHz ~ -2041mV ~ 98.85nH 98.85nF for Odd Harmonics
9 2070kHz 12.35mV 76.89nH 76.89nF
1 2530kHz 8.26mV 62.91nH 62.91nF
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Nanomechanical Rotary Logic

Merkle et al., IMM Report 46 and Hogg et al., arxiv:1701.08202
(reproduced with permission)

&~

rotary joint ———

{1} -
surfaces
.
i

A
O\ i

R, A A

=

,_J{,_JJ,..\‘ 9634 -0.17
f L HI0175 +0.09
Sk d €9585-0.10

HI0128 +0.05

COSST0.10_ 40061 +0.09

— 9504 -0.17

; {3 o515 +0.02
, ﬁ’\g"’ S——H10077 -0.02

(RESP charges

Y from AMBER
7Y Antechamber)

Cell 4

1 Output

Clock
Generator

= Videos animate schematic
geometry of a pair of locks
in a shift register

= Molecular Dynamics
modeling/simulation tools
used for analysis include:
= LAMMPS, GROMACS,

AMBER Antechamber

= Simulated dissipation:

= ~4 X102 J/cycle at 100 MHz

= 74,000 X below the Landauer
limit for irreversible ops!

= Speeds up into GHz range
should also be achievable
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Reinventing Reversible Computing Theory @&

(Frank, “Foundations of Generalized Reversible Computing,” RC17.)

= Qur very first task, in developing the theory of reversible
computing, can be characterized as answering this question:

= What are the necessary and sufficient conditions that must be met,
at the logical level, in order for a computational process to avoid
ejecting entropy from the computational state? (l.e., for AH > 0.)

= Or more generally, to approach 0 entropy ejection, AH -~ 0.
= Landauer attempted to answer this question in his 1961
definition of logical reversibility, and the entire traditional
theory of classical reversible computing has been based on this

definition...
= Only problem: Landauer’s ... RESTORE TO ONE is an
definition is wrong! example of a logical truth function which we shall call

irreversible. We shall call a device logically irreversible if

* Inthe sense that, in fact, it the output of a device does not uniguely define the inputs.

is provably a sufficient, but

not a necessary logical-level ... Now assume that the computer is logically reversi-
condition to avoid entropy ble. Then the machine cycle maps the 2V possible initia]
ejection from a computation states of the machine onto the same space of 2 states,

rather than just a subspace thereof.

— Let’s see why...

Devices, Operations, Computations @i
= WEe’'ll distinguish several different concepts:

= Device — Can perform one (or more) types of operations.
= A given device has some associated local state information
— Includes states of 1/0 terminals, internal states of device
= QOperation — a (computational) operation is a map O from
initial (computational) states to final states (locally)
= The terms “input” and “output” are ambiguous — avoid!
= We can also consider partial maps (undefined = don’t-care)
= More generally, the operation O could even be a stochastic map...
— A probabilistic transition rule 7;; = Pr[cp = Cfj | ¢ = ¢yl
» However, that case is not our main focus at present
= Computation — for us, a computation is a computational
operation performed within a specific operating context
= Context specifies/constrains the initial state probabilities
— These are essential for a meaningful thermodynamic analysis!

9/13/2017
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Types of Computational Operations M.
Define operations as (possibly partial) probabilistic transition relations
Nondeterministic Deterministic
Srate set § Stateset §
0 | O F ®- ®
2
[] =
. == © ® +—0
2
al -© ® ®
e e Fnalstate ¥
il ity bondiokishold s
=N @+ ® &—— O
5 % /’i‘\
: 5 . e—— 10
5 >
X
nitalstate X b e et

A={c|lpi=Pc) >0} C
of initial computational states that are assigned nonzero probability by P,.
= Definition: Here, we can call C = (0, P;) a logically reversible computation.
= Given that €= (0, P,) is logically reversible, we can also say that:
= (O is a conditionally (logically) reversible operation (this is always true),
= (0, is a conditioned (logically) reversible operation with assumed set 4,
= Ais an adequate precondition for the (logical) reversibility of O.

P3

Z_ ©

\

Avoiding Entropy Ejection )
= Considering what’s required of an operation if it is to be non- ,
entropy-ejecting in all definable operating contexts leads to the
traditional definition of logical reversibility for operations: P i
= Theorem: A total deterministic operation O is not even potentially P : '
entropy-ejecting if and only if O is a bijective map (permutation) of the full : b :
spacepg cénsistigng of all of»;he device’Js describat?léezomputatiorlal states. P :\ ,:
= Definition: We call such an O an (unconditionally) logically reversible operation. e e
= But, considering requirements for an operation to be non-entropy
ejecting in a specific operating context P, gives a different logical
reversibility concept suited for (contextualized) computations: ¢
= Theorem: A total deterministic operation O is not specifically entropy- / Vo \
ejecting in a given operating contgxt P, if and only ipr iginjei:ltive ovF:eyr at " ' '
least (i.e., when restricting its domain to) the active subset P =0 : : @ :
I 1 "

~ooot < 4

9/13/2017
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Almost-Logically-Reversible Computations @&

= You might object, “But real probabilities are almost never exactly 0.”
= But, if they’re just close to 0, that’s good enough to be almost fully reversible.

= Theorem: For any operation that is conditionally reversible under a
given adequate precondition 4, if we consider any progression of
operation contexts in which the probability that A is not satisfied
(i.e., that c; & A) approaches 0, the entropy ejected by the
computation due to Landauer’s principle also falls to 0 accordingly.

= Lemma: For a state with any probability g not in A that merges with some
state in A that has a larger probability p = nq (where n > 1), the
contribution As of this state merger to the total entropy AS ejected from
the computation approaches the following expression as the probability
ratio n increases (i.e., as the probability q
falls, relative to p), to first order in n:

As — %(1 + Inn)kg

= And this value itself approaches 0, almost
in proportion to g = p/n as that value falls.

The concepts of Generalized Reversible Computing

") Sl
are essential for understanding Adiabatic Circuits! (=,
BT o . Reversible COPY

Switching is, inherently, only conditionally reversible! rCOPY(4,B | B)
= E.g.: Even asingle MOSFET can implement a certain Initial state Final state
(conditioned) reversible COPY operation... ;')T,} %ﬂ{- i ?)gg—

= Operation sequence is as follows: A B A B
0. Driving node D is initially statically held at 0, input A also O.
1. Input A is externally supplied (D&B connected iff A is high) [@@H@@]
2. Externally transition driver D from 0 to (weak) logic high 1~
3. Voltage level on node B follows D iff A is strong logic high (1)
= Note: Given a (loose) assumed precondition of B,

= je., if all initial states with B = 1 have prob. 0,

= this indeed performs a reversible COPY operation,
rCOPY(A4,B | B).

= Note: The output in this case is not full-swing,

= In this diagram, primes (') denote reduced-voltage logic high
signals

= A notation precisely describing this operation’s semantics is:
= [AB]if B = 0then B := A (else, leave state unchanged) ,_—l
. . . Step 2: D B
= Note: Traditional reversible computing theory based on , ,
.. . . 2 - _/0-51 0— OorA
unconditionally reversible operations is insufficient to
(Here, D and B have a

model the logical/physical reversibility of this operation! reduced swing, but a T-gate
can easily fix this)

9/13/2017
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Conditionally-Reversible Logic
in Adiabatic Circuits e

= This simple CMOS structure can be used to
do/undo latched reversible rOR operations

@1
= Example of 2LAL logic family (Frank '00) ANP
= Based on CMOS transmission gates
= Implicit dual-rail complementary B@l—
signals (PN pairs) in this notation NP
= Computation sequence: Q]\(?z

1. Precondition: Output signal Q initially at logic 0

2. Driving signal D is also initially logic 0 PN

3. Attime 1 (@1), inputs A, B transition to new levels ANPD<____—|
= Connecting D to Q if and only if A or Bis logic 1

4. Attime 2 (@2), driver D transitions from 0 to 1 Bnp D<:|
= Qfollowsitto 1 if and only if A or Bis logic 1
= Now Q is the logical OR of inputs A,B DN.—/—

= Reversible things that we can do afterwards: On

= Restore A, B to 0 (latching Q), or, undo above steps

@1

@2

Asynchronous Ballistic Reversible Computing g,

=  Some problems with all of the existing adiabatic

schemes for reversible computing: ~—A —A
= In general, numerous power/clock signals are = g — B
needed to drive adiabatic logic transitions °
= Distributing these signals adds substantial aignment 0
complexity overheads and parasitic power losses Synchronous Ballistic  Asynchronous Ballistic
= Ballistic logic schemes can eliminate the clocks!
= Devices simply operate whenever data pulses arrive -l_
= The operation energy is carried by the pulse itself
= Most of the energy is preserved in outgoing pulses ——
= Signal restoration .can' be car.rled out |ncreme:ntally Rotary Toggled
= But, synchronous ballistic logic has some issues: (Circulator) Barrier
= Unrealistically precise timing alignment required Example ABR device functions
= Chaotic amplification of timing uncertainties
when signals interact
= Benefits of asynchronous ballistic logic: Cor - ¢
=  Much looser timing constraints - | -
= Linear instead of exponential increase in timing cD
uncertainty per logic stage Dy —-|
= Potentially simpler device designs (initally NG) -~ _
- CcD

= Anew effort at Sandia to try implementing —
ABRCin Superconducting circuits Example logic construction

9/13/2017
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ABRC Model: Starting Requirements &

Universality — For reversible and embedded irreversible

N

Network model — Devices, bidirectional terminals, links

w

Localized signals

a. Spatial confinement — Along 1-D signal paths (wires)

b. Temporal localization — Pulse width specified as bounded
Ballistic propagation - at sufficiently large scales
Digital interpretation — m distinct signal types f t

> = m|

Asynchrony — exact arrival times not important

Determinism - future depends non-randomly on past synchronous —S—JA
B

ballistic: -

Reversibility — using our generalized definition

exact
alignment

L KN o Uk

Quiescence - devices unchanged between pulses psynchronous —= A@
ballistic: = B

~~
8ap>0

ABRC Model: Derived Requirements mg,
These follow from the starting requirements:
10. Non-overlap of arriving pulses — Needed for determinism
11. Non-overlap of departing pulses — Needed for reversibility
12. One-to-one correspondence between incoming and outgoing
pulses — Necessary to carry away pulse energy/timing information
13. Statefulness - To do logic, devices must have a stable internal state.
14. The possible ABRC device behaviors are exactly characterized
by (isomorphic to) a restricted set of Mealy machines:
= |/O symbol alphabet consists of N = nt m compound signal characters:
2= {d}={(7))

= where T; € {T;, Ty, ..., T,,} is any of n 1/O terminals, each multiplicity m,
= and t; € {ty,t,, ..., t,,} is any of the m signal types.
— Can easily generalize this to cases where not all all terminals have the same arity
= Transition function f: £ X § — § X X is conditionally reversible

= Machine implements an injective transformation of the subset of input
strings for which its preconditions for reversibility are met at each step

14



ABRC Primitives .
" Here, we enumerate some ]
simple unary ABRC primitives: smpites e
= One-terminal unary primitives:
= Pulse Reflector (PR) An
= Two-terminal unary primitives: ) 4 B..
2

= The one-state, two-terminal primitives:
— Wire (W) a.k.a. signal renamer Simplified notation:
» Functionally identical to a section of wire A->B

— Barrier (B)

» Two pulse reflectors back-to-back

= (Continued on next slide...)

ABRC Primitives, cont. ) e,

= Unary primitives, cont.

= Two-terminal unary primitives, cont.
= Two-state, two-terminal unary primitives:

— We can categorize them using these symmetry groups:
» T—Time-reversal symmetry
» D — Data-terminal reversal symmetry
» TS — Time/state reversal symmetry

— All nontrivial 2-state, 2-terminal unary devices can then be classified as follows:
» Devices with both T and D symmetries

“ Flipping Diode (FD)

» Devices with both D and TS symmetries Flipping Diode Behavior

“ Anti-Flipping Diode (AFD)
< Toggling Barrier (TB) ﬁ_%n L R » L @§ll R _B: 3
» Devices with none of these symmetries
« Directional Flipping Diode (DFD)
% Flipping Comparator (FC) Li,|L_4R LoufL K
ST oY 2 SN

9/13/2017
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. o, o T S
ABRC Primitives, cont. L=
= Unary primitives, cont.
= Three-terminal unary primitives: Rotary (CW
= One-state, three-terminal primitives: N
— Rotary (R) c
= Two-state, three-terminal primitives: s
— Some important symmetries:
» D3 — All 3 data terminals treated symmetrically
» D2 — A specific 2 of the 3 data terminals are Flipping Rotary Behavior
interchangeable with each other A A
— Some interesting cases: A‘c N
» Devices with both T and D3 symmetry: g °
¢ Flipping Rotary (FR)
» Devices with T and D2, but not D3 g Lo obes Sk
symmetry: |
% Controlled Flipping Diode (CFD) _I_c R -
+ Toggling Controlled Barrier (TCB) T :||:

1 H 1 ) -
Universality Construction .. . cae .
(slide 1 of 2) . f o]l .
* Theorem: {R, TCB} comprise a U P
. { 4 } o p | |____ ] @. |
universal set of primitives for — o Sp NN
reversible (and embedded Block symbol
. . . A h De)Mux:
irreversible) computing SYne l;°”g“3( . "o
; = T = —l
= Constructive proof proceeds as follows: ! _» P2
1. Using two rotaries and a toggling :Y.ﬂ—)_-fL—Y< -—'< X
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Universality Construction
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Non-toggling Switch Gate:

be universal!
5. E.g. the (non-toggling) switch gate can be used to
build a single-rail to dual-rail converter...
— This can also be considered as a NOT gate that also

produces an extra (garbage) copy of its input (Includes NOT function)
6. ..and the switch gate can also be used to produce a A
reversible AND function -4
— Also produces AB asa garbage output
7. Standard logic constructions can then be used to build 1,
up arbitrary functions from NOT and AND <

8. Standard techniques like Lecerf reversal and the
Bennett trick can be applied to decompute all garbage,
— while leaving just the desired result and a copy of the

(inde 2 of 2) [ o e c
= Universality theorem, cont. E =

Single-rail to Dual-rail Converter:

= This construction requires a great many control signals

= Find much simpler constructions for general functions
— Using primitives other than {R, TCB} could be helpful
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= Constructive proof, cont. . D.
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4. With a pulse duplicator plus a toggling switch gate, we D =
can build a non-toggling switch gate = I Simplified Icon
— Previously this gate was shown by Feynman and others to — 2

input. X .

= The above construction is sufficient for proving e
universality... A,
= But, considered as a logic synthesis method, it clearly =7

; [(-A)8]
has some practical drawbacks... - 2
_EZJ/_.

= Open research problem: - w_g—)z

= Of course, to be useful, this model needs to be realized in a specific
physical implementation technology that actually provides near-
thermodynamically-reversible operation.
= Need some kind of soliton-like, near-ballistically-propagating pulse,
= or some sort of particle or quasiparticle.
= Need some physical state variable that can stably maintain at least binary state
= for the toggling devices
= Need a means of physically interacting the pulses with the states
= in ways that can reliably, and almost physically-reversibly, implement at least a universal
subset of the 2- and 3-terminal primitive devices.
= One intriguing possible candidate implementation technology is to use
superconducting circuits...
= SFQ (single flux guantum, or fluxon) pulses on appropriately constructed
superconducting transmission lines can carry info. with relatively low dispersion
and high propagation velocity (approx. 1/3 c)

= Fluxons are naturally quantized by the SQUID-like circuits that produce them, and are
naturally polarized (carry 1 bit’s worth of +/— polarization state information per pulse)

— Need to select suitable ABRC primitives operating on arity-2 signals
= Fluxons trapped in loops (SQUID-like structures) can hold data quiescently
= Generally, loops hold integer numbers of fluxons in some range: .., -2,-1,0, +1, +2, ...
= How exactly to implement the reversible interactions?
= A 3-year, internally-funded project is just starting at Sandia to investigate this...

Physical realizations of ABRC?
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Chaotic Logic - Brief Summary

= Shannon teaches us that reliable
communication is still possible with
signal energies below the noise floor
= Why not also reliable computation?

= Chaotic Network Model of logic:
= Nodes are dynamic variables
= Gates are Hamiltonian interaction terms
= Node values chaotically fluctuate around
a long-term average that encodes the
result of the computation
= Asimulator for this model was built...

= cs.sandia.gov = Software = Dynamic
= Page also links to a paper & a full talk

Frank & DeBenedictis ‘16, “A Novel Operational Paradigm for Thermodynamically Reversible Logic:

Adiabatic Transformation of Chaotic Nonlinear Dynamical Circuits”

=
C =Bl 1+S
= b 10g; N

Channel capacity theorem

8o

Full Adder dynamical network

Logic gates implemented by
potential energy surfaces

Example Interaction Functions BE.

= Here are some simple quadratic interaction functions that assign minimum
energy to correct logical outputs. Let x; be the (generalized q) coordinate of
the output node, and let x;, xi be the coordinates of input nodes:

Interaction Function  Minimized When

(coupling input x; to output x;)

(coupling inputs x;, x, to output x;)

2
= NOT gate: E; =% eNoT (xi + x; - 1) xp=1-x%
1 2
= AND gate: Ei = E E€AND (xi - x]'xk) Xi = xJ‘XR
2
= OR gate (inclusive): E; = % €oR (xl- X — X + xjxk) Xp = Xj + X — XX
2
= XOR gate (exclusive): E; = % exXOR (xl- X — X+ ijxk) Xp = Xj + X — 2Xjx

® The egprervpe CONStants parameterize the energy scale of the gate interactions.

= Atincorrect logic values, the gate’s potential energy above its minimum, or “stress”
energy, will be % this constant. = Rough equiv. of “signal energy” in this system.

= |n the experiments shown here, the energy scales e of all gates were set equal to kT

9/13/2017

18



9/13/2017

. T Sanila
Chaotic AND Gate HE.
Mean A =-0.001531, B = 0.975105, Q = 0.001710
Projected Phase Portraits of Canonical Coordinates for AND Gate

G‘eneralized Moméntu
oordinates (Offset for Cl

—A —B

-1

Generalized Position Coordinates

Full Adder k=™

Full Adder: Projected Phase Portraits of Coordinates of
An Input and Both Outputs (Case ABC=011)

= As networks get more complicated,
we start to see the downside of
having only relative constraints
between nodes
= Significant excursions of downstream
nodes away from nominal values
= Average values in this case are still
correctly interpretable:
- 5,=1.84,5,=0.008
= However, excursions increase run time
required before average answer can be
expected to be reliable.

Generalized Position Coordinates

Time Series of Generalized Position Coordinates for the Full Adder

-6 4 Generalized Momentum
WA Whafy ¥ { ~ of A i 2k Coordinates (Offset for Clarity]
! ap - b Yopon 14000 % 0,000 c —S1 S0

Time Step#
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Conclusion =

= Reversible computing will be required to get beyond energy efficiency
limits that threaten to slow industry’s progress fairly soon...
= However, more effective/efficient implementation techniques are still needed.

= |n this talk, we summarized three novel variations of traditional models
of reversible computing, which potentially can help lead to simpler,
faster, more cost-efficient designs:
= Generalized Reversible Computing theory clarifies that considering context-
dependence when deriving the logical-level requirements for reversibility
opens up a more general class of simpler, conditionally-reversible primitives.
= Model still needs to be extended to handle the case of stochastic operations...

= Asynchronous Ballistic Reversible Computing is a new class of reversible
circuit models that are potentially capable of higher speeds and reduced
clocking overheads compared to the (non-ballistic) adiabatic approaches.

= An effort to demonstrate this new concept in SFQ JJ circuits has been funded.
= Chaotic Logic is a very preliminary concept that also reduces clocking needs,
and can potentially also utilize signal energies below the thermal noise floor (!)
= These new developments illustrate that the space of possibilities for
reversible computer engineering is still just beginning to be explored...
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