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What is the DSF?

For Isotropic-Ordinary Materials

It MIGHT be a Practical Solution to the Following Problem

The following related aspects contribute to the above mismatch.

Geometric surface effects

Nonlocal model (dilatation on surface) and model properties

Discretization error

This talk is about working towards a simple/practical solution.
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Mesh Refinement Study

Horizon is tied to mesh element size h: δ = 3h



Review of Isotropic-Ordinary Materials

Scalar Force State t = 3Kθ
m

ω |ξ |+αωed

Substituting the above relations

t =

(

3K

m
−

α

3

)

θω |ξ |+αωe

If we use α = 15µ
m

(trouble starts here)

t =

(

9K −15µ

3m

)

θω |ξ |+αωe

We need a ’discretization’ appropriate and ’geometric’ appropriate α



infinitesimal shear deformation

St. Venant-Kirchhoff Material

Displacements

u = γ y

v = γ x

w = 0

Deformation Gradient F

[F] =





1 γ 0

γ 1 0

0 0 1





Green Lagrange-Strain E

2[E] = [F]t[F]− I

=





γ2 2γ 0

2γ γ2 0

0 0 0





Strain energy density WL = 1
2 λ [tr(E)]2+µE : E = 1

2 λγ4 +2µγ2



infinitesimal shear deformation

Ordinary Isotropic Peridynamic Material

On a sphere

Deformation State Y

Y(γ) =
√

z2 +(y+ γ x)2 +(x+ γ y)2

Linearize deformation state

Y(γ)≈ ...+O(γ2)

Form extension state e=Y −|ξ |

e = γ |ξ |sin2(θ )sin(2φ)

Verify dilatation is zero

3

m
|ξ | •e = 0

Weighted volume on a sphere

m =
4πδ 5

5

Energy density W = 1
2
αed • ed = 2α mγ2

15



Elastic energy density for infinitesimal shear deformation

Review Stewart’s Approach

Equating nonlocal W with local WL

On a sphere

W = 1
2
αed • ed = 2α mγ2

15
WL ≈ µγ2

WL = W =⇒ α = 15µ
m

Observations

WL is independent of position, i.e., constant

W depends upon neighorhood through integral.



Elastic energy density

Consider simple shear: u = γ̃ y; v = 0; w = 0; γ = γ̃
2
; WL = 1

2
µγ̃2

µ = 6.923×1011; K = 1.5×1012; γ̃ = 1.0×10−6; WL ≈ .34615



Motivated by Stewart’s Approach

Create a Surface Correction Factor: DSF

Reconsider elastic energy density for shear at a point

W =
1

2
α̃ ||ed||2h = WL = 2µγ2

Divide both sides by ||ed||2 = 4mγ2

15
, where m = 4πδ 5

5

α̃ =
||ed||2

||ed||2h

15µ

m

=
4m

15

γ2

||ed||2h

15µ

m

= DSF×α



Reconsider Simple Shear Example Using DSF

Consider simple shear: u = γ̃ y; v = 0; w = 0; γ = γ̃
2
; WL = 1

2
µγ̃2

µ = 6.923×1011; K = 1.5×1012; γ̃ = 1.0×10−6; WL ≈ .34615

α =
15µ

m
; α̃ = DSF×α



Mesh Refinement Study w/DSF

Horizon is tied to mesh element size h: δ = 3h



Algorithm for computing the DSF

For all points XP in the neighborhood of X

Apply pure shear deformation
double dx = XP[0]-X[0];

double dy = XP[1]-X[1];

double dz = XP[2]-X[2];

double zx(0.0), xy(0.0), yz(0.0);

double xz(0.0), yx(0.0), zy(0.0);

switch(mode){

case ZX:

zx = gamma * dx;

xz = gamma * dz;

break;

case XY:

xy = gamma * dy;

yx = gamma * dx;

break;

case YZ:

yz = gamma * dz;

zy = gamma * dy;

break;

}

YP[0] = XP[0] + xy + xz;

YP[1] = XP[1] + yz + yx;

YP[2] = XP[2] + zx + zy;

Compute DSF

double scf, max_dsf, DSF;

int mode = XY;

Y[0] = X[0]; Y[1] = X[1]; Y[2] = X[2];

apply_pure_shear(X,Y,XP,YP,mode,gamma);

scf=ed_squared(neigh[X],X,Y,mode);

max_dsf=scf;

mode = ZX;

Y[0] = X[0]; Y[1] = X[1]; Y[2] = X[2];

apply_pure_shear(X,Y,XP,YP,mode,gamma);

scf=ed_squared(neigh[X],X,Y,mode);

if(scf>max_dsf) max_dsf=scf;

mode = YZ;

Y[0] = X[0]; Y[1] = X[1]; Y[2] = X[2];

apply_pure_shear(X,Y,XP,YP,mode,gamma);

scf=ed_squared(neigh[X],X,Y,mode);

if(scf>max_dsf) max_dsf=scf;

scf=max_dsf;

DSF = 4.0 * gamma * gamma * m / scf /15.0;

Computation on right uses max



Mesh Refinement Study w/DSF

Horizon is tied to mesh element size h: δ = 3h



Mesh Refinement Study w/DSF

Horizon is tied to mesh element size h: δ = 3h



Mesh Refinement Study w/DSF

Horizon is tied to mesh element size h: δ = 3h



infinitesimal dilatation

St. Venant-Kirchhoff Material

Displacements

u = ∆x

v = ∆y

w = ∆z

Deformation Gradient F

[F] =





1+∆ 0 0

0 1+∆ 0

0 0 1+∆





Green Lagrange-Strain E

2[E] = [F]t[F]− I

=





∆2 +2∆ 0 0

0 ∆2 +2∆ 0

0 0 ∆2 +2∆





Infinitesimal assumption: retain only ∆2 terms

Strain energy density WL = 1
2
λ [tr(E)]2 +µE : E = 1

2
(9λ +6µ)∆2



Closing Remarks and Summary

Expectation for isotropic ordinary materials

Recover Youngs Modulus on a relatively coarse mesh

Using an energy based approach

Developed shear modulus correction that shows promise

Speculate that practical/ideal ’DSF’ exists

Question: Is the ideal ’DSF’ anisotropic at the surface?

Identified issue

Nonzero dilatation on surface under conditions of pure shear

Surface effect diminishes with mesh refinement

Convergence is slow but apparent

On tensile test, rate of convergence is inadequate
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