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Advanced algorithms enable robust, efficient uncertainty
quantification for validating models with experimental
data and making credible predictions.

* Uncertainty quantification for credible simulation
- UQ algorithms research in DAKOTA

— Aleatory UQ methods: beyond Monte Carlo

— Challenges in epistemic UQ methods

« Sandia’s QASPR program:
computational model-based system qualification

Slide credits: Mike Eldred, Laura Swiler, Barron Bichon, Joe Castro,
Genetha Gray, Bill Oberkampf, Matt Kerschen, others
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nsight from Computational Simulation

Micro-electro-mechanical
systems (MEMS): quasi-
static nonlinear elasticity,
process modeling
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Earth penetrator: nonlinear
PDEs with contact, transient
analysis, material modeling
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Systems of systems
analysis: multi-scale,
multi-phenomenon

Speed in Knots
I 34 10 50 knots
[ 5010 65 knots
I &5 knots or greater
®  Oéfshore Platforms

Hurricane Katrina: weather,
logistics, economics,
human behavior

Sandia
National
Laboratories



UQ in Credible Simulation

Ultimate purpose (arguably): insight, prediction, and risk-informed
decision-making - need credibility for intended application

VALIDATION ACTIVITIES VERIFICATION ACTIVITIES
Validation experiments

Software quality assurance
Hierarchical experiments IMULATION CREDIBIL Static testing

Validation simulations ondeterministic Results Dynamic testing

Validation metrics Traditional analytical solutions
Spatial discretization error Manufactured solutions

Temporal discretization \ Order of accuracy assessment

UNCERTAINTY QUANTIFICATION

Parametric uncertamty Nomlm environments
Model form nnce:tamty Abnormal environments
Hostile environments
v ationa
Bill Oberkampf
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Uncertainties to Quantify

A partial list of uncertainties affecting computational model results

 typical parametric uncertainty, incl. random fields/processes

— physics/science parameters
(e.g., cross sections, reaction rates; seismic spectra)

— statistical variation, inherent randomness

— operating environment, interference
(e.g., debris, corrosion, oxidation, and erosion)

— initial, boundary conditions; forcing
— geometry / structure / connectivity (e.g., fuel rod packing)
— material properties
— manufacturing quality
model form / accuracy (e.g., equation of state)

program: requirements, technical readiness levels
(also economics, regulations, schedules)

human reliability, subjective judgment, linguistic imprecision

numerical accuracy: mesh, solver, approximation error
experimental error: measurement error, bias
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Uncertainty Quantification

A single optimal design or nominal performance prediction is
often insufficient for

— decision making / trade-off assessment

— quantification of margins and uncertainties (QMU):
How close are my uncertainty-aware code predictions to required
performance expectations or limits?

— validation with experimental data ensembles

* Need to make risk-informed decisions, based on an assessment
of uncertainty

Final Temperature Values

Temeprature [deg C] Sandia
@ National
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* Categories of Uncertainty

Often useful algorithmic distinctions, but not always a clear division

» Aleatory (think probability density function)
— Inherent variability (e.g., in a population)
— Irreducible uncertainty — can’t reduce it by further knowledge

» Epistemic (think bounded intervals)
— Subjective uncertainty
— Related to what we don’t know

— Reducible: If you had more data or more information, you
could make your uncertainty estimation more precise

* In practice, people try to transform or translate
uncertainties to the aleatory type and perform sampling

and/or parametric analysis
@ Sandia
National
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} Uncertainty Quantification

Forward propagation: quantify the effect that uncertain
(nondeterministic) input variables have on model output

4 _ )

I:pu_t Varlablets u T utationaﬂ Variable
(physics parameters, P Performance
geometry, initial and Model ) M f
boundary conditions) easures f(u)

(possibly given distributions)
Potential Goals:

/‘

* based on uncertain inputs, determine N samples\ _Output
variance of outputs and probabilities — Distributions
of failure (reliability metrics) ﬁ — —

u, —

* identify parameter correlations/local — —sure 1
sensitivities, robust optima A\ = >-< meas_ure

- identify inputs whose variances . _ —
contribute most to output variance /N = measure 2
(global sensitivity analysis) u, _J \_

« quantify uncertainty when using Typical method: Monte Carlo Sampling

National
Laboratories

calibrated model to predict @ Sandia
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}I Uncertainty Quantification Example

- Device subject to heating (experiment or S g atany
computational simulation) A L_ 17
* Uncertainty in composition/ S ;M

* Response temperature f(u)=T(u,, ...,

environment (thermal conductivity,
density, boundary), parameterized by
U, ...,

Uy

calculated by heat transfer code

uy)

% in Bin
o — N w N (@)

Final Temperature Values

30

36

42

48

54 60 66 72 78 84

Temeprature [deg C]

gm

Given distributions of u,,..
UQ methods calculate
statistical info on outputs:
* Probability distribution of
temperatures

 Correlations (trends) and
sensitivity of temperature

* Mean(T), Sthev(T)
Probability(T2 T_...)
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UQ: Sampling Methods

Given distributions of u,,...,u,, UQ
methods...

N samples\ 4 Output

| Distributions

u, ...calculate statistical info
N >-< measure 1 on outputs T(u,,...,u,)

Uy =
/\ % me;,e 2 Final Temperature Values
u3 -/ \ 5 1
4 =-.
* Monte Carlo sampling 5 9]
* 2
* Quasi-Monte Carlo 1
» Centroidal Voroni Tessalation (CVT) o - cenratTLALMEIA
30 36 42 48 54 60 66 |72 78 84
- Latin Hypercube sampling Temeprature [deg C]
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}- Latin Hypercube Sampling (LHS)

» Specialized Monte Carlo (MC) sampling technique:
workhorse method in DAKOTA / at Sandia

 Stratified random sampling among equal probability bins for
all 1-D projections of an n-dimensional set of samples.

 McKay and Conover (early), restricted pairing by Iman
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0.8 @

L
0.6 —0 A B C D 0

A Two-Dimensional Representation of One
Possible LHS of size 5 Utilizing X1 (normal)
and X2 (uniform)

0.4

0.2

0

Intervals_OOUsed with a LHS of S?ze n=5in _
Terms of the pdf and CDF for a Normal @ S
Random Variable Laboratories
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} Calculating Probability of Failure

» Given uncertainty in materials, geomeftry, and
environment, determine likelihood of failure

Probability(T 2 T_,..)

Final Temperature

Values

A O

[ ]
% in Bin
o - N w

30 36 42 48 54 60 66

Temeprature [deg C]

72 78 84

» Could perform 10,000
Monte Carlo samples and

count how many exceed the
threshold...

* Or directly determine input
variables which give rise to
failure behaviors by solving
an optimization problem.

By combining optimization, uncertainty analysis methods, and surrogate
(meta-) modeling in a single framework, DAKOTA enables more efficient UQ.
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DAKOTA Motivation

Goal: perform iterative analysis on (potentially
massively parallel) simulations to answer
fundamental engineering questions:

 What is the best performing design?
 How safe/reliable/robust is it?
 How much confidence do | have in my answer?

4 DAKOTA h
optimization, sensitivity analysis,

parameters
(design, UC,
state)

>

0.1

Nominal

Safety Margin

0.575 1.05

parameter estimation,
\_uncertainty quantification

("Computational Model (simulation)
 Black box: any code: mechanics, circuits,
high energy physics, biology, chemistry

~

« Semi-intrusive: Matlab, ModelCenter, Python

\_ SIERRA multi-physics, SALINAS, Xyce

J

&)

Optimized

response
metrics
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DAKOTA C++/00 Framework Goals

» Unified software infrastructure: reuse tools and common interfaces; integrate
commercial, open-source, and research algorithms

« Enable algorithm R&D, e.g., for non-smooth/discontinuous/multimodal
responses, probabilistic analysis and design, mixed variables, unreliable
gradients, costly simulation failures

» Facilitate scalable parallelism: ASCI-scale applications and architectures;
4 nested levels of parallelism possible

* Impact: tool for DOE labs and external partners; broad application deployment;
free via GNU GPL (>3000 download registrations)

Iterator

A

ParanLStudy !ﬁ
[DoE LeastSa
[poACE—t NCssol——on =

algorithms

Optimizer NL2SOL
A

hierarch Sandia
[DOT| [CONMIN| [NPSOL| INLPQL||OPT++ [COL.INY| DEGA| [EGO||DIRECT]| [TMF| @ {\Lagj;g?tlmes



DARCTA

Flexibility with Models & Strategies

DAKOTA models map inputs to response metrics of interest:

*
*

ﬁariableslparameteg

* design: continuous,
discrete

* uncertain: (log)normal,
(log)uniform, interval,
triangular, histogram,
beta/gamma, EV |, II, llI

« state: continuous,

IIIIIIIIII..

“IIIIIIIII

“IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII..

user application
(simulation)

system, fork, direct, grid

*

: optional approximation (surrogate)

- global (polynomial 1/2/3, neural net,
kriging, MARS, RBF)

* local (Taylor); multipoint (TANA/3)

discrete / .+ hierarchical, multi-fidelity

DAKOTA strateqgies enable

flexible combination of multiple

models and algorithms.
* nested
* layered
» cascaded
e concurrent
 adaptive / interactive

Optimization

*
sssssEnnnn®

/ responses \

» functions: objectives,
constraints, LSQ
residuals, generic

« gradients: numerical,
analytic

* Hessians: numerical,

L4
*

27 PS4
Sy EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEERS

Strategy

analytic, quasi /

\

[Uncertainty

OptUnderUnc

| Surrogate Based

UncOfOptima

| 2¢ Order Probability |

| Pareto/Multi-Start

|Branch&Bound/PICO|
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% Alternatives to Sampling

LHS sampling is robust, trusted, ubiquitous, but advanced
methods may offer advantages:

» for a modest number of random variables, polynomial
chaos expansions may converge considerably faster to
statistics of interest

« if principal concern is with failure modes (tail probabilities),
consider global reliability methods

Sandia
National
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Generalized Polynomial Chaos Expansions

Approximate response stochasticity with Galerkin projection using
multivariate orthogonal polynomial basis functions defined over standard

random variables Wo(€) = val€r) wol&s) = 1
Ui(g) = (&) vol&) = &
Wa(g) = wo(&1) vi(&e) = &
U3(8) = va(&) vo(l) = &§-1
Wa(§) = (&) vi(&e) = &é
R(¢) = f(u) Us() = (&) vall) = & -1

* Intrusive

* Nonintrusive: estimate response coefficients using sampling (expectation),
quadrature/cubature (num integration), point collocation (regression)

Wiener-Askey Generalized PCE with adaptivity
« Tailor basis: optimal basis selection leads to exponential convergence rates

Distribution  Density function Polynomial Weight function  Support range
Normal \/IF‘T Hermite He,, (x) e [—00, ]
Uniform 1 Legendre P, (x) 1 —1,1]

Beta = G- f'}"(fil }'l".'.);r]) Jacobi P*?(2) (1 —2)*(14a)? —1,1]

Exponential e~ Laguerre L, (z) e " [0, ]

Gamma r‘(TJ:U Generalized Laguerre Ly (z) rte " [0, 5]

* Tailor expansion order/integration order: adaptivity based on PC error estimates

— Isotropic/anisotropic tensor-product quadrature & @ Sandia

. National
sparse grid Smolyak cubature Laboratories



PCE: Fast Convergence

Residual in 1PCE CDF for Lognormal Ratio, increasing simulations
10 . . o
Hermite basis, lognormal distributions
—<— quad order = exp order + 1, 10* samples on PCE

—— quad order = exp order + 1, 10° samples on PCE
—t—quad order = exp order + 1, 10° samples on PCE

10

CDF Residual

Simulations

10

—<— pt colloc ratio = 2, 10% samples on PCE
— pt colloc ratio = 2, 10° samples on PCE
—+— pt colloc ratio = 2, 10° samples on PCE

—— exp samples, exp order = 10, 10* samples on PCE
exp samples, exp order = 10, 10° samples on PCE
— 1 exp samples, exp order = 10, 10° samples on PCE

CDF for Rosenbrock Problem, expansion order = 4, varying distribution/basis

1

0.9F

0.8r

Cumulative Probability
© ©o o o o
(7] = o [o3] -~

2
)

[a=]

(=]

200 400 600 800 1000
Response Value

MNormal: Hermite chaos
Normal: 10% LHS

Uniform: Legendre chaos
Uniform: 10% LHS
Exponential: Laguerre chaos
Exponential: 10* LHS

Beta: Jacobi chaos

Beta: 10* LHS

Gamma: gen Laguerre chaos
Gamma: 104 LHS

mixed. Askey chaos

mixed: 10* LHS
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| Analytic Reliability: MPP Search

Perform optimization in uncertain variable space to determine Most
Probable Point (of response or failure occurring) for G(u) = T(u).

Reliability Index Approach (RIA)

minimize ulnu

subject to G(u) =2

—=
T

=]
w
T

A Region of u

values where 8l T ¢
/ Tz Tcritical map cr.iti.cal 04
7 probability

(=]
[==]

(=]
-

=]
(=]
T

=
tn

T ‘ T

Cumulative Probability
o
P

O MY

O x-/u-space AMY

O x-fu-space AMV+ & FORM

+ 100k Latin hypercube samples

=]
%]
T

=]
%]
T

01

Response Value
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Reliability: Algorithmic Variations

Many variations possible to improve efficiency, including in DAKOTA...

- Limit state linearizations: use a local surrogate for the limit state G(u) during
optimization in u-space (or x-space):

u-space AMV: G(u) = G(pu) + VuG(pu) (u = pu)
u-space AMV+: G(u) = G(u*) + V,G(u*)L'(u — u*)
u-space AMV2+:  G(u) = G(u*) + Vu,G(u*)T(u — u*) + %(u —u")IVv2G(u*)(u — u*)

(could use analytic, finite difference, or quasi-Newton (BFGS, SR1) Hessians in
approximation/optimization — results here mostly use SR1 quasi-Hessians.)

» Integrations (in u-space to determine probabilities): may need higher order
for nonlinear limit states

p(g E‘: z} = q’{_-ﬂcdf}
, 2nd-order: { p=@(-p3) || ——=—=
p(g > z} = (E{_l{ff.'i.‘df} ! ( o E Y 1 + ,-"j,f‘[-?'

curvature correction

n—1 1

1st-order: {

* MPP search algorithm: Sequential Quadratic Prog. (SQP) vs. Nonlinear Interior Point (NIP)

« Warm starting (for linearizations, initial iterate for MPP searches): speeds
convergence when increments made in: approximation, statistics requested, design

variables ST
@ National
Laboratories
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}I Efficient Global Reliability Analysis

« EGRA (B.J. Bichon) performs reliability analysis with EGO (Gaussian
Process surrogate and NCSU DIRECT optimizer) coupled with Multimodal
adaptive importance sampling for probability calculation.

e Created to address nonlinear and/or multi-modal limit states in MPP

searches.
12
10 GP surrogate
- e Rt :
61
4
] True fn
21
0 :
0 2 4 ) a 1 12
121 0.06

Expected
Improvement

70.05

-10.04
-10.03
-10.02
—10.01

0 2 4 6 8 10 12
From Jones, Schonlau, Welch, 1998
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Efficient Global Reliability Analysis

« EGRA (B.J. Bichon) performs reliability analysis with EGO (Gaussian
Process surrogate and NCSU DIRECT optimizer) coupled with Multimodal
adaptive importance sampling for probability calculation.

e Created to address nonlinear and/or multi-modal limit states in MPP
searches.

Gaussian process model of reliability limit state with
10 samples 28 s/a_Qples

/) .

Ve exploit

y explore

_ Sandia
] National
: Laboratories
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‘ Challenge: Epistemic UQ

« Epistemic uncertainty: insufficient information to specify a
probability distribution

» Subjective, reducible, or lack-of-knowledge uncertainty
(given more resources to gather information, could reduce the uncertainty)

* For example:

— “l expect this parameter to have a lognormal distribution, but only
know bounds on its mean and standard deviation,” or

— Dempster-Shafer belief structures: “basic probability assignment” for
each interval where the uncertain variable may exist;
contiguous, overlapping, or gapped

BPA=0.2 !
Variable 1

BPA=0.5 | BPA=0.3| BPA=0.2

Variable 2

Sandia
National
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‘ Propagating Epistemic UQ banor)

Total Normalized Releases: Replicate R1

Second-order probability oo 100 Cienatons, 10000 PubrealOiovaios
— Two levels: distributions/intervals on ol e 1
distribution parameters = ]
New _ Quter level can be epistemic (e.g., interval) %wzé.r i ]
— Inner level can be aleatory (probability distrs) fz;m L_ﬂ,.
— Strong regulatory history (NRC, WIPP). Tl ;
; Frame 2a |

105 - d ek itunssssal

105 104 10 02 10t 100 10 102
Normalized Release (EPA units), R

Dempster-Shafer theory of evidence

10° p—

— Basic probability assignment (interval-based) ? H\LLL = e
— Solve opt. problems (currently sampling-based) % 0k oloy)
New  to compute belief/plausibility for output intervals ““ Beley)—>{  PGY)
D.IEI l].l1 l]l.2 I]I.S ﬂl.4 ﬂI.E l]l.ﬁ l]l.? I]I.B DI.Q 1I.1‘.'.I DB- ]
Source 1 oy 2T ’_Em.a:_ _:
Source 2 | 10% : T0% : 20% e g 3
33% , . 33% I
Source 3 | & | 10_;.6 ‘ 0?8 I 1?0 I 1?2 I 1?4 I 16 1.8 I 2.0 I 2.2



DAKOTA UQ Algorithms Summary
Goal: bridge robustness/efficiency gap

LHS/MC, IS/AIS/IMMALIS, Bootstrap, Gunzburger
QMC/CVT Incremental LHS Jackknife

1st/2nd-order local: Global: EGRA Renaud,
MVFOSM/SOSM, Mahadevan
x/u AMV/AMV?/

AMV+/AMV?2+, x/u
TANA, FORM/SORM

Wiener-Askey SC: Adaptivity, Ghanem
gPC: sampling, cubature Wiener-Haar
quad/cubature, gPC/SC:

pt collocation arbitrary

SC: quadrature input PDFs

Dimension Youn

reduction
Second-order Dempster-Shafer Bayesian, Higdon,
probability evidence theory Imprecise Williams,
probability Ferson
Importance factors, | Main effects, Stepwise Storlie
Partial correlations | Variance-based regression

decomposition




~ ' Neutron Radiation Exposure
" | Degrades Electronics

neutrons create damage

Emitter
(n-type)
Base
(p-type)
Collector 7= Ociusuiongmemmes..
(n-type)
damage degrades gain
HH . = . 4.0 [T AR ——
- Military requirement: certify to hostile ez ]| Prerad
I 35 et 8= i
environment By @ i
3.0 X
Q i
c 23 =
8 A
2.0 i
15 L L
0.0004 0.001 0.01 0.1 1

Seconds after peak neutron pulse
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: ' Neutron Radiation Exposure
— Degrades Electronics

neutrons create damage

Emitter
(n-type)
Base
. -type
passifail PP A GARN|
testing Collector [T RememwinRgsmm..
(n-type)
damage degrades gain
=y = . - 4.0 [T £
 Military requirement: certify to hostile JlerEsa || Prerad [l
environment 38 Tl]e-oma By = @ [ TH
. . o 3.0 -
- SPR dismantled end of FY06 to improve e -
security posture 3 ) Ps
15 oLHE -
0.0004 0.001 0.01 0.1 1

Seconds after peak neutron pulse
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- . ' Neutron Radiation Exposure
e ‘ Degrades Electronics

neutrons create damage

Emitter
(n-type)
QASPR ..
. -type epan i e
QUALIFICATION ALTERNATIVES TO SPR quantlfled (p-type) R MR ' i
(n-type)
damage degrades gain
HH = . - 4.0 [T TTII S ——
* Military requirement: certify to hostile L. || Prerad ||l
environment 38 (1M = 60—1/5?
. . o 3.0 -
* SPR dismantled end of FY06 to improve e . -
security posture 3 2'0 Ps
QASPR (Qualification Alternatives to Sandia Pulse Reactor) |-

1

methodology will certify qualification via modeling & ™
simulation with quantified uncertainty putron pulse

Sandia
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QASPR: Science-Based
Engineering Methodology For Qualification

Risk Informed
Decisions

Qualification
Evidence

4 uncertainty
quantification

PRRS select /
= experiments
C ‘

high performance,
multi-fidelity, predictive
computational modeling

k]

validation

in alternate
facilities

Ll )@[ce

g I||B I-:
Y,n — 100 ms ion — 100 ps
long pulse short pulse

Sandia
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tight external
coupling

| NuGET

neutron, ¥

SPR, WsME,
ACER

e Beam
Little Mountain

Ion Beam
SNL IBL

uQ

Methodology

i

Transient Gain
Results

DFT

Quest, Socorro

internal

DAKOTA Component
and System UQ

Data link
_—

Data +UQ link

—_—

physics link
T

* Developing formal V&V
plans

« Each computational code
subject to code and
solution verification

* UQ used to validate
device model response
against data ensembles

» Ultimately systems
(circuit) V&V for
qualification

Sandia
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Device Prototype:
UQ Extrapolation to SPR

Device Multiplier, M
A

e Calibrated to other
facilities, CHARON
fills SPR gap

Huea = 1.07 1

« Uncertainty & bias
characterized by 2
degrees of freedom

— facility multiplier
— device multiplier

Mmms = 1.0 7

() A  y
“I a ]
icrosemi !
1

Microsemi Bisr:8

it * Uncertainty
Facility Bias Model Development | quantified with D.O.E

| >

br-ac = 0. 88 pesr=1.0 + statistical approach
Facility Multiplier, F

End UQ Methodology Goal: Best Estimate ;
+ Uncertainty Prediction for SPR @ Niona

Laboratories
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Model Validation: Blind Prediction

Transient Device Damage Response

* FaerhIId response data All Experiments (grey), Mean (black), +/-2 Sigma (blue)

within SPR hidden :

< peak damage

* First prototype of the

QASPR methodology T IAVIAW
(and real validation of IN/AY
the QASPR system) s | HAY

* Prediction + Uncertainty
(+/-2c device and facility
uncertainty) 2

102 1073 107 107 100
Time in seconds

UQ algorithms have a critical role in
system validation @ Sandia

National
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}" Model Validation: Blind Prediction

Transient Device Damage Response
SPR 1326791 (black) and Simulation bounds (yellow)

 Fairchild response data
within SPR hidden ?

gl
+/- 1-2% vertical error on
experimental measurement

* First prototype of the |
QASPR methodology \
(and real validation of I
the QASPR system)

* Prediction + Uncertainty
(+/-2c device and facility 7|

uncertainty)
157 107 102 107 10°
Time in seconds
UQ algorithms have a critical role in
system validation @ SR,
Laboratories




V '
}" Model Validation: Blind Prediction

 Fairchild response data
within SPR hidden

* First prototype of the
QASPR methodology
(and real validation of
the QASPR system)

* Prediction + Uncertainty
(+/-2c device and facility
uncertainty)

Transient Device Damage Response

SPR 1326891l (black) and Simulation bounds (yellow)

+/- 1-2% vertical error on
experimental measurement | |

1073 104 101 10°
Time in seconds

UQ algorithms have a critical role in
system validation @ Sandia

National

Laboratories



 Fairchild response data
within SPR hidden

* First prototype of the
QASPR methodology oI
(and real validation of

the QASPR system) ;;5_

* Prediction + Uncertainty |
(+/-2c device and facility

uncertainty)

V '
}" Model Validation: Blind Prediction

Transient Device Damage Response

SPR 13564q1l (black) and Simulation bounds (yellow)

TE
+/- 1-2% vertical error on

experimental measurement

1072 10T

o

il0-4 107
Time in seconds

UQ algorithms have a critical role in
system validation

&)
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Electrical Modeling Complexity

complex device models + replicates in circuits

Circuit Board -~

ASIC: 1000s to  \, — / ik

millions of devices | Large Digital Circuit
(e.g., ASIC)

Sub-circuit : PR
sub-circuit: 10s to
(analog) \ 100s of devices

- |
-

i . . e
T— Single Device e

+

Ajlenuauodxa smoub swi uonenwis

device: 1 to 100s of params (G. Gray, M. M-C)

* simple devices: 1 parameter, - complex devices: many parameters, some
typically physical and physical, others “extracted” (calibrated)

measurable - multiple modes of operation
* e.g., resistor @ 100Q +/- 1% . e.g., zener diode: 30 parameters, 3 bias

* resistors, capacitors, inductors, states; many transistor models (forward,

voltage sources reverse, breakdown modes) @ ﬁgtqdial
ona
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Reverse Current (A)

1e+2

Te+1 4
1e+0 A
1e-1 A
1e-2 A
1e-3 A
1e-4 4
1e-5 4
1e-6 4
1e-7 A
1e-8 A
1e-9 4
1e-104
1e-114
1e-124
1e-134

1e-14

UQ: Mitigate Explosion of Factors!

» Consider bounding parameter
sets?

* Exploit natural hierarchy or
network structure?

» Use surrogate/macro-models as
glue between levels?

* Need approaches curbing the
curse of dimensionality

T T T T T T T
0 5 10 15 20 25 30 35
Reverse Voltage (V)

Sandia
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}- Summary

Advanced algorithms enable robust, efficient uncertainty
quantification for validating models with experimental
data and making credible predictions.

* Credible simulations must deliver best estimate +
uncertainty.

* Uncertainty quantification algorithms are essential in
validation and calibration under uncertainty

« Complex/large-scale/multi-scale/multi-physics simulations
demand research in advanced efficient UQ methods

Thank you for your attention!

briadam@sandia.gov;
http://www.sandia.gov/~briadam

Sandia
http://www.cs.sandia.gov/DAKOTA @ s


http://www.sandia.gov/~briadam

Abstract

Uncertainty Quantification Algorithms and Software Enabling V&V

Computational simulations are increasingly used for risk-informed decision making in the
presence of uncertainties. To be credible, they must deliver not only a best estimate of
performance, but also its degree of variability or uncertainty. Uncertainty quantification (UQ)
algorithms compute the effect of uncertain input variables on simulation response metrics of
interest, enabling model validation and subsequent credible risk assessment.

I will survey UQ algorithms research addressing both aleatory (inherent) and epistemic (lack-
of-knowledge) uncertainties. For example, advanced reliability analysis and polynomial
chaos expansion methods available in Sandia's DAKOTA toolkit offer substantial efficiency
advantages over ubiquitous Monte Carlo sampling. Application to electrical circuit
calibration and validation in the QASPR (Qualification Alternatives to Sandia's Pulsed
Reactor) program will demonstrate UQ algorithms in an extrapolation context and motivate
the need to develop hierarchical UQ techniques for systems analysis.
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