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Abstract

Response surface functions are often used as simple and inexpensive replacements for computationally
expensive computer models that simulate the behavior of a complex system over some parameter space.
"Progressive" response surfaces are built up incrementally as global information is added from new sample
points added to the previous points in the parameter space. As the response surfaces are globally upgraded,
indications of the convergence of the response surface approximation to the exact (fitted) function can be
inferred. Sampling points can be incrementally added in a structured or unstructured fashion. Whatever the
approach, it is usually desirable to sample the entire parameter space uniformly (at least in early stages of
sampling). At later stages of sampling, depending on the nature of the quantity being resolved it may be
desirable to continue sampling uniformly (progressive response surfaces), or to switch to a focusing/econo-
mizing strategy of preferentially sampling certain regions of the parameter space based on information
gained in previous stages of sampling ("adaptive" response surfaces). Here we consider progressive response
surfaces where a balanced representation of global response over the parameter space is desired. We use
Kriging and Moving-Least-Squares methods to fit Halton quasi-Monte-Carlo data samples and interpolate
over the parameter space. On 2-D test problems we use the response surfaces to compute various response
measures and assess the accuracy/applicability of heuristic error estimates based on convergence behavior of
the computed response quantities. Where applicable we apply Richardson Extrapolation for estimates of
error and asymptotic convergence, and assess the accuracy of these estimates. We seek to develop a robust
methodology for constructing progressive response surface approximations with reliable error estimates.

Introduction and Background

Large-scale optimization and uncertainty analyses are often made feasible through the use
of response surfaces as surrogates for computational models that may not be directly
employable because of prohibitive expense and/or noise properties and/or coupling diffi-
culties in multidisciplinary analysis. Examples of response surface usage to facilitate
large-scale optimization and uncertainty/sensitivity analyses are cited in Giunta et al.
(1994), Roux et al. (1996), Unal et al., Venter et al. (1996), Romero (1998), and Simpson
et al. (2004).

Some issues that arise when using response surface approximations (RSA) are accuracy
and the number and placement of the data samples on which the RSA is built. With a suf-
ficiently flexible global fitting/interpolating function over the parameter space, response
surface accuracy ideally increases as the number of data points increases (if the points are
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appropriately placed throughout the parameter space), until the essential character of the
function is effectively mapped out. Thereafter, it is not cost effective to continue adding
samples. Since a single high-fidelity physics simulation (i.e., one data sample) can take
many hours to compute, it is desirable to minimize the number of simulations that are
needed to construct an accurate response surface.

It can be very difficult to determine when a particular sampling design and interpolation
scheme sufficiently resolve a function, yet this must be done if the response surface is to
be used as an effective economical replacement for the actual function. Monitoring con-
vergence heuristics of progressive response surface approximations can help in this
regard, and to get error estimates once the sampling is stopped. The latter is one of the
principle investigative points of this paper.

For our purposes here it is assumed that: 1) the computer model is relatively expensive to
evaluate; 2) the parameter space is a unit hypercube or can be accurately and inexpen-
sively mapped into one; 3) the sampled or “target” function is a continuous, deterministic
function over the parameter space; 4) reasonably general, arbitrary target functions are to
be fitted; and 5) approximate response values are desired over the entire parameter space
being considered –i.e., for global and local optimization or mapping inputs to outputs in
uncertainty propagation.

Given these specifications, Romero et al. (2004a) examined several data fitting/interpola-
tion methods (kriging, global regression polynomials, and finite-element local polynomial
interpolation) for constructing progressive response surfaces built on Progressive Lattice
Sampling (PLS) incremental sampling designs. PLS is a paradigm for structured uniform
sampling of a hypercube parameter space by placing and incrementally adding sets of
samples such that all samples are efficiently leveraged as the design progresses from one
level to the next (Romero and Bangston, 1998). Familiar structured designs such as Box-
Behnken and Central Composite designs exist or are added at various stages or levels of
the design.

PLS endeavors to preserve uniformity of sampling coverage over the parameter space in
the various stages of the incremental experimental design. Uniform coverage over the
parameter space is desirable for general response surface construction because this
reduces the redundancy or marginalization of new information from added samples. This
is a basic concept of upgradable quadrature methods (Patterson-1968, and Genz & Malik -
1983).

PLS builds knowledge by reducing global knowledge deficit over the parameter space. It
does not attempt to build specific or targeted knowledge by building on previous informa-
tion in the manner of “adaptive” sampling, which efficiently maximizes knowledge over
particular regions of the parameter space. Thus, PLS designs select sample locations
strictly on geometric principles such that new samples are intended to be “maximally far”
from each other and from all other existing samples at each level of sampling. The loca-
tions of previous samples are respected because it is desired to fully leverage them (with
minimal marginalization of their information value) as new samples are added. This also
means that the new added samples have maximal information value as well.

The advantage of the structured PLS approach is that it is thought to be close to an optimal
incremental sampling method in that, as samples are added to attain each new Lattice
level, the spacing of samples throughout the parameter space remains uniform. Thus, glo-
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bal uniformity of coverage is maintained at each level as the sampling levels progress.
This would appear to be the most efficient way (following the precedent of upgradable
quadrature methods) to progressively build up a response surface.

Disregarding the constraint of previous or future sample locations, if complete freedom
were allowed where the samples could be placed, then these could be arranged over the
parameter space to give better results than PLS arrangement provides at any given sam-
pling level. For example, Romero et al. (2003) found that this sometimes occurs with Latin
Hypercube Sampling (LHS) and Centroidal Voronoi Tessellation (CVT). Latinized CVT
and the Hammersley “Quasi- Monte Carlo” (QMC) low-discrepancy sequence methods
also yield very effective point sets (see Romero et al. 2005).

However, the four methods just cited are non-incremental sampling methods; augment-
ing the number of samples implies a completely different sampling of the parameter space
with all new point-locations. To go from N to N+M samples in the space would therefore
require N+M new evaluations of the exact function (instead of just M new samples). This
is more expensive than an incremental sampling method like PLS, which at each new
stage costs only the increment of M new samples.

A substantial disadvantage of PLS, however, is that its structured experimental-design
nature allows only a quantized increment M of samples to be added to an existing PLS
level (point set) to graduate to a new level. Hence, there is a constraint on the number of
samples that can be added at a time to maintain the uniform filling of the hypercube.
Unfortunately, this quantized incremental cost M accelerates quickly as the PLS level and
dimension of the parameter space increase.

Other incremental sampling methods exist that are unstructured and do not have the pro-
hibitive cost-scaling of PLS. Some popular unstructured incremental sampling methods
are the Halton QMC low-discrepancy sequence method that we examine later in this
paper, and Simple-Random Sampling (SRS) Monte Carlo. These allow M as small as 1
without creating a prejudiced imbalance in the global coverage of the parameter space.
Hence, regardless of the dimension of the space and the stage of sampling, we could incre-
mentally add, say, 20% more samples at a time and the point sampling would remain as
uniform as the method is capable of producing. The question is: “How uniform is the point
spacing of these methods?”

The point placement of Halton sampling appears characteristically more uniform over the
parameter space than that of SRS, but not as uniform as PLS or the non-incremental sam-
pling methods (see Romero et al. 2004a,b). Among the incremental sampling methods,
Romero et al. (2004b) confirm that better sampling uniformity over the parameter space
strongly correlates with better response surface accuracy (PLS most accurate, then Halton,
then SRS). Because Halton does not suffer from the cost-scaling problems that PLS does,
and it generally produces better point uniformity than SRS, we further examine Halton
sampling in this paper as a basis for progressive response surfaces.

Given a set of sampling points over a parameter space, the quality of the response surface
approximation also depends on the particular method used to fit and interpolate the data.
We now turn to consideration of data fitting methods to interpolate and extrapolate the
sample data.
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Finite-element (FE) type interpolation of point data is very robust and accurate compared
to other methods (Romero et al. 1998, 2004a,b; Krishnamurthy et al. 2002). However, FE
interpolation is presently limited to structured point placement and low dimensional
parameter spaces. For general unstructured point placement and arbitrary numbers of sam-
ples in arbitrary dimensions, it is not immediately obvious how anything but globally con-
tinuous C0 (only piecewise smooth) interpolation functions from linear simplex elements
could be built. Any higher-order convergence potential in the interpolation function would
therefore be lost. Also, procedures for extrapolation to the hypercube boundaries are not
immediately obvious, as spatial extrapolation is not normally encountered in the Finite
Element Method (Strang & Fix, 1973).

Accordingly, four available data fitting and interpolation/extrapolation methods that are
applicable to structured or unstructured progressive sampling schemes have been evalu-
ated by the authors. These are global polynomial regression and kriging (Romero et al.
2004a, Krishnamurthy et al. 2002); Moving Least Squares (MLS) methods (Krishnamur-
thy et al. 2002, Romero et al. 2003, 2005); and Radial Basis Function (RBF) methods
(Krishnamurthy 2003). The MLS, RBF, and kriging methods are capable of yielding much
better results than global polynomial regression. However, the former methods are more
complex and tricky to use. We see some evidence of this later in the paper. We used only
kriging and MLS methods here because we are more familiar with these than with RBF
methods, and global polynomial regression is not considered to have the local fitting con-
formability we desire here.

Finally, we consider the issue of error estimation in response surface approximations.
Upon upgrading a response surface by addition of samples, the resulting change in values
calculated from the response surface (such as computed optima or volume integrals) is a
heuristic indicator of the magnitude of relevant error in the response surface approxima-
tion. When the incremental change goes to zero (for a sufficiently large number of added
samples), this tentatively indicates that the relevant response-surface error has become
negligible. We elaborate on this basis for error indication in the next section of this paper,
and in the subsequent section examine the accuracy of derived error estimates. We also
examine whether Richardson Extrapolation, which is a familiar method for assessing the
convergence of solution results from successively refined discrete approximations of par-
tial differential equations (Roach 1998), can be successfully used to assess the conver-
gence of results from successively refined response-surface approximations. In doing so,
we summarize the RE technique and provide an analogy for its applicability to progressive
response surface applications. As we explain below, the Richardson procedure sets con-
straints on the numbers of samples that can be added to the RSAs at each stage of progres-
sion.
American Institute of Aeronautics and Astronautics 4



2-D Test Problems and Methodology for Assessing Performance of Progressive
Response Surfaces and Error Indicators

2-D Test Function

Figure 1 plots the 2-D model function used to study the
effect of sample point addition, sample placement, and
interpolation method on response surface accuracy. The
multimodal function is defined as:

(1)

where and on the domain
, .

Generalized Richardson Extrapolation Methodology

Values (samples) of this target function are obtained at 3, 9,
27, and 81 points to stay within a progression that will sup-
port generalized Richardson Extrapolation (Roach 1998) with a grid refinement factor r
= in each of the two space dimensions p1 and p2. This factor is squared (would be
cubed for three space dimensions, etc.) to determine the growth in the number of subdivi-
sions that the 2-D domain must be discretized into for a uniform refinement of the domain.
This 2-D growth rate being three, then starting with 3 subdivisions of the domain (for rea-
sons explained below) the next refinement is to 3x3=9 subdivisions, then 3x9=27, then
3x27=81.** We pick  as the refinement factor in this work for reasons explained later.

The presumptions here are that at each stage of sampling (N= 3, 9, 27, and 81 points), the
N sample points are approximately uniformly spaced throughout the 2-D domain and
associated with each one is 1/N of the volume of the domain. If the sampling method hap-
pens to be Centroidal Voronoi Tessellation then these presumptions hold exactly, and fur-
thermore each sample point is at the volume center of the subdomain (Voronoi “cell” or
“region”) associated with the point. These conditions hold less well for less uniform sam-
pling methods like Halton QMC, but still hold approximately. We start with 3 subdivisions
here because the associated 3 points are the minimum number in 2-D space that can sup-
port a linear response function over the space. This is the lowest-order representation we
care to consider with our Moving Least Squares interpolation scheme.

Thus, we have some basis for a discretization-refinement analogy between domain refine-
ment in our response surface progressions and domain refinement in grid solution of par-
tial differential equations (a more familiar context in which we are accustomed to thinking
about and applying Richardson Extrapolation). The other element we need to consider is
rate of convergence of computed results (like statistics of response behavior computed
from progressive RSAs) to the asymptotic exact values that would be obtained in the limit

**This is analogous to a refinement factor of 2 in each space dimension, associated with a 4-times reduction
in cell volume in 2-D space when halving of the point-to-point mesh spacing in each coordinate direction,
e.g., in going from 2x2 cells to 4x4 cells when each cell is subdivided into 4. The growth factor is then from
2x2=4 cells to 4x4 = 16 cells, which is a growth from 4 to 16 cells or a growth factor of 4 in two dimensions
or 41/2=2 in each dimension.

Figure 1. 2-D test func-
tion to be
approximated
(exact “target”
function).
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of infinite refinement. Here, our analogy with grid solution of partial differential equations
is even more tenuous. First, only with robust interpolatory methods like low-polynomial-
order finite-element interpolation can we be assured that the exact solution is converged to
as the number of sample points increases.†† The kriging and MLS methods we apply here
are not guaranteed to behave well when sample points are added (which we will see in
some examples later). Nevertheless, if we can get these methods to work well, can the
Richardson Extrapolation idea work out? This depends on whether the quantity being
computed with the RSA converges at a constant rate as the domain discretization is refined
at a constant refinement rate r per domain dimension. We have not performed the analysis
to determine whether theoretically this is the case for MLS or kriging, but we empirically
test whether this seems to be the case.

We can empirically solve for an apparent rate of convergence if we have results from three
successive discretizations of the domain and the results are monotonically converging at a
slowing pace emblematic of the “asymptotic region” of convergence of the discretized
solution. We will focus more on these conditions in some examples later. For now assum-
ing that the conditions are satisfied, the following is the standard formula (Roach 1998) for
calculating the empirical rate of convergence p:

(2)

where in this case the per-dimension refinement factor is r = and Tc, Tm, and Tf refer
respectively to results calculated from RSA built on the coarse, medium, and fine sam-
plings of the exact function. We emphasize here that RE is applied to quantities calculated
from the coarse, medium, and fine response surfaces, to improve these estimates or to get
error estimates. RE is not applied to improve the response surfaces themselves.

The observed p order can now be used to extrapolate from the two most accurate results
(from the medium and fine samplings) to a converged result. The general pth order extrap-
olation is given by

. (3)

Our choice of as the per-dimension refinement factor in this work arises from several
considerations. First, we want to be able to test the accuracy of Richardson Extrapolation
and the consistency of the calculated rate of convergence p across two “spans” of response
data. That is, we hope to apply the equations over the 3-9-27 point span and over the 9-27-
81 point span to see if the calculated convergence rates remain constant, and whether
extrapolated results from these two spans of data concide closely. To get the necessary
four refinement levels, the augmentation factor of per space dimension or 2 = 3 for
the two dimensions yields a reasonable number of top-end samples (81) in a progression
that lasts 4 levels. This somewhat arbitrary choice simply allowed us to take a reasonable
initial look at the possibilities here.

††A mathematical analysis of finite element interpolation (Strang and Fix, 1973) shows that for a continuous
and infinitely differentiable function over the parameter space, the domain integral of the pointwise abso-
lute error goes to zero as the spacing between samples goes to zero.
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Error Estimation by “Simple Delta” Method in Progressive RSA Calculations

A very simple error estimation approach applicable to progressive RSA results is tied to
the change in computed response values as samples are added. This “simple delta”
method of error estimation is patterned after the control of convergence error in many
fields such as local optimization, root-finding, and the iterative solution of sets of nonlin-
ear simultaneous equations (often associated with the solution of partial differential equa-
tions, e.g., P/Thermal Theory Manual, 1991).

In these applications it is necessary to determine when to stop iterating. Upon completing
an iteration (or the addition of a sufficiently large number of samples to the RSA), if the
incremental change in the quantity being computed is exactly zero, this generally indicates
that the iteration has converged (although there are imaginable situations where this would
not be the case). However, it is generally not cost effective to require machine-zero change
in the computed quantity before terminating the iteration. Instead, an acceptably larger
error tolerance is specified that terminates the iteration when the incremental change in the
computed quantity becomes smaller than the tolerance. The tolerance is set according to
how much error from the true result the user is willing to accept, in the context of the
tradeoff that more accuracy implies more computing cost. The hope here is that when the
incremental change becomes less than the prescribed tolerance, the answer is within that
tolerance of the exact result.

This simple method of controlling and estimating convergence error appears to work rea-
sonably well in practice, but there are certainly many circumstances in practice where it
will fail. In particular, if the tolerance condition is met in a slowly-converging regime of
the iteration process, then termination can be premature and the exact result may not be
within the specified error tolerance. Techniques are therefore sometimes employed to
account for the actual rate of convergence (fast or slow, whatever it may be), but these are
usuarlly less-sophisticated variations of the RE procedure described above. We therefore
assume that our empirical results with the RE method (presented later in this paper) repre-
sent the best that can be practically attained when convergence-rate information is factored
into the error estimates.

We note an important difference between the convergence-error control procedure and our
simple-delta error estimation method. A large body of empirical evidence reveals that in
the convergence-error control process the true error is frequently successfully bounded by
the specified error tolerance value. However, this tolerance can be much larger than the
actual iterative delta that first falls below this tolerance and stops the iteration. The exist-
ing empirical evidence that the tolerance value has been a fairly reliable error bound does
not mean that the smaller actual iterative delta (our simple-delta error estimate) will like-
wise routinely bound the actual error. Therefore, we must rely on our empirical study here
to give us first indications of whether the simple-delta method might work with reasonable
reliability.

Halton Point Sets

With the general methodology explained, we proceed to the specific conditions of our
numerical experiments. For the reasons cited earlier, we use Halton QMC sampling (see
e.g. Owen 2003) to generate the 3, 9, 27, and 81 point progressions. We use two different
sets of prime-number bases (2-3 and 5-7) to create two different sets of Halton point pro-
gressions to determine any effect of prime-number base choice on the results. Figure 2
American Institute of Aeronautics and Astronautics 7
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Figure 2. Halton Quasi-Monte-Carlo point sets (3, 9, 27, and 81 point sets) from
two different prime-number bases (2-3 [top chart] and 5-7 [bottom
chart]). First 20 consecutive points in each progression are labeled to
observe the uniformity (or lack thereof) in point spacing as points are
added one at a time.
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shows the specific Halton point sets used. The first 20 consecutive points in each progres-
sion are labeled so that the reader can see the uniformity (or lack thereof) in point spacing
as sampling points are added one at a time.

Kriging and Moving Least Squares Data Fitting/Interpolation Approaches

The point data is fitted and interpolated in the following with Moving Least Squares
(MLS) and kriging methods. The particular implementation of MLS we use is described in
Krishnamurthy et al. (2002). Linear basis functions are used for the 3-point Halton 2-3 and
5-7 sets. For the 9-point and larger sets a quadratic polynomial basis function is used
which requires at least (D+1)(D+2)/2 sample points (6 for D=2 dimensions) within a given
interpolation point’s local radius of influence. An optimal local radius of influence is cal-
culated and used for each different point set so that this element of fitting error is mini-
mized in this study. Optimal influence radii are determined by iterating the radius value to
minimize the sum of the squared differences between the particular response surface and
the exact function at a 21x21 grid of uniformly space points over the 2-D domain. A quin-
tic weighting function was used to give C2 smootheness to the MLS interpolation function
over the 2-D domain.

The kriging method used in this study also produces a continuous C2 interpolating func-
tion over the entire parameter space. The fundamentals of the method are described in
(Giunta et al. 1998). The method is principally affected by the correlation length parame-
ter of the exponential spatial correlation model in the method. The correlation length
parameter can be specified or computed internally using a maximum-likelihood-estima-
tion optimization procedure. Both approaches were tried as described in the next section.

Performance of Progressive Response Surface Methods and Error Indicators

Figure 3 shows initial kriging response surfaces based on letting the code internally calcu-
late the spatial correlation length parameter . The method did not return results (due to
ill conditioning) at 81 points for either the base 2-3 or 5-7 Halton sets. Furthermore, the
base 2-3 3-point and base 5-7 3-point and 9-point response surface approximations
seemed suspect based on visual appearance.

We then switched to the input option for specifying the value of and proceeded to iter-
ate the value until the ill-conditioning problem was eliminated for the 81-point sets and
the results were fairly stable to local perturbations in the value. Figure 4 shows the
resulting RSAs, along with the results from using the MLS approach. Generally, the pro-
gressions of the externally optimized MLS and kriging methods are orderly toward the
best representations at 81 points. Beyond the noticable differences at 3 points, the differ-
ences between kriging and MLS are relatively small at 9, 27, and 81 points. The effect of
prime-number base is significant at lower numbers of samples (3 and 9 points) but not for
the larger sample sets (27 and 81 points) when the parameter space becomes well popu-
lated.

The MLS results at 3 points are noticeably bad for both 2-3 and 5-7 sets. This is because a
linear basis function is the only allowable MLS surface for 3 points in a 2-D space and the
first three points that define the associated plane are almost collinear for base 2-3 and are
collinear to within machine precision for base 5-7 (see Figure 2). Thus, the 5-7 case is ill-
conditioned so the MLS method yielded noise. The base 2-3 results are a steep plane
(though shown in Figure 4 with flattened dog-ear extremes because of plotter limitations

Θ

Θ

Θ

Θ
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Figure 3. Initial kriging response surfaces for Halton base 2-3 and 5-7 sample sets
(maximum-likelihood optimization problem internally solved for spatial
correlation-length parameter ).Θ
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Figure 4. Convergence of progressive response surfaces to target function as
samples are added to the parameter space. (Kriging and MLS spatial
correlation length parameters optimized externally by comparison to
exact target function.)
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when the vertical scale was kept the same as the other plots on the page). We could have
legitimately eliminated the MLS problems at 3 points by simply picking 3 best points out
of the sets of 9 (assuming that in a real application we would plan to progress to at least a
second level of sampling and would therefore know a priori nine locations for sample
points and be able to pick the best three of these locations to sample first). However, to be
fair we would have had to use the same new base 2-3 and 5-7 3-point sets for the kriging
progressions and had already calculated many results with the original data (presented
next). Since the unfortunate MLS results with the original 3-point sets don’t adversely
impact the error estimation findings below, the resulting response surfaces are retained.

Spatially Averaged Pointwise Error of Response Surface Approximations

A simple measure of global RSA accuracy over the parameter space can be calculated as:

(4)

where exact and predicted values in the summation come from respective evaluation of the
exact function and the particular RSA at 441 uniformly spaced points on a 21x21 square
grid overlaid on the domain. This measure is an expedient approximation to the global
average integrated absolute error over the domain, which would require a much more
involved calculation. The value of our metric can depend strongly on the grid used if it
under-resolves the functions. As Figure 4 suggests, a 21x21 plotting grid appears to be
sufficiently dense to achieve adequate representation of the target and approximation func-
tions.

Figure 5 presents results from the various interpolation methods and Halton point progres-
sions. The MLS results show orderly reduction of global fitting error as the number of
Halton samples increases. (Error at 3 points is off the scale of the plots because of the
unfortunate oversight described earlier where the three points used were effectively col-
linear. This is viewed as an avoidable interaction with the Halton sampling method.) The
kriging results generally also show orderly error reduction except that the 81-sample result
in the Halton base 5-7 progression has greater average absolute error than the 27-sample
result. We attribute this to possible degraded conditioning of the kriging solution matrix at
the larger allottment of sample points. (Ill conditioning prevented solutions at 81 points
for both 5-7 and 2-3 sets under the values initially tried, Figure 3.) Nonetheless, the
MLS and kriging values are closely comparable at 9, 27, and 81 sample points of each
Halton progression (base 2-3 and base 5-7).

Accuracy of Global Statistics of Response Calculated from RSAs

Global RSA accuracy as it impacts uncertainty propagation will be assessed next. In a
probabilistic uncertainty propagation problem, the system response function maps uncer-
tain (random variable) inputs of the system into an output uncertainty distribution. Con-
cretely, let the values of two uncertain inputs p1 and p2 come from independent normal
distributions having means 0.5 and standard deviations =0.5/3. The corresponding joint
probability density function (JPDF) of these input random variables is represented in Fig-
ure 6 after truncation of the JPDF beyond the p1-p2 unit-square domain. The JPDF is then
renormalized to integrate to unity over this space. The relative height of the JPDF defines
the relative propensity for attaining specific combinations of input values marked by any

approximate spatial average pointwise error

exacti predictedi–
i 1=
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∑
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--------------------------------------------------------=
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Figure 5. Behavior of spatially averaged pointwise absolute error as sample
points are added in kriging and MLS response surface formulations.
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particular point (location) in the parameter space. This likelihood function for attaining
given input combinations maps through the applicable input/output functional relationship
of the system (such as our test function shown in Figure 1) into a corresponding likelihood
function for attaining values of the system output.

Operationally, the JPDF of the input random variables can be mapped through the
system input/output response function into an output response distribution via standard
Monte Carlo (MC) sampling techniques. Toward this purpose, one million LHS MC sam-
ples or (p1,p2) parameter combinations (points in the parameter space) were generated by
the Iman and Shortencarrier (1984) LHS code according to the JPDF in Figure 6. The 2-D
target function and the various RSAs in Figure 4 were then evaluated for 106 (p1,p2)
parameter sets, yielding a population of 106 response values for each function.

The impact of the response surface constructions on the accuracy of global statistics
calculated from the mapped response values are shown in Figures 7 and 8. Figure 7 shows
calculated means of 106 response values calculated respectively from response surfaces
constructed from 3, 9, 27, and 81 Halton points. Figure 8 shows calculated standard devia-
tions. Also shown for reference are the exact values of the statistics obtained from the
exact 2-D function. Much more so than for average absolute error of the response surface
(Figure 5), the convergence behavior of computed global statistics of response can be
quite erratic, as we have found before with PLS sampling schemes (see Romero et al.
2004a).

Calculated Mean of Response

Richardson Extrapolation (RE) is not applicable in cases of oscillatory convergence like
with calculated mean response from kriging with the Halton base 2-3 sampling (Figure 7).
On the other hand, the Halton base 5-7 results spanning 9-27-81 points do not oscillate,

Figure 6. Joint Probability Density Function describing the random variables in
the problem: normally distributed parameters p1 and p2 with means
0.5, std. deviations =0.167, and truncation of the unit square param-
eter space at 3  above and below the mean values.
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Figure 7. Convergence behavior of calculated mean as sample points are added in
kriging and MLS response surface formulations.
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Figure 8. Convergence behavior of calculated standard deviation as sample
points are added in kriging and MLS response surface formulations.
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but these are also not amenable to RE because the monotonic behavior is obviously not
convergent yet because the difference from the 27-point result to the 81-point result is
greater than the difference from the 9-point to the 27-point result. Therefore, the behavior
is not yet in the asymptotic regime of the response-surface approximation.

Nevertheless, for either behavior above we can apply the more crude and simplistic sim-
ple-delta method of error estimation by estimating the error bound as the change in results
that occurs upon adding the new samples. For example, consider the results in Figure 7.
For each curve we can derive error bars at 9, 27, and 81 points by subtracting the preced-
ing coarser result. For instance, we subtract the result at 3 points from the result at 9
points. The absolute magnitude of this difference is taken as an estimate of how much
more the exact result may differ from the current value (at 9 points in this example). In
view of the often oscillatory nature of convergence here, we form error half-bars of this
magnitued above and below the result at 9 points. In this same manner we form the error
bars about the results at 27 and 81 points as well.

In all cases in Figure 7 (at 9, 27, and 81 points and for all four curves –kriging with Halton
2-3 and 5-7 sampling progressions and MLS with both Halton progressions), the exact
result indeed lies within the error bars so constructed. Thus, the simple-delta approach for
calculating error bars worked very well here: the exact mean was contained within all 12
constructed error bars.

We can compare this success with RE error estimates that are derivable for the MLS
results in Figure 7. As explained earlier, we used a different basis function (linear) for the
3-point RSA from that used (quadratic) for the 9, 27, and 81 point RSAs. Hence, we
would expect the order of convergence of the Halton-MSL RSA scheme would surely
change between the 3-point results and the other results. Therefore, we do not consider the
3-9-27 point span to be amenable to RE even if much better results were obtained at 3
points by advantageous selection of the 3 starting points via the approach explained ear-
lier. However, we might hope that the convergence rate over the 9-27-81 point span is rel-
atively constant (we present some empirical evidence for this later). Applying the RE
scheme we determine the Richardson extrapolations of the base 2-3 and base 5-7 progres-
sions. (The extrapolated values are not shown in the plots). In one case (base 2-3 progres-
sion), the RE result is closer to the exact value than the most refined calculated result (at
81 points), but for the 5-7 progression the converse it true. In both cases the RE results are
within error bars of the exact mean, where the bar half-heights are given by differences
from the 81-point values. Hence, the simplistic error estimation approach was again suc-
cessful here.

We can alternatively take the view that the actual calculated result at the finest resolution is
a better estimate than the RE value. Because we have not established a theoretical rate of
convergence for our RSA methods, we cannot be assured that the rate should stay constant
over our sampling progression and therefore that the RE estimate should be exact. Empiri-
cally, we have already seen above that the 81-point value is more accurate than the RE
value in one of the two cases. Hence, we may consider the 81-point value to be our best
estimate and construct an error bar around it by differencing from the RE value. In this
context, the RE machinery is just a relatively complex way to get a simple-delta error esti-
mate on the most-refined (81 point) RSA estimate. We call this the “RE delta” method of
getting an error estimate. Numerically, the simple-delta error bars about the 2-3 and 5-7
81-point results contain the exact value in both cases, whereas the RE-delta approach only
American Institute of Aeronautics and Astronautics 17



works in one of the two cases. Hence, here the simpler error estimation approach was suc-
cessful more frequently.

Calculated Standard Deviation of Response

We next consider the standard-deviation estimates in Figure 8. Addressing the kriging
results first, we see that the simply-derived error bars worked in 4 of the 6 possible oppor-
tunities. Regarding Richardson Extrapolation, the 3-9-27 point span of the Halton 2-3 pro-
gression does not qualify because the monotonic behavior is not asymptotic. Behavior
over the 9-27-81 span is oscillatory, so this span does not qualify either. However, both
point spans of the 5-7 progression qualify for RE. The calculated rate of convergence for
the 3-9-27 span is p=1.73, and for the 9-27-81 span is p=1.88, so the convergence rate is
reasonably constant here, suggesting that RE might work well here. However, it turns out
that the 27-point RSA result is more accurate than the asymptotic extrapolation of the 3-9-
27 span, and the 81-point RSA result is better than the asymptotic extrapolation of the 9-
27-81 span. Here, the RE estimates were worse than the most refined RSA estimate in the
progressions from which the asymptotic (RE) estimates arose.

Nonetheless, if we choose to use the RE estimates as our best estimate (in real appli-
cation settings not knowing the answer, so not knowing which estimate is better), then the
exact mean lies outside of the available error-bar estimates (by simple delta) for the RE
results. If we conversely choose to use the RE estimates to define error bars around the 27-
point and 81-point RSA results (by the RE delta method), then the error bars about the 27-
point result would contain the true mean, but the error bars for the 81-point result would
not. In comparison, the error bars from simple differencing with respect to preceding
results (at 9 and 27 points, respectively) do contain the exact mean as shown in Figure 8.
Hence, not only are the RE estimates (and available error bar estimates for them) usually
less accurate than the most refined RSA estimates in the progressions they are derived
from, but also the RE estimates are not as good for yielding successful error bars (for the
most refined RSA estimate underlying the RE estimate) as simple backward deltas are.

Addressing the MLS results next, we see that the simple backward-derived error bars
worked in all 6 of the 6 possible opportunities. Regarding Richardson Extrapolation, both
3-9-27 spans are out of contention again because of the problems with the effectively col-
linear 3 points in the 2-3 and 5-7 progressions. However, both Halton progressions of the
9-27-81 span qualify for extrapolation. The calculated rates of convergence are p=2.01 for
the 2-3 progression and p=1.45 for the 5-7 progression. Again, the convergence rate is rea-
sonably consistent. Nevertheless, the RSA estimates are about as accurate (2-3 case) or
better (5-7 case) than the asymptotic RE estimates. Again here, on balance the RE esti-
mates were worse than the most refined RSA estimate in the progressions from which the
asymptotic (RE) estimates arose.

If we choose to use the RE estimates as our best estimate, then the exact standard
deviation lies inside the error-bar estimates from simple backward delta. Conversely, if we
choose to use the RE estimates to define error bars around the base 2-3 and 5-7 81-point
RSA results (by the RE delta method), then the error bars here also contain the true result.
In comparison, the error bars from simple differencing with respect to preceding results (at
27 points) also contain the exact value as shown in Figure 8. So here we see that the avail-
able error-bar estimates about the RE results do contain the exact standard deviation, and
that RE-derived error bars on the 81-point results were as successful as backward differ-
encing.
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Discussion and Conclusion

It can be very difficult to determine when a particular sampling design and interpola-
tion scheme sufficiently resolve a function, yet this must be done if the response surface is
to be used as an effective economical replacement for the actual function. Monitoring con-
vergence heuristics of progressive response surface approximations can help in this
regard, and to get error estimates once the sampling is stopped. The latter is one of the
principle investigative points of this paper.

Initial indications based on our limited observations are that very simple delta-based
error estimates (error bars), obtained from changes in RSA estimates from addition of suf-
ficiently large increments of samples to the approximation, are fairly successful error indi-
cators. However, success tendencies may be very problem dependent and certainly depend
strongly on the size of the sample increments. For example, would simple-delta error esti-
mates work as successfully under a doubling (say) of sample points, such that the progres-
sion would go from the lowest reasonable number (3 points in 2-D) to 6, 12, 24 points,
etc? If so, then the slower rate of growth in the sampling progression could perhaps reduce
the total number of samples required to decide when the exact function has been sampled
enough to satisfy the error requirements in the particular computational task. Certainly,
much investigation remains to done to better characterize the general prospects of simple-
delta error estimation in general problems and under other samplin incrementation
schemes.

Our investigation found that Richardson Extrapolation estimates are often not as
accurate as the last computed value in the progression from which the asymptotic RE esti-
mates are derived. Furthermore, the available error bars about the RE estimates by simple
differencing were not as successful in containing the exact values as were similarly-pro-
duced error bars about the actual RSA estimates. Moreover, the error-bar estimates
derived from RE were: 1) not as readily applicable [only calculable for the third estimate
in the progression, and not the previous estimates]; 2) not as simple to compute as the sim-
ple-delta estimates; and 3) not as frequently successful as error bars derived with the sim-
ple-delta approach. We have also found these trends and conclusions to be true in other
work (now being written up) concerning estimates of exceedence probabilities for 2-D
problems defined in Romero et al. (2004a). Therefore, all our indications to date, though
very limited, are that use of RE for estimation improvement and for error estimates is
probably not going to be fruitful for progressive RSA methods of the type we are develop-
ing.

We also note that we have intervened to manually set the parameters in the kriging
and MLS methods to get the results shown here. In doing so, we have used knowledge of
the true response function shape to optimize the spatial correlation length parameters input
to these methods. We have intervened in order to ensure favorable conditions for the appli-
cability of RE method where possible, in order to see whether the method might work
(even if under the artificially favorable conditions). We have found that even under well-
controlled favorable conditions, RE was only mildly successful. In contrast, the simple-
delta error estimation approach worked more successfully and in a greater variety of cir-
cumstances, and does not need the benefit of the control applied here.

Although kriging and MLS have the potential for superior response surface accuracy
(versus, e.g., global polynomial regression), at this point we are not confident that they can
be used autonomously in general settings. It appears that much more work needs to be
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done to make them more robust and autonomous methods that could be used in automated
procedures of surrogate-based optimization and uncertainty propagation.
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