
// Execute the DOT C++ functor on the device
// using a parallel reduction driver
parallel_reduce(nwork, DOT<device>(x,y), result);

template < class Device >
struct DOT {
 typedef Device device_type; // execute on device
 typedef double value_type ; // reduction type

 // Called thread-parallel with iw∈[0..nwork):
 void operator()(int iw, value_type & val) const
 { val += X(iw) * Y(iw); }

 // Initialize thread-private temporary values:
 void init(value_type & val) const { val = 0 ;}

 // Join two thread-private temporary values:
 void join(volatile value_type & val ,
 volatile const value_type & in)const
 { val += in ; }

 // Views to arrays:
 const View< const double*, device_type > X , Y ;
};

View< const double*[3], Device, RandomRead > x;
 // Device = Kepler GPU then use texture cache
 // otherwise use normal data access

 // “View” is a C++ template class
View< double**[3][8], Device> a(“myArray”,N,M);
 // Declare 4D array dimensioned NˣMˣ3ˣ8
 // with memory allocated on “Device”
a(i,j,k,l) // multi-index data access interface

Hybrid parallel architectures offer the opportunity
for terascale workstations, petascale clusters,
and exascale supercomputers. Developers of
“MPI+X” computational applications and libraries
are challenged by the diversity of manycore
devices with architecture specific programming
models and performance requirements. This
challenge has traditionally been addressed by
developing and maintaining multiple versions of
architecture-tuned versions of codes.

Redundant code development and maintenance
is not an acceptable strategy. Instead we created
the Kokkos library to enable applications and
libraries to have a single code version that is
portable across multicore CPUs, Intel Xeon Phi,
and NVidia GPUs; and achieve no less than 90%
performance of the architecture-tuned version of
their code. Kokkos is unique in that it only uses
standard C++ (no compiler extensions) and
provides portable array data structures with
optimal, architecture-tuned, memory access
patterns hidden behind a portable API.

Kokkos: Enabling Manycore
Performance Portable

Applications and Libraries

FUNDING AGENCY: ASC / Computational Systems and Software Environment (CSSE)

FUNDING ACKNOWLEDGEMENT: Sandia National Laboratories is a multi-program
laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary
of Lockheed Martin Corporation, for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-AC04-94AL85000.

CONTACT: H. Carter Edwards, SNL, hcedwar@sandia.gov [SAND2013-8091P]

Our molecular dynamics mini-application (miniMD) is used to explore advanced
hybrid parallel architectures and their programming models. The Kokkos-based
implementation of miniMD is portable to multicore CPUs, Intel Xeon Phi, and
NVidia Kepler GPUs. This implementation matches the strong scaling
performance of an OpenMP optimized implementation of miniMD – which is not
portable to GPUs. We compare strong scaling of the force computation,
neighbor list construction, interprocessor communication, and time integration.

Performance portable molecular dynamics
mini-application implemented with Kokkos

Polymorphic Multidimensional Arrays
• Users implement data structures as classical

multidimensional arrays, with a twist
• Multi-index layout (i,j,k,...) ↔ memory location is

chosen for optimal memory access pattern
• Chosen when the code is compiled (C++ templates)
• Separate user’s index space from memory layout

• Declaring an array is just this simple, for a user
• Allocate an array in a device’s memory with runtime or

compile-time specified dimensions

Portable Data Parallel Execution
• Dispatch work (computation+data) to a device
• Parallel reduction is just this simple, for a user

• Highly flexible user-defined reduction operation

• Requiring C++1998 standard and “functor” pattern to
maximize portability

• Using C++2011 standard with lambda feature would
result in simpler syntax

Portable Access to Specialized Hardware
• Read array data through GPU texture cache

• Extensibility for manycore devices’ increasingly
complex memory architectures and capabilities

Performance of miniMD force computation
• Correct versus wrong array layout
• Using and not using GPU texture cache

The Kokkos library is publically available through the
Trilinos project at trilinos.sandia.gov.

	Slide Number 1

