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Abstract

This report develops and documents nonlinear kinematic relations needed to implement piezoelec-

tric constitutive models in ALEGRA-EMMA [5], where calculations involving large displacements

and rotations are routine. Kinematic relationships are established using Gauss’s law and Faraday’s

law; this presentation on kinematics goes beyond piezoelectric materials and is applicable to all

dielectric materials. The report then turns to practical details of implementing piezoelectric models

in an application code where material principal axes are rarely aligned with user defined problem

coordinate axes. This portion of the report is somewhat pedagogical but is necessary in order to

establish documentation for the piezoelectric implementation in ALEGRA-EMMA. This involves

transforming elastic, piezoelectric, and permittivity moduli from material principal axes to prob-

lem coordinate axes. The report concludes with an overview of the piezoelectric implementation

in ALEGRA-EMMA and small verification examples.
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1 Introduction and Outline

This report documents the new piezoelectricity model implemented in ALEGRA-EMMA during

FY2012. It covers essential kinematics, material property transformations and the algorithms im-

plemented.

Section 2 introduces piezoelectricity and fundamental kinematics required for evaluating the model.

Consistent kinematics for evaluation of the electric field and electric displacement are developed

in Section 3. These relationships, applicable to all dielectric materials, are obtained using Gauss’s

law and Faraday’s law along with basic kinematic results from Section 2. The mathematical model

for piezoelectricity is described in Section 4 with an emphasis on handling anisotropy. This is

particularly relevant to the practical use of piezoelectric models in application codes; implemen-

tation of these concepts in ALEGRA-EMMA is new. The relationship between material properties

represented mathematically as tensors and material properties that are typically reported as com-

ponents in Voight matrices is developed. This latter topic is not new but is documented in order

to enhance transparency, understanding and usability of the implementation. Practical details of

material property transformations, kinematics, and model evaluation are described in Section 5.

Two simple verification type problems are also developed and documented in Section 5.

2 Notation and Preliminary Development

Piezoelectricity is a coupled theory of mechanical deformations with electric fields; strictly speak-

ing, it is the linear couplings [7] although this report does not make this restriction in order to

properly account for nonlinear kinematics. When large deformations and/or rotations are consid-

ered (as they are in ALEGRA-EMMA), it is very important to distinguish un-deformed coordinates

from current coordinates. This section provides the minimum mathematical and notational back-

ground needed to identify and work with both sets of coordinates. The notation used here is a

blend of Bonet and Wood [1] for kinematics, and Yang [7] for piezoelectricity.

The main purpose of this section is to surface key relations needed for transformations between

un-deformed coordinates and current coordinates. Of particular importance are relations for areas

and volumes between these two systems. The deformation gradient operator F (defined below),

and its polar decomposition are central to the nonlinear kinematics. These concepts will be used in

later sections of the report for transforming electric fields, polarization, stress, and strain, between

un-deformed and current configurations.

A label X is given to each particle in the un-deformed body. X is referred to as a Lagrangian

coordinate. Current coordinates x are obtained through a mapping x= φ(t,X), where φ is assumed

to be a differentiable and invertible function of X for each time t. For notational convenience, this

functional relationship is simplified and denoted as x = x(t,X). See Figure 1.
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Figure 1. Body configurations: Un-deformed and current. La-

grangian coordinates X, displacement vector u(t,X), current coor-

dinates x(t,X).

Deformation Gradient

F =
∂x

∂X
, FiJ =

∂xi

∂XJ
, i,J = 1, . . .3 (1)

Note that both x and X are vectors and each have 3 components; therefore F has a total of 9

components. The deformation gradient F maps an infinitesimal vector segment dX in the un-

deformed body to an infinitesimal vector segment dx in the current coordinates. This is denoted

by dx = F dX. In this regard, F is a two point tensor because it refers to both un-deformed and

current coordinates.

Polar Decomposition The deformation gradient is multiplicatively decomposed using a rotation

tensor R and either the left stretch tensor V or the right stretch tensors U .

F =VR = RU (2)

Volume Change It is straight forward to establish a relationship between an infinitesimal volume

dV in the un-deformed body, and the associated volume dv after deformation. The details [1,

section 3.7] are omitted here.

dv = |F|dV

= JdV (3)

where |F| denotes the determinant J of F , which is often referred to as the Jacobian.

Area Change A relation between area dA in the un-deformed body and the corresponding area

da in the deformed body is often needed. Note that boldface is used here to emphasize that these

are vectors, i.e., each has a magnitude and an associated unit normal. Details associated with

establishing this relationship are given in [1, section 3.9].

da = JF−tdA (4)
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Note that F−t denotes the inverse of the transpose of F .

3 Kinematics

In this section, kinematics relevant to Gauss’s and Faraday’s laws are briefly introduced. These

kinematics are especially relevant to ALEGRA-EMMA where un-deformed body coordinates must

be distinguished from current coordinates. Many quantities of interest such as density, electric

displacement, electric field, polarization, stress and strain have values which depend upon which

configuration they are referred. Given a quantity, it is relatively easy to push or pull the quantity

to either the current or un-deformed configuration respectively. This section is about exposing and

developing these relations.

Gauss’s Law One of the governing equations solved by ALEGRA-EMMA is the differential

form of Gauss’s law. Note that ALEGRA-EMMA solves Gauss’s law with respect to the current

configuration. With respect to the current configuration, Gauss’s law reads as ∇ · (ε0E) = ρ̃ , where

E and ρ̃ denote the electric field and charge density respectively in the current configuration and

ε0 denotes vacuum permittivity. The integral form of this law states that for any closed surface,

the flux of ε0E is equal to the total charge Q =
∫

ρ̃dv enclosed by the surface [2]. In dielectric

materials, the atomic lattice is idealized into a mass carrying continuum consisting of positive

charges and a massless continuum consisting of negative charges. When the massless electronic

continua moves with respect to the mass carrying continua, a polarization P is induced [6]. This

decomposition motivates the notion of free and bound charge densities ρ̃ f and ρ̃b respectively;

the total charge density is taken as a sum of the free and bound charge densities ρ̃ = ρ̃ f + ρ̃b.

Irrespective of the possible polarization mechanisms, the divergence of P induces the bound charge

density: ∇ ·P =−ρ̃b. Then, Gauss’s law is written as

∇ · (ε0E +P) = ρ̃ f .

In dielectric materials, the free charge density ρ̃ f = 0. This leads to the following form of Gauss’s

law:

∇ ·D = 0, (5)

where

D = ε0E +P (6)

denotes the electric displacement with respect to the current coordinates.
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The integral form of Gauss’s law is used to establish a relationship between D , the electric dis-

placement with respect to the un-deformed configuration, and D, which is the same but with respect

to the current configuration. To establish this relationship, the surface integral in the current coor-

dinates is transformed using (4). The current surface area is denoted by ∂a; the corresponding area

in the un-deformed configuration is denoted by ∂A.

0 =

∫

∂a
D ·da

=
∫

∂A
D · (JF−tdA)

=

∫

∂A
J(F−1D) ·dA

=

∫

∂A
D ·dA

The needed relationships are thus established.

D = JF−1D pull back (7)

D =
1

J
FD push forward (8)

Faraday’s Law In the integral form of Faraday’s law, the electromotive force (EMF) is calcu-

lated as a path integral of the electric field. This integral is used to establish a relationship between

the electric field E with respect to the current coordinates, and the electric field E with respect to

un-deformed coordinates. Initially, the path integral is written with respect to a loop in the current

configuration using E. The deformation gradient (1) is used to pull back the integrand and thus es-

tablish a relationship between E and E . The path integral using the current coordinates is denoted

by ∂ l; the path integral in the un-deformed body is denoted by ∂L.

EMF =

∫

∂ l
E ·dl

=

∫

∂L
E · (FdL)

=
∫

∂L
(FtE) ·dL

=

∫

∂L
E ·dL

The needed relationships are thus established.

E = FtE pull back (9)

E = F−t
E push forward (10)
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4 Constitutive Models for Piezoelectricity

Elastic, piezoelectric and permittivity material properties are 4th, 3rd, and 2nd order tensors re-

spectively. However, notation for piezoelectricity is most commonly handled using matrices and

the Voight notation. Furthermore, values for elastic and piezoelectric moduli are generally pub-

lished with respect to the Voight notation. On the other hand, moduli transformations between

coordinate systems are generally written in textbooks using tensor notation which tends to be less

practical and cumbersome. Here, the relevant transformations of elastic, piezoelectric and per-

mittivity moduli are written using the Voight-Mandel matrix notation which is a slightly modified

version of the Voight notation. Note that the permittivity tensor is a second order tensor with

components that are easily identifiable with the elements of a matrix; in the context here there is

no notational difference between the Voight and Voight-Mandel representations of the permittivity

tensor.

In the following two subsections, Voight and Voight-Mandel notations are briefly introduced and

described for elastic and piezoelectric moduli. In the follow-on section, Voight-Mandel relations

are used to transform moduli from principal material axes into the relevant problem coordinates

axes. Before proceeding with the details, piezoelectric constitutive relations are summarized and

denoted using the Voight matrix notation.

Piezoelectric constitutive models linearly relate strain tensor components {Sg} and electric field

components {E g} to stress tensor components {T g} and electric displacement components {Dg}.
This relationship is denoted using the Voight matrix notation as:

{T g}= [Cg]{Sg}− [eg]t{E g}, {Dg}= [eg]{Sg}+[K g]{E g}, (11)

where elastic moduli are denoted using the 6×6 matrix [Cg], piezoelectric moduli are denoted by

the 3×6 matrix [eg], and permittivity moduli are denoted using the 3×3 matrix [K g]. Superscripts

’g’ denote values with respect to material coordinate axes; more on coordinate axes.

4.1 Voight Matrix Representation

The piezoelectric and elastic tensors are 3rd and 4th order tensors respectively. In this section, the

relationship between tensor components and the Voight matrix representations of elastic and piezo-

electric moduli is briefly developed and described. Superscripts ’g’ and ’G’, denoting material axes

and global problem coordinate axes respectively, are not needed and therefore omitted.

4.1.1 Elastic Moduli

A 4th order elastic tensor maps the symmetric 2nd order strain tensor into the symmetric 2nd order

stress tensor. In component form this relationship is given by

Ti j =Ci jklSkl, (12)

13



where components of the elastic moduli tensor, stress and strain tensors are denoted by Ci jkl , Ti j,

and Skl respectively. In three dimensions, a 4th order tensor has 81 = 34 components. However,

the elastic tensor satisfies both minor and major symmetries. Minor symmetry, denoted by Ci jkl =
Ci jlk and Ci jkl = C jikl , reduces 81 components to 36 components. Major symmetry, denoted by

Ci jkl = Ckli j further reduces the number of independent moduli to 21. These reductions make it

convenient to represent the 4th order tensor components in a symmetric 6×6 matrix. To that end,

(12) is expanded and minor symmetry is exploited to relate 4th order tensor components to the

Voight notation.

Ti j = Ci j11S11 +Ci j22S22 +Ci j33S33

+ Ci j23S23 +Ci j32S32 +Ci j13S13 +Ci j31S31

+ Ci j12S12 +Ci j21S21

To relate 4th order tensor components to entries in the 6×6 Voight matrix, symmetry of the strain

tensor as well as minor symmetry of the elastic tensor is used.

Ti j = Ci j11S11 +Ci j22S22 +Ci j33S33

+ (Ci j23 +Ci j32)S23 +(Ci j13 +Ci j31)S13 +(Ci j12 +Ci j21)S12

= Ci j11S11 +Ci j22S22 +Ci j33S33 +2Ci j23S23 +2Ci j13S13 +2Ci j12S12







T11

T22

T33

T23

T13

T12







=











C1111 C1122 C1133 C1123 C1113 C1112

C2211 C2222 C2233 C2223 C2213 C2212

C3311 C3322 C3333 C3323 C3313 C3312

C2311 C2322 C2333 C2323 C2313 C2312

C1311 C1322 C1333 C1323 C1313 C1312

C1211 C1222 C1233 C1223 C1213 C1212

















S11

S22

S33

2S23

2S13

2S12







In the Voight notation, the following relations are used to represent the 4th order tensor components

as entries in a 6× 6 matrix. This is accomplished by relating a pair of indices to a single index.

The engineering strain 2Si j, for shear shear components, i.e., i 6= j is also used.

11−→ 1 : T11 −→ T1, S11 −→ S1

22−→ 2 : T22 −→ T2, S22 −→ S2

33−→ 3 : T33 −→ T3, S33 −→ S3

23−→ 4 : T23 −→ T4, 2S23 −→ S4

13−→ 5 : T13 −→ T5, 2S13 −→ S5

12−→ 6 : T12 −→ T6, 2S12 −→ S6

(13)

Using the above relations, the stress-strain relationship is given in matrix notation. Note the direct

correspondence of tensor components to entries in the matrix; this correspondence relies upon the
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use of the engineering strain.







T1

T2

T3

T4

T5

T6







=











C11 C12 C13 C14 C15 C16

symm C22 C23 C24 C25 C26

symm symm C33 C34 C35 C36

symm symm symm C44 C45 C46

symm symm symm symm C55 C56

symm symm symm symm symm C66

















S1

S2

S3

S4

S5

S6







(14)

As a row vector, components of the stress tensor are denoted as 〈T 〉; similarly for the strain tensor.

When represented as a column vector, components of the stress tensor are denoted by {T}; similary

for the strain tensor. Therefore, the Voight notation for Hooke’s law (14) is denoted as

{T}= [C]{S} . (15)

It is convenient to partition the above 6× 6 elastic matrix [C] into 3× 3 sub-matrices along lines

differentiating the normal stress/strain components from shear stress/strain components in the fol-

lowing way.

[C] =

[
[Cnn] [Cns]

[Cns] [Css]

]

(16)

4.1.2 Piezoelectric Moduli

The 3rd order piezoelectric tensor maps the 2nd order strain tensor into a mechanically induced

polarization vector, i.e., first order tensor. In component form, this relationship is

dPi = eiklSkl (17)

where components of the polarization vector, piezoelectric tensor, and strain strain tensor are de-

noted by dPi, eikl , and Skl . In three dimensions, a 3rd order tensor has 27 = 33 components.

However, the piezoelectric tensor has symmetry in the 2nd and 3rd indices, i.e. eikl = eilk, and

this reduces the number of independent moduli from 27 to 18. With this reduction, it is feasible to

represent the piezoelectric moduli as a 3×6 matrix using the Voight notation.

Similar to the procedure used for the elastic moduli, (17) is expanded.

dPi = ei11S11 + ei22S22 + ei33S33

+ ei23S23 + ei32S32 + ei13S13 + ei31S31

+ ei12S12 + ei21S21

To relate this to a matrix (3×6) vector (6×1) product, symmetry of the strain tensor and piezo-
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electric tensor is used.

dPi = ei11S11 + ei22S22 + ei33S33 +(ei23 + ei32)S23 +(ei13 + ei31)S13 +(ei12 + ei21)S12

= ei11S11 + ei22S22 + ei33S33 +2ei23S23 +2ei13S13 +2ei12S12

In matrix notation, the above is written as:







dP1

dP2

dP3






=





e111 e122 e133 e123 e113 e112

e211 e222 e233 e223 e213 e212

e311 e322 e333 e323 e313 e312











S11

S22

S33

2S23

2S13

2S12







. (18)

The engineering strain 2Si j is identified for shear shear components, i.e., i 6= j, and the above rela-

tionship is written in the following matrix notation. Note the correspondence between piezoelectric

tensor components and matrix entries.







dP1

dP2

dP3






=





e11 e12 e13 e14 e15 e16

e21 e22 e23 e24 e25 e26

e31 e32 e33 e34 e35 e36











S1

S2

S3

S4

S5

S6







(19)

4.2 Voight-Mandel Matrix Representation

The Voight-Mandel representation is similar to the Voight representation; material properties are

represented in matrix form; stress and strain are represented in vector form. The difference is that

components of shear strain and shear stress are scaled by
√

2; also, the basis used in the Voight

representation is not orthonormal and is not the same for stress and strain. On the other hand, the

Voight-Mandel representation uses the same orthonormal basis vectors for both stress and strain;

this simplifies some formulas and manipulations.

A set of orthonormal basis vectors, denoted by g−→ (g1,g2,g3), are used to construct a specialized

basis b for the stress and strain vectors. By way of example, the stress tensor representation is given

16



by:

T = 〈T g〉{b}

=
〈

T
g

11 T
g

22 T
g

33

√
2T

g
23

√
2T

g
13

√
2T

g
12

〉







g1⊗g1

g2⊗g2

g3⊗g3
1√
2
(g2⊗g3 +g3⊗g2)

1√
2
(g1⊗g3 +g3⊗g1)

1√
2
(g1⊗g2 +g2⊗g1)







. (20)

The basis vectors bI (I = 1,2, · · · ,6), are orthonormal with respect to the double dot product. For

example, b1:b6 is computed as:

b1:b6 = g1⊗g1:
1√
2
(g1⊗g2 +g2⊗g1)

=
1√
2
((g1 ·g1)(g1 ·g2)+(g1 ·g2)(g1 ·g1))

=
1√
2
((1)(0)+(0)(1))

= 0. (21)

As a second example, evaluation of b6:b6 is given by:

b6:b6 =
1√
2
(g1⊗g2 +g2⊗g1):

1√
2
(g1⊗g2 +g2⊗g1)

=
1

2
((g1 ·g2)(g2 ·g1)+(g1 ·g1)(g2 ·g2)+(g1 ·g1)(g2 ·g2)+(g2 ·g1)(g1 ·g2))

=
1

2
((0)(0)+(1)(1)+(1)(1)+(0)(0))

= 1.

With this representation, a Voight-Mandel component of the stress tensor can be found by using

the double dot product;
√

2T
g

12 = T: 1√
2
(g1⊗g2 +g2⊗g1).

4.2.1 Elastic Moduli

In the Voight-Mandel representation, the elastic 6×6 matrix [C] in (16) is slightly modified to ac-

commodate the Voight-Mandel stress and strain components described above. The Voight-Mandel

elastic matrix, denoted as [C̃], relates to the Voight matrix [C] in the following way:

[C̃] =

[

[Cnn]
√

2 [Cns]√
2 [Cns] 2 [Css]

]

. (22)

17



The above scaling factors of
√

2 and 2 are established by equating stress tensor components from

the Voight representation with stress tensor components from the Voight-Mandel representation.

This is illustrated using two components T1 = Txx and T6 = Txy; these two components establish

the scaling of [Cns] and [Css] respectively. From (14), T1 is given by

T1 =C11S1 +C12S2 +C13S3 +C14(2S23)+C15(2S13)+C16(2S12).

Similarly, the above component is evaluated using the Voight-Mandel representation. Note that in

this representation, shear stress and strain components are scaled by
√

2.

T1 = C̃11S1 +C̃12S2 +C̃13S3 +C̃14(
√

2S23)+C̃15(
√

2S13)+C̃16(
√

2S12)

The above two values for T1 are equated; similarly, if this process is repeated for T2 and T3, it is

evident that [C̃ns] =
√

2[Cns].

A similar procedure is followed for T6. From (14), T6 is given by

T6 =C16S1 +C26S2 +C36S3 +C46(2S23)+C56(2S13)+C66(2S12). (23)

And again using the Voight-Mandel representation; note that shear stress and strain components

are scaled by
√

2.

√
2T6 = C̃16S1 +C̃26S2 +C̃36S3 +C̃46(

√
2S23)+C̃56(

√
2S13)+C̃66(

√
2S12) (24)

Next, (23) is multiplied by
√

2 and then equated with (24); similarly, if this process is repeated for

T4 and T5, it is evident that [C̃ss] = 2[Css]. This process uses the previously established relationship

[C̃ns] =
√

2[Cns].

4.2.2 Piezoelectric Moduli

Following a procedure similar to that for the elastic 4th order tensor, the Voight-Mandel represen-

tation of the piezoelectric tensor is established. Expressions for the Voight representation in (18)

are used. For convenience, the Voight representation for the mechanically induced polarization is

written again.

dPi = ei11S11 + ei22S22 + ei33S33 +2ei23S23 +2ei13S13 +2ei12S12

The Voight-Mandel representation is written as:

dPi = ẽi1S11 + ẽi2S22 + ẽi3S33 + ẽi4

√
2S23 + ẽi5

√
2S13 + ẽi6

√
2S12.

Equating the above two relations for the mechanically induced polarization establishes the appro-

priate scaling of piezoelectric tensor components for use in the Voight-Mandel matrix representa-
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tion.







dP1

dP2

dP3






=





e111 e122 e133

√
2e123

√
2e113

√
2e112

e211 e222 e233

√
2e223

√
2e213

√
2e212

e311 e322 e333

√
2e323

√
2e313

√
2e312











S11

S22

S33√
2S23√
2S13√
2S12







(25)

4.3 Voight-Mandel Matrix Transformations

4.3.1 Direction Cosine Matrix Operators

For modeling purposes, it is necessary to relate material axes to model coordinate axes since mate-

rial axes are in general different from problem coordinate axes. This section describes the relevant

transformations for elastic, piezoelectric, and permittivity matrices.

Material properties are typically known with respect to material principal axes g −→ (g1,g2,g3),
where gi for i = 1,2,3, denote orthonormal vectors. In practice, material principal axes are rarely

coincident with the problem coordinates axes, G−→ (G1,G2,G3), and it is necessary to transform

material properties from one basis to the other. This is accomplished using a standard 3×3 direc-

tion cosine matrix [aGg], the columns of which represent basis vectors of g expressed as a linear

combination of the basis vectors for G. This matrix is given by:

[aGg] =





G1 ·g1 G1 ·g2 G1 ·g3

G2 ·g1 G2 ·g2 G2 ·g3

G3 ·g1 G3 ·g2 G3 ·g3



=






a
Gg
11 a

Gg
12 a

Gg
13

a
Gg
21 a

Gg
22 a

Gg
23

a
Gg
31 a

Gg
32 a

Gg
33




 (26)

where columns represent material axes with respect to the problem coordinates axes. Using [aGg],
vector components with respect to the g basis can easily be transformed to components with respect

to the G basis. As an example, suppose that the following representation of the electric field is

given.

E = 〈Eg〉{g}
= E

g
1g1 +E

g
2g2 +E

g
3 g3

Then components with respect to the G basis can computed by:

EG
i = E ·Gi

= (Gi ·g1)E
g
1 +(Gi ·g2)E

g
2 +(Gi ·g3)E

g
3

= a
Gg
i j E

g
j sum on j = 1,2,3
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Utilizing matrix notation, components of the electric field transform as

{

EG
}

= [aGg]{Eg} . (27)

Tensors using the Voight-Mandel representation are transformed in a similar way. The Voight-

Mandel basis defined in (20) is established using the material basis g and problem coordinate basis

G; these two bases are denoted by b and B respectively. For completeness, components of B are

similarly defined (see (20)):

{B} =







G1⊗G1

G2⊗G2

G3⊗G3
1√
2
(G2⊗G3 +G3⊗G2)

1√
2
(G1⊗G3 +G3⊗G1)

1√
2
(G1⊗G2 +G2⊗G1)







(28)

The relevant 6×6 transformation matrix [AGg] is given by dotting each component of B with each

component of b. Conceptually, each component of b is expressed as a linear combination of the

basis vectors BI for I = 1,2,3,4,5,6. The transformation matrix [AGg] is given as

[AGg] =











B1 : b1 B1 : b2 B1 : b3 B1 : b4 B1 : b5 B1 : b6

B2 : b1 B2 : b2 B2 : b3 B2 : b4 B2 : b5 B2 : b6

B3 : b1 B3 : b2 B3 : b3 B3 : b4 B3 : b5 B3 : b6

B4 : b1 B4 : b2 B4 : b3 B4 : b4 B4 : b5 B4 : b6

B5 : b1 B5 : b2 B5 : b3 B5 : b4 B5 : b5 B5 : b6

B6 : b1 B6 : b2 B6 : b3 B6 : b4 B6 : b5 B6 : b6











.

The above matrix can be partitioned into 3×3 matrices whose components depend upon compo-

nents of [aGg]:

[AGg] =

[

[AGg
nn ] [AGg

ns ]

[AGg
sn ] [AGg

ss ]

]

, (29)

where components of the above sub-matrices are given by:

[AGg
nn ] −→ A

Gg
IJ = ai jai j for

{
I = 1,2,3; i = 1,2,3
J = 1,2,3; j = 1,2,3

(30)

[AGg
ns ] −→ A

Gg
IJ =

√
2ai jaik for

{
I = 1,2,3; i = 1,2,3
J = 4,5,6; ( j,k) = (2,3),(1,3),(1,2)

(31)

[AGg
sn ] −→ A

Gg
JI =

√
2a jiaki for

{
J = 4,5,6; ( j,k) = (2,3),(1,3),(1,2)
I = 1,2,3; i = 1,2,3

(32)
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[AGg
ss ] −→ A

Gg
IJ = aimakn +ainakm for

{
I = 4,5,6; (i,k) = (2,3),(1,3),(1,2)
J = 4,5,6; (m,n) = (2,3),(1,3),(1,2)

(33)

The inverse of an orthogonal rotation matrix is given by its transpose. Both [AGg] and [aGg] are

orthogonal rotation matrices and therefore have the following useful properties:

[AgG] = [AGg]t = [AGg]−1, [agG] = [aGg]t = [aGg]−1, (34)

where the transpose of [AGg] is denoted by [AgG] and similarly of [aGg].

4.3.2 Moduli Transformations

Components of the second Piola-Kirchhoff stress and electric displacement are calculated using

the following Voight-Mandel representation for a piezoelectric constitutive model using

{T g}= [C̃g]{Sg}− [ẽg]t{E g}, {Dg}= [ẽg]{Sg}+[K g]{E g}, (35)

where superscripts g denote moduli, vector, and tensor components with respect to the material

axes. If {T g} and {Dg} are pre-multiplied by the transformation matrices [AgG] and [aGg] re-

spectively, then stress and electric displacement components will be converted to components with

respect to user defined coordinates axes G. However, this form is inconvenient in the constitutive

model evaluation because the right hand side strain and electric field components are still expressed

with respect to the material coordinate axes g. Therefore, the strain and electric field components

are expressed with respect to user defined coordinate axes as

{Sg}= [AgG]{SG}, {E g}= [agG]{E G}. (36)

Using (35) and (36) leads to transformation relations for elastic, piezoelectric, and permittivity

matrices.

{T G} = [AGg]{T g}
= [AGg][C̃g]{Sg}− [AGg][ẽg]t{E g}
= [AGg][C̃g][AgG]

︸ ︷︷ ︸

[C̃G]

{SG}− [AGg][ẽg]t [agG]
︸ ︷︷ ︸

[ẽG]t

{E G} (37)

{DG} = [aGg]{Dg}
= [aGg][ẽg]{Sg

m}+[aGg][K g]{E g}
= [aGg][ẽg][AgG]

︸ ︷︷ ︸

[ẽG]

{SG}+[aGg][k̃g][agG]
︸ ︷︷ ︸

[K G]

{E G} (38)

Note the piezoelectric matrix is consistently transformed in the above two equations for {T G} and

{DG}.
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Figure 2. Sketch of quartz prism indicating orientation of x and

y cuts; z axis is often referred to as the optical axis.

4.4 Moduli Transformations: Example

By way of example, this section demonstrates the transformations developed in the previous sec-

tion.

Quartz is the canonical piezoelectric material. Properties for quartz and its various cuts are pub-

lished and well known. In this section, a reference set of properties for y-cut quartz are given.

Subsequently, these properties are transformed to a coordinate system known as AT-cut. This can

then serve as a verification problem for computer implementation of the transformations discussed

above.

4.4.1 Properties of y-cut Quartz

It is helpful to think of a piece of uncut quartz as a hexagonal prism – see Figure 2. Material axes

are depicted in the graphic as x, y and z; common samples of quartz are x-cuts and y-cuts. Note that

both x-cut and y-cut quartz samples are associated with the principal axes and are merely rotated by

90◦ with respect to each other; these transformations do not introduce additional non-zero entries

in material matrices.

There are 6 independent elastic moduli for quartz. With respect to y-cut quartz, the independent

Voight elastic moduli are C11,C12,C13,C14,C33,C44. There are 2 independent piezoelectric moduli

and 2 independent permittivity moduli. With respect to y-cut quartz, these independent moduli are

e11,e14, and k11,k33 respectively. Numerical values for these properties are given in Table 1. The
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Figure 3. Schematic sketch of y-cut quartz; dotted lines indicate

the optical z-axis; a) sample with respect to quartz prism; b) AT-cut

sample: θ = 35.25◦.
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C11 86.74×109

C12 6.99×109

C13 11.91×109

C14 −17.91×109

C33 107.2×109

C44 57.94×109

N
m2

e11 .171

e14 −.0406
Coulomb

m2

k11 39.21×10−12

k33 41.03×10−12
Coulomb

V ·m

Table 1. Voight representation of material properties for y-cut

quartz [7].

structure of the Voight matrices for y-cut quartz is given below.

[Cg] =











C11 C12 C13 C14 0 0

symm C11 C13 −C14 0 0

symm symm C33 0 0 0

symm symm symm C44 0 0

symm symm symm symm C44 0

symm symm symm symm symm 1
2
(C11−C12)











(39)

[eg] =





e11 −e11 0 e14 0 0

0 0 0 0 −e14 −e11

0 0 0 0 0 0



 (40)

[K g] =





k11 0 0

0 k11 0

0 0 k33



 (41)

4.4.2 Transformation of y-cut Quartz to AT-cut Quartz

For verification, values for y-cut quartz in Table 1 are transformed into values for AT-cut quartz

using the transformations in (37) and (38). Since the transformations described were developed

for the Voight-Mandel representation, values for the Voight elastic and piezoelectric moduli in

Table 1 must first be converted to the Voight-Mandel representation using the relations in (22)

and (25). Then, using the orthogonality relations in (34), and the relationship between [aGg] and

[AGg] using (30) thru (33), material properties for AT-cut quartz can be computed from properties

for y-cut quartz. Note that after the transformation, properties are converted back to the Voight

representation.

As shown in Figure 3, an AT-cut is a special version of y-cut. The relevant transformation matrices

are given by identifying the AT-cut with a rotation of θ = −35.25◦ about the x axis, see Figure 2

and Figure 3. To that end, rows of [agG] express the material bases with respect to the problem

coordinate bases. If î, ĵ, k̂, and Î, Ĵ, K̂ represent the material bases and the problem coordinates
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bases respectively, then [agG] is given by:

[agG] =





1 0 0

0 cos(θ) −sin(θ)
0 sin(θ) cos(θ)



 . (42)

After transformation, the Voight representation of elastic, piezoelectric and permittivity moduli are

given below for AT-cut quartz.

[CG] =











86.74 −8.25 27.15 −3.66 0 0

symm 129.77 −7.42 5.7 0 0

symm symm 102.83 9.92 0 0

symm symm symm 38.61 0 0

symm symm symm symm 68.81 2.53

symm symm symm symm symm 29.01











×109 N

m2

[eG] =





.171 −.152 −.0187 .067 0 0

0 0 0 0 .108 −.095

0 0 0 0 −.0761 .067




Coulomb

m2

[K G] =





39.21 0 0

symm 39.82 .86

symm symm 40.42



×10−12 Coulomb

V ·m

5 Nonlinear Kinematics for Stress and Polarization Calcula-

tions in ALEGRA-EMMA

In this section, relations developed in Section 2 are used to describe kinematically consistent al-

gorithms for advancing the state of dielectric constitutive models. These concepts are then used to

construct a kinematically consistent algorithm for advancing the state of the piezoelectric model in

ALEGRA-EMMA.

With respect to kinematics, it is important to make a clear distinction between current coordinates

and un-deformed coordinates. Because nearly all of the fields used for ALEGRA-EMMA calcula-

tions involve derivatives, careful attention must be given to whether derivatives are with respect

to spatial coordinates x = (x1,x2,x3) or material coordinates X = (X1,X2,X3). The deformation

gradient (1) plays a key role in transforming quantities between spatial and material coordinates.

The tensors and fields denoted in Table 2 are of particular importance in the evaluation of dielectric

constitutive models. In general, it is nearly impossible to avoid one or more of these transforma-

tions because ALEGRA-EMMA solves Gauss’s Law on the spatial coordinates while the dielectric
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constitutive models typically evaluate tensors and fields with respect to material coordinates. In

addition to stress, constitutive models are required to return components of the permittivity tensor

with respect to the current coordinates. If the material response includes an induced polarization

due to deformation, then that must also be returned with respect to the spatial coordinates.

Quantity Material Representation Spatial Representation

strain S ε = F−tSF−1

stress T σ = FT Ft/J

electric field E G EG = F−tE G

electric displacement DG DG = FDG/J

polarization PG PG = FPG/J

permittivity moduli K G KG = FK GFt/J

Table 2. Material/Spatial Representation of Tensors and Fields

5.1 Gauss’s Law for Dielectric Materials in ALEGRA-EMMA

Before discussing the state update algorithm for piezoelectricity, it is helpful to further consider

Gauss’s law for dielectric materials. The report by Montgomery [3] summarizes Gauss’s law but

does not include a treatment of the kinematics for dielectric materials. This section is a brief sum-

mary of the equations associated with Gauss’s law but with an emphasis on the relevant kinematics.

The consistent treatment of kinematics is crucial in ALEGRA-EMMA where large deformations

and or rotations are routine. Most of the fields and tensors used in this section are identified in

Table 2.

With respect to the material coordinate system, Gauss’s law can be written as

∇X ·DG = 0,

where DG = ε0JF−1F−tE G +PG denotes the electric displacement, and ε0 denotes the vacuum

permittivity. The polarization PG is assumed to be derivable [6, 7] from a free energy function ψ

as PG
i =− ∂ψ

∂E G
i

. In ALEGRA-EMMA, the polarization PG abstractly defines a so-called mechan-

ical polarization πG in the following way:

P
G = K

G
E

G +πG, (43)

where PG is decomposed into two pieces; the first piece linearly depends upon the electric field

while the second piece, πG, represents everything else. PG is conceptually independent of the

polarization mechanism, i.e., it could be the final polarization after a change in temperature (py-

roelectric), or after a change in the electric field (piezoelectric/ferroelectric), or after a change

in shape (deformation) [4]. Here, the focus is on polarization due to applied electric fields and
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mechanical deformations. For example, an energy functional that characterizes piezoelectricity

is

ψ(SG
kl,E

G
k ) =

1

2
CG

i jklS
G
i jS

G
kl− eG

i jkE
G

i SG
jk−

1

2
χG

i j E
G

i E
G
j , (44)

where χi j denotes components of the electric susceptibility tensor. Using 44, the polarization of a

piezoelectric material is

P
G = (χ + ε0JF−1F−t)E G + eGSG = K

G
E

G +πG (45)

where K G denotes and defines the permittivity tensor, and πG denotes and defines the mechanical

polarization for a piezoelectric material.

In ALEGRA-EMMA, Gauss’s law is solved using the divergence operator ∇· with respect to the

current configuration; hence Gauss’s law is written with respect to the spatial coordinates

∇ ·DG = 0, DG = KGEG +FπG/J, (46)

where KG is given by the push of K G (see Table 2). This equation is further developed by ex-

pressing the electric field as the gradient of a scalar potential. Faraday’s law for electrostatics

∇×EG = 0, allows the electric field to be derived from a scalar potential φ as EG =−∇φ , where

φ is a function defined on the current configuration. Combining (45) and (46) yields the following

representation for the electric displacement in the current configuration.

DG = −KG∇φ +FπG/J. (47)

Then Gauss’s law for dielectric materials in the current configuration is given by

∇ · (KG∇φ) = ∇ · (FπG/J). (48)

ALEGRA-EMMA solves (48) for the scalar potential function φ over a domain which may con-

sist of multiple dielectric materials and conductors. Solution procedures are described by Mont-

gomery [3].

Because of the above relationships, the ALEGRA-EMMA solver and operators place requirements

on the kind (Lagrangian versus Eulerian) of input and output fields dielectric constitutive models

must use. With respect to kinematics, (48) requires dielectric constitutive models to calculate and
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return the permittivity tensor KG and the mechanical polarization vector FπG/J, both of which

are with respect to the current configuration. Relatedly, the ALEGRA-EMMA solver computes

the electric field EG = −∇φ as an input to dielectric constitutive models. Dielectric constitutive

models in ALEGRA-EMMA must conform to these requirements; otherwise, calculations involving

large deformations and rotations will be in error. The practical application of these concepts is

described in the following section.

5.2 State Update Algorithm for Piezoelectricity in ALEGRA-EMMA

In this section, kinematic results and procedures developed in Sections 3 and 5.1 are applied to

the piezoelectric model. There are multiple ways to implement the piezoelectricity model. The

approach taken here relates to interface requirements (inputs and outputs) for constitutive models

in ALEGRA-EMMA.

The piezoelectric model implementation consists of a setup phase that is run only once at the

start of a problem, and an ongoing update state computation that is run for each ALEGRA-EMMA

time step. With this approach, material moduli are rotated into the ALEGRA-EMMA problem

coordinates during setup; this is a one time computation that does not need to be repeated for

each time step; however, results from this calculation are used during each update state and hence

there is a significant computational advantage to performing the material model transformations

during setup. Calculations performed during update state relate to pushing and pulling fields and

tensors between un-deformed and current configurations. The following sections closely describe

the setup and update state used in ALEGRA-EMMA.

5.2.1 Setup

Piezoelectric material orientation and properties are user input parameters represented by [agG]
and [Cg], [eg] and [K g] respectively. The setup phase rotates user input material properties into

the problem coordinate system. This consists of the following three steps which produces elastic

[CG], piezoelectric [eG], and permittivity [K G] moduli, all with respect to the problem coordinate

axes.

Scale User Input Moduli Using the decomposition of elastic moduli depicted in (16), and

the relations (22) and (25), scale [Cg] and [eg] from user input parameters to the Voight-Mandel

representations [C̃g], [ẽg]. This step is not required for [K g].

[C̃g] =

[ [
C

g
nn

] √
2
[
C

g
ns

]

√
2
[
C

g
ns

]
2
[
C

g
ss

]

]
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[ẽg] =





e
g
111 e

g
122 e

g
133

√
2e

g
123

√
2e

g
113

√
2e

g
112

e
g
211 e

g
222 e

g
233

√
2e

g
223

√
2e

g
213

√
2e

g
212

e
g
311 e

g
322 e

g
333

√
2e

g
323

√
2e

g
313

√
2e

g
312





Transform Moduli Using (37) and (38), transform [C̃g], [ẽg], and [K g] into the problem coor-

dinate axes.

[C̃G] = [AGg][C̃g][AgG]

[ẽG] = [aGg][ẽg][AgG]

[K G] = [aGg][K g][agG]

Scale Transformed Moduli: Reverse First Step Back out values for [CG] and [eG] using the

above values for [C̃G] and [ẽG].

[CG] =
1

2

[

2
[
C̃G

nn

] √
2
[
C̃G

ns

]

√
2
[
C̃G

ns

] [
C̃G

ss

]

]

[eG] =
1√
2





√
2ẽG

111

√
2ẽG

122

√
2ẽG

133 ẽG
123 ẽG

113 ẽG
112√

2ẽG
211

√
2ẽG

222

√
2ẽG

233 ẽG
223 ẽG

213 ẽG
212√

2ẽG
311

√
2ẽG

322

√
2ẽG

333 ẽG
323 ẽG

313 ẽG
312





5.2.2 Update State

The deformation gradient F is denoted as a matrix [F] when acting on 2nd order tensors and vectors

as matrices of tensor components [·] and arrays of vector components {·} respectively. Otherwise

it is denoted as an operator which acts on 2nd order tensors and vectors.

The update state calculation is done for every ALEGRA-EMMA time step. This is a material model

function for which the material properties [CG], [eG], and [K G] are given; note that these were

computed in the setup phase. The update state function is expected to return the so-called un-

rotated Cauchy stress tensor σ u = RtσR, the spatial mechanical polarization πG, and the spatial

permittivity tensor KG. Inputs to this evaluation are the spatial electric EG, and V and R from
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the polar decomposition F = VR. Because the material model is defined for evaluation with the

Green-Lagrange strain tensor and the Lagrangian electric field E G, multiple transformations are

required. The following sequence of steps summarize the update state evaluation.

Compute Engineering Strain Given F = VR, extract components EIJ of the Green-Lagrange

strain tensor:

EIJ←−
1

2

(
F tF− I

)
,

where I denotes the 2nd order identity tensor. Compute engineering strain {SG}.

{SG}=







S1

S2

S3

S4

S5

S6







=







E11

E22

E33

2E23

2E13

2E12







Pull Electric Field Since the incoming electric field EG is with respect to the current coordi-

nates, it must be pulled to enable its use in the constitutive model evaluation.

{E G}= [Ft ]{EG}

Evaluate 2nd Piola Kirchhoff Stress Given components of the engineering strain {SG} and

components of the Lagrangian electric field {E G}, components {T G} of the 2nd Piola Kirchhoff

stress tensor are evaluated.

{T G}= [CG]{SG}− [eG]t{E G}

Evaluate Mechanical Polarization The mechanical polarization πG is computed by pushing

[eG]{SG}

{πG}= 1

J
[F][eG]{SG},

where J is the determinant of [F].

Compute Cauchy Stress This is a push of the 2nd Piola Kirchhoff stress tensor. Note that here,

F and T G denote proper operators as opposed to matrices of components.

σ =
1

J
FT GFt
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De-rotate Cauchy Stress ALEGRA-EMMA expects the de-rotated Cauchy stress σ u as an output

from this function.

σ u = RtσR,

where R is from the polar decomposition F =VR.

Push Permittivity Moduli ALEGRA-EMMA expects an output of the permittivity tensor with

respect to the current coordinates.

[KG] =
1

J
[F]{K G}[Ft ]

5.3 Examples

In this section, two simple examples are developed and documented. These are verification type

problems for which inspection and study can be used to confirm correctness. Using the procedures

and results from this report, expected solutions are developed and compared with those computed

by ALEGRA-EMMA.

5.3.1 Rigid Rotation with Constant Electric Field

A constant electric field of magnitude Ey is applied to a thin slab of quartz by applying a voltage

that varies linearly across the slab.

V (y) =V0− yEy,

where y is a component of the current coordinates. While holding the above voltage, the slab is

rigidly rotated about the x−axis and otherwise prevented from any distortion due to the piezoelec-

tric effect; hence, all strains in the slab are zero. See Figure 4.

For this rotation, the current coordinates r are expressed as a function of θ and the Lagrangian

coordinates (X ,Y,Z).

r = xî+ y ĵ+ zk̂

= XÎ+(Y cos(θ)−Z sin(θ))Ĵ+(Y sin(θ)+Z cos(θ))K̂.

Since there is no distortion of the material, the deformation gradient F = R, where R is the one-

rotation operator.

[R] =





1 0 0

0 cos(θ) −sin(θ)
0 sin(θ) cos(θ)




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The spatial electric field E is

E = −∂V

∂y
ĵ = Ey ĵ

= < Eg > {g},
= Ey[cos(θ)Ĵ+ sin(θ)K̂]

= < EG > {G},

where {g} denotes a column vector representation of the basis vectors (î, ĵ, k̂), and < Eg > denotes

components of the electric field with respect to {g}; similarly, < EG > denotes components of the

electric field with respect to {G}.

Using the above vector components and matrices, components of the Lagrangian electric field

E = FtE =−F t∇V for use in the constitutive model is evaluated.

{EG}= [R]{Eg}

{E G} = [F]t{EG}
= [R]t [R]{Eg}
= {Eg}

Cauchy Stress Components It is expected that components of the Cauchy stress tensor evolve

due to the rigid rotation. For example, at the end of a 90◦ rotation, σxz should take on the value of

σxy from before the rotation; similarly, σxy should take on the negative of the value for σxz from

before the rotation.

If the constitutive model for y-cut quartz is evaluated and then pushed, the exact values for σxz(θ)
and σxy(θ) are found.

σxy(θ) = Ey[−e11 cos(θ)+ e14 sin(θ)]

σxz(θ) = Ey[−e14 cos(θ)− e11 sin(θ)]

Permittivity Tensor Components As previously discussed, components of the permittivity ten-

sor are pushed. Analytical values for elements of the permittivity tensor in the current configuration

are given by

Kxx(θ) = k11,

Kyy(θ) = k11 cos2(θ)+ k33 sin2(θ),
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Kyz(θ) = [k11− k33]cos(θ)sin(θ),

and

Kzz(θ) = k33 cos2(θ)+ k11 sin2(θ).

The above expressions for stress and permittivity components are compared with values computed

using ALEGRA-EMMA; a plot is given in Figure 5. Note that values computed using ALEGRA-

EMMA closely track the analytical values given above.

Figure 4. Rigid rotation with constant electric field. Material

principal axes g −→ (î, ĵ, k̂) are initially aligned with the fixed

global coordinate axes G−→ (Î, Ĵ, K̂).

5.3.2 Uniaxial Extension Plus Constant Electric Field Followed by Rigid Rotation

This example is closely related to the previous example. In addition to the voltage applied across

the quartz slab, a constant state of uniaxial extension εxx is applied along the x-axis. A constant

electric field of magnitude Ey is applied to a thin slab of quartz by applying a voltage that varies

linearly across the slab.

V (y) =V0− yEy,

where y is a component of the current coordinates. For this deformation and rotation, the current

coordinates r are expressed as a function of the uniaxial strain εxx, rotation θ , and the Lagrangian
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Figure 5. Example from Section 5.3.1. Rigid rotation of quartz

slab with constant electric field. Stress and permittivity compo-

nents. Material properties used are given in Table 1.

coordinates (X ,Y,Z).

r = xî+ y ĵ+ zk̂

= X(1+ εxx)Î +(Y cos(θ)−Z sin(θ))Ĵ+(Y sin(θ)+Z cos(θ))K̂.

In this case, the deformation gradient F and rotation operator R are similar but not identical; com-

ponents of F and R are:

[F] =





1+ εxx 0 0

0 cos(θ) −sin(θ)
0 sin(θ) cos(θ)





[R] =





1 0 0

0 cos(θ) −sin(θ)
0 sin(θ) cos(θ)



 .

Proceeding along the same lines as the previous example, and following the procedures for update

state described in Section 5.2.2, components of the Cauchy stress, permittivity, and mechanical

polarization can be evaluated exactly. These values are given below.
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Cauchy Stress Components After evaluating the Green-Lagrange strain tensor components

and the electric field with respect to the reference configuration, the 2nd Piola Kirchhoff stress

components are evaluated and subsequently pushed to give the Cauchy stress components.

σxx(θ) =
1

2
C11εxx(1+ εxx)(2+ εxx)

σxy(θ) = Ey[−e11 cos(θ)+ e14 sin(θ)]

σxz(θ) = Ey[−e14 cos(θ)+ e11 sin(θ)]

σyy(θ) =
εxx(2+ εxx)[C12 +C13 +(C12−C13)cos(2θ)−2C14 sin(2θ)]

4(1+ εxx)

σyz(θ) =
εxx(2+ εxx)[2C14 cos(2θ)+(C12−C13)sin(2θ)]

4(1+ εxx)

σzz(θ) =
εxx(2+ εxx)[C12 +C13 +(−C12 +C13)cos(2θ)+2C14 sin(2θ)]

4(1+ εxx)

Permittivity Tensor Components Nonzero elements of the permittivity tensor with respect to

the current coordinates are given.

Kxx(θ) = (1+ εxx)k11

Kyy(θ) =
k11 cos2(θ)+ k33 sin2(θ)

(1+ εxx)

Kyz(θ) =
(k11− k33)sin(2θ)

2(1+ εxx)

Kzz(θ) =
k33 cos2(θ)+ k11 sin2(θ)

(1+ εxx)

Mechanical polarization The uniaxial extension creates a constant mechanical polarization

vector with only one non-zero component: Px. In this case, the spatial and material representations

are equivalent.

Px(θ) =
1

2
e11εxx(2+ εxx)
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Plots of the Cauchy stress components and permittivity tensor components are given in Figures 6

and 7. Results computed using ALEGRA-EMMA closely track the analytical values developed

above.

Figure 6. Example from Section 5.3.2. Uniaxial extension with

constant electric field followed by rigid rotation. Cauchy stress.

Material properties used are given in Table 1.

6 Summary

This report developed and documented nonlinear kinematics and material property transformations

necessary for a consistent implementation of piezoelectric models in ALEGRA-EMMA. Important

kinematics were established using Gauss’s law and Faraday’s law. Using these results, kinemat-

ically consistent constitutive model evaluations were developed and two examples demonstrating

the kinematics were given. Required material property transformations were also developed and

documented; one example was given.
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Figure 7. Example from Section 5.3.2. Uniaxial extension with

constant electric field followed by rigid rotation. Permittivity ten-

sor components with respect to current coordinates. Material prop-

erties used are given in Table 1.
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