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Why Sensitivity Analysis?

Sensitivity Analysis:  Rank variables according to y y g
importance relative to uncertainty in model output 

• Determine variables important for optimization or UQ, 
which to gather more data on or control in an experimentwhich to gather more data on or control in an experiment, 
or for guiding anisotropic methods

• Local, linear, or under-resolved can mislead
• Global: typically computationally expensive
• Useful for V&V to check system performance and 
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Key Talk Concepts
(not in outline order)(not in outline order)

• Motivation for global sensitivity methods on• Motivation for global sensitivity methods on 
simulations; non-intrusive/black-box approaches

Example global designs
• Latin Hypercube sampling; 

Example analysis techniques
• Regression (linear/ yp p g;

replicates for variance-
based decomposition

• One at a Time sampling

g (
nonlinear), scatter plots

• Elementary effects• One-at-a-Time sampling
• Quadrature/cubature

• Elementary effects
• VBD/Sobol indices 

(directly or with surrogates)

• Current work extending global and nonlinear approaches to 
leverage adjoint information when availableleverage adjoint information when available



Local Sensitivity Analysis

• Calculate sensitivity at one (or a few) locations in inputCalculate sensitivity at one (or a few) locations in input 
parameter space; typically at nominal values

• Deterministic: based on local derivative(s) (possibly via AD 
or adjoints); or data fit Taylor series with number of points 
commensurate with # d.o.f. in truncated series

• Probabilistic: for example mean-value analysis with• Probabilistic: for example mean-value analysis with 
importance factors; assume distributions on input 
parameters (uniform, normal, etc.) and use derivatives:
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Mildly Nonlinear:
“Ishigami” Algebraic Test FunctionIshigami  Algebraic Test Function
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Storlie, et al., 
2009• Even for simple function, local analysis 

insufficient for sensitivity analysisinsufficient for sensitivity analysis

• Scatterplots of 300 Monte Carlo 
samples show trend w.r.t each variable



Global Exploration Techniques

• GOAL: assess inputs over hypercube of interesty
• Orthogonal arrays (incl. grid), Box-Behnken, CCD
• Monte Carlo, Latin hypercube sampling, 

low discrepancy: Quasi MC CVTlow discrepancy: Quasi-MC, CVT
• One-at-a-Time Designs
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2-D LHS of size 5 for x1 
(normal)  and x2 (uniform)

25 QMC (Halton) points



Ishigami: Analysis of LHS
(misleading correlations)

• Partial (Pearson) correlations: strength/direction of linear 
d f li ff d h d

(misleading correlations)

 
correlation

trend after linear effects due to other parameters removed 
from x and y

• Partial (Spearman) rank correlations: same, but on ranks of 
data instead of numerical values; good for monotonic over
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data instead of numerical values; good for monotonic over 
scales, but not nonlinear relationships

30 samples 300 samples  ,cov , jii ryrx
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partial correlation

corr rank corr corr rank corr
x1 0.51 0.54 0.42 0.41
x2 -0.06 -0.03 -0.01 -0.01
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x3 0.08 0.05 -0.06 -0.05



Versatility of LHS Designs

• Can perform linear, nonlinear (higher-order), or non-( g )
parametric statistical analysis of LHS (or other space-filling) 
samples

• For example, construct regression models or global 
surrogates, from which statistics can be computed

• Comparison of global and local linear (adjoint-based) 
methods for SA / UQ of SFR neutronics using DAKOTA and et ods o S / UQ o S eut o cs us g O a d
ERANOS:
C. Rabiti, G. Palmiotti, M. Assawaroongruengchot, and Adams, B.M.,
Comparison of uncertainty quantification methods for fast reactor 
neutronics, PHYSOR2010, Pittsburgh, PA, May 9—14, 2010



One-at-a-Time/Elementary
Effects (Morris Saltelli)

• Make large perturbations; calculate 
diff ( l t ff t d )

Effects (Morris, Saltelli)
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• Compute statistics on these differences to 
summarize how each variables affects y:
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• With k variables and r replicates, need not do 
2*k*r samples; reuse to get same results in 

Δ

Δx1
Δx3

(k+1)*r evaluations
• Can be very effective for screening large 

numbers of parameters w/nonlinear models

Δx2

numbers of parameters w/nonlinear models



Morris OAT for Ishigami

32 samples 300 samples
mod mean std dev mod mean std devmod mean std dev mod mean std dev

x1 13.95 0.00 11.95 4.61
x2 7.88 8.15 7.88 7.93
x3 0.00 0.00 2.17 4.76

• Identifies parameters contributing to overall variation across 
parameter space (μ*) and those with different effect in different 
areas in parameter space (σ, measure of interactions/nonlinearity) 
• Can gain some insight even with few samples

32 samples 300 samples32 samples 300 samples



Morris Example

Increasing variability 
in elementary effects 

due to factor βii

Good screening of 
20 parameters with 

Increasing magnitude 
of elementary effects 

due to factor βi

p
84 samples



Variance-Based Decomposition

• Identify fraction of output variance that can be attributed to y
an individual variable alone, or with interaction effects

• Sensitivity indices (Sobol); popularized by Saltelli, et al.

main effect (xj alone); [0,1] total effect (with interactions)
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(k-dimensional integrals)

• Benefit: sensitivity indices are model-free (not regression-
based), global, and capture interactions

• Costly!  Calculation typically sampling-based requiring 
(k+2)*N points (k variables, N samples per replicate)

• Can accelerate with surrogates or PCE/SC• Can accelerate with surrogates or PCE/SC



Alternative: Meta-models 
(Response Surfaces)(Response Surfaces)

• Create two sample matrices (2N samples); build a meta-model, ( )
e.g., regression, spline, neural network, Kriging; 
feasible for moderately high dimension

• Calculate the remaining k matrices using the meta-model and• Calculate the remaining k matrices using the meta-model and 
compute VBD indices

• Further use of meta-models: repeat the process to obtain 
bootstrap estimates of the indices, generate confidence 
intervals on the indices (measure of convergence)te a s o t e d ces ( easu e o co e ge ce)

• Exploration of  various nonparametric regression models and 
Gaussian process models:Gaussian process models: 
Implementation and Evaluation of Nonparametric Regression Procedures for 
Sensitivity Analysis of Computationally Demanding Models. C.B. Storlie, L.P. 
Swiler, J.C. Helton, and C.J. Sallaberry. Reliability Engineering and SystemSwiler,  J.C. Helton, and C.J. Sallaberry.   Reliability Engineering and System 
Safety Vol. 94, pp. 1735–1763, 2009. 



Alternative: Stochastic Expansions

• Create polynomial approximation to response function
P l i l h i (PCE) k b i t• Polynomial chaos expansions (PCE): known basis, compute 
coefficients

• (Lagrange) Stochastic collocation (SC): known coefficients, 
f i t l tform interpolant

• Form basis, then sample, calculate moments, probabilities, etc.
• Tailoring  fine-grained algorithmic control:

– Synchronize PCE form with numerical integration
– Optimal basis & Gauss pts/wts for arbitrary input PDFs

A i t i h h i k di i– Anisotropic approaches: emphasize key dimensions 
• h/p-adaptive collocation (FY10-12)



Stochastic Expansions:
Analytic Sensitivity IndicesAnalytic Sensitivity Indices

• Stochastic expansion methods produce functional• Stochastic expansion methods produce functional 
representations of stochastic variability (e.g. polynomial chaos 
expansion or stochastic collocation)

• Sudret 2008: sensitivity indices are analytic functions of the PCE
• Tang, et al., 2009: sensitivity indices as analytic functions of SC; 

implementation in DAKOTAimplementation in DAKOTA

• Efficient: calculation of input sensitivities does not require 
dditi l f ti l ti b d th d d tadditional function evaluations beyond those needed to 

construct the stochastic expansion



VBD with Sampling,
Surrogate-based Sampling PCESurrogate-based Sampling, PCE

Analytic values of Ti: 0.55, 0.45, 0.24

Surrogate with VBD
30 samples 300 samples

Si Ti Si Ti

LHS-based VBD
30*5 = 150 samples 300*5 = 1500 samples

Si Ti Si Ti
x1 0.56 0.85 0.31 0.49
x2 0.02 -0.03 0.45 0.39
x3 0.06 0.37 0.01 0.17

x1 0.62 1.06 0.28 0.54
x2 0.25 0.17 0.47 0.51
x3 -0.04 0.17 0.03 0.27

still under resolved: need 1000s of samples

quadrature order 3: 27 evals quadrature order 7: 343 evals
Si Ti local Si Ti local

still under-resolved: need 1000s of samples

i i i i
x1 0.42 0.56 1.68 0.29 0.52 6.20
x2 0.44 0.44 0.00 0.48 0.48 0.00
x3 0.00 0.14 0.00 0.00 0.23 0.00

1 2 0 00 0 00x1,x2 0.00 0.00
x1,x3 0.14 0.23
x2,x3 0.00 0.00
x1 x2 x3 0 00 0 00x1,x2,x3 0.00 0.00

(also get local sensitivities analytically )



Key Points

• Typically care about global sensitivity though local• Typically care about global sensitivity, though local 
analysis may give a good approximation to it

• Global importance can be hard to assess
• Modest computational model evaluations can offer 

considerable insight
• With tailored surrogates can accelerate calculation• With tailored surrogates, can accelerate calculation



Near-term Plans for NE Problems

• Examples here on algebraic function; summer 2010: Cyrus g y
applying to coupled flux/burnup calculation
– R-Z neutronics flux solver coupled to
– Quasi-static point depletion code for coupled neutron/nuclide– Quasi-static point depletion code for coupled neutron/nuclide 

fields
– Tracking 45 isotopes for fast reactor simulation

C l b l th d t ESM– Compare global methods to ESM

• Future work (with Proctor, Abdel-Khalik, Eldred)Future work (with Proctor, Abdel Khalik, Eldred)
– Hybrid approaches: linear SA/UQ for flux with loose 

(“network”) coupling to nonlinear SA/UQ for depletion or T-H 
Scalability in dimension convergence detection use of– Scalability in dimension, convergence detection, use of 
derivatives

– Extend ESM to handle nonlinear phenomena; hybridize with 
global methods that sample in principal directionsglobal methods that sample in principal directions



Improve Scalability with
Derivative EnhancementDerivative Enhancement

PCE: linear regression with 
d i ti di t /H iderivatives; gradients/Hessians
add equations

SC: enhanced interpolants
• cubic Lagrange splines

(discretization h-adaptive)( p )
• Hermitian polynomials

EGRA: gradient-enhanced KrigingEGRA: gradient enhanced Kriging
interpolates function values and gradients



SA for Electrical Circuits

• CMOS7 ViArray: generic ASIC implementation platform; 
li ti i NW t llit d & t lapplications in NW, satellite, command & control

• Modeling and simulation used in design phase to assess 
predicted performance during photocurrent event, 
i l di iti it / i bilit f l ltincluding sensitivity/variability of supply voltage

• DAKOTA coupled to Xyce circuit simulator to determine 
which process layers contributed most to device 

f (1000 f 2 0 4 )performance (1000s of simulation runs, each 2.0h to 4.5h)

node max node avg
Vdd Metrics

METAL1 0.96 0.82
METAL2 0.11 0.04
METAL3 0.10 0.05
METAL4 0.80 0.81
METAL5 0 86 0 91

overall 
variability

METAL5 0.86 0.91
VIA1 0.71 0.66
VIA2 0.80 0.76
VIA3 0.57 0.60
VIA4 0 91 0 94VIA4 0.91 0.94
CONTACT 0.21 0.13
polyc 0.04 0.05 correlations



Thank you for your attention!

briadam@sandia.gov

publicly available implementations of these and 
more algorithms:more algorithms:

http://www.cs.sandia.gov/dakota



Abstract: Global Sensitivity Analysis

Global sensitivity methods assess the sensitivity of a computational 
model to inputs considered over their full parametric range.  Global 
approaches are essential when dealing with nonlinear models, where 
linear/local methods could be misleading.  They are typically used for 
parameter screening to determine factors for which to gather 
supplementary data, variables most important for optimization, 
calibration, or uncertainty quantification, or dimensions crucial to refine 
with adaptive methods.  This talk will address both sample design and 
t ti ti l l i f l b l iti it l i d i fstatistical analysis concerns for global sensitivity analysis, drawing from 

examples such as Latin hypercube sampling with linear and nonlinear 
regression, Morris screening designs and analysis, and stochastic 

i th d ith S b l i diexpansion methods with Sobol indices.


