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Outline

•

 

Uncertainty quantification for credible simulation

•

 

UQ algorithms research in DAKOTA

–

 

Aleatory

 

UQ methods: beyond Monte Carlo

–

 

Challenges in epistemic UQ methods

•

 

Sandia’s

 

QASPR program: 
computational model-based system qualification

Advanced algorithms enable robust, efficient uncertainty 
quantification for validating models with experimental 

data and making credible predictions.

Slide credits:  Mike Eldred, Laura Swiler, Barron Bichon, Joe Castro, 
Genetha

 

Gray, Bill Oberkampf, Matt Kerschen, others



Insight from Computational Simulation 

d
Hurricane Katrina: weather, 

logistics, economics, 
human behavior

Electrical circuits: networks, 
PDEs, differential algebraic 

equations (DAEs), E&M

Earth penetrator: nonlinear 
PDEs

 

with contact, transient 
analysis, material modeling

Micro-electro-mechanical 
systems (MEMS): quasi-

 
static nonlinear elasticity, 

process modeling

Joint mechanics: system-

 
level FEA for component 

assessment

Systems of systems 
analysis: multi-scale, 
multi-phenomenon



UQ in Credible Simulation

Bill Oberkampf

Ultimate purpose (arguably): insight, prediction, and risk-informed 
decision-making need credibility for intended application



Uncertainties to Quantify

•

 

typical parametric uncertainty, incl. random fields/processes
–

 

physics/science parameters 
(e.g., cross sections, reaction rates; seismic spectra)

–

 

statistical variation, inherent randomness
–

 

operating environment, interference 
(e.g., debris, corrosion, oxidation, and erosion)

–

 

initial, boundary conditions; forcing
–

 

geometry / structure / connectivity (e.g., fuel rod packing)
–

 

material properties
–

 

manufacturing quality
•

 

model form / accuracy (e.g., equation of state)
•

 

program: requirements, technical readiness levels 
(also economics, regulations, schedules)

•

 

human reliability, subjective judgment, linguistic imprecision

•

 

numerical accuracy:

 

mesh, solver, approximation error
•

 

experimental error:

 

measurement error, bias

A partial list of uncertainties affecting computational model results



•

 

A single optimal design or nominal performance prediction is 
often insufficient for 
–

 

decision making / trade-off assessment
–

 

quantification of margins and uncertainties (QMU):  
How close are my uncertainty-aware code predictions to required 
performance expectations or limits?

–

 

validation with experimental data ensembles

•

 

Need to make risk-informed decisions, based on an assessment 
of uncertainty

Uncertainty Quantification
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Categories of Uncertainty

•

 

Aleatory

 

(think probability density function)
–

 

Inherent variability (e.g., in a population)
–

 

Irreducible uncertainty –

 

can’t reduce it by further knowledge

•

 

Epistemic (think bounded intervals)
–

 

Subjective uncertainty
–

 

Related to what we don’t know
–

 

Reducible:  If you had more data or more information, you 
could make your uncertainty estimation more precise

•

 

In practice, people try to transform or translate 
uncertainties to the aleatory

 

type and perform sampling 
and/or parametric analysis

Often useful algorithmic distinctions, but not always a clear division



•

 

based on uncertain inputs, determine 
variance of outputs and probabilities 
of failure (reliability metrics)

•

 

identify parameter correlations/local 
sensitivities, robust optima

•

 

identify inputs whose variances 
contribute most to output variance 
(global sensitivity analysis)

•

 

quantify uncertainty when using 
calibrated model to predict

Uncertainty Quantification
Forward propagation: quantify the effect that uncertain 
(nondeterministic) input variables have on model output

Potential Goals:

Input Variables u

 
(physics parameters, 
geometry,  initial and 
boundary conditions)

Computational

 
Model

Variable 
Performance

 
Measures f(u)

(possibly given distributions)

Output 
Distributions

N samples

measure 1

measure 2

Model

Typical method: Monte Carlo Sampling

u1

u2

u3



Uncertainty Quantification Example

•

 

Device subject to heating

 

(experiment or 
computational simulation)

•

 

Uncertainty in composition/ 
environment (thermal conductivity, 
density, boundary), parameterized by 
u1

 

, …, uN
•

 

Response temperature f(u)=T(u1

 

, …, uN

 

)

 
calculated by heat transfer code

Given distributions of u1

 

,…,uN

 

, 
UQ methods calculate 
statistical info on outputs:
•

 

Probability distribution of 
temperatures
•

 

Correlations (trends) and 
sensitivity of temperature
•

 

Mean(T), StdDev(T), 
Probability(T

 

≥

 

Tcritical

 

)
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UQ: Sampling Methods

Given distributions

 

of u1

 

,…,uN

 

, UQ 
methods…
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Output 
Distributions

N samples

measure 1

measure 2

Model
…calculate statistical info 
on outputs T(u1

 

,…,uN

 

)
u1

u2

u3

• Monte Carlo sampling
• Quasi-Monte Carlo
• Centroidal

 

Voroni

 

Tessalation

 

(CVT)
• Latin Hypercube sampling
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Latin Hypercube Sampling (LHS)

•

 

Specialized Monte Carlo (MC) sampling technique: 
workhorse method in DAKOTA / at Sandia

•

 

Stratified random sampling among equal probability bins

 

for 
all 1-D projections of an n-dimensional set of samples.

•

 

McKay and Conover (early), restricted pairing by Iman

A B C D

G

H

I

J

K

L
−∞ ∞

Intervals Used with a LHS of Size n = 5 in 
Terms of the pdf

 

and CDF for a Normal 
Random Variable

A Two-Dimensional Representation of One 
Possible LHS of size 5 Utilizing X1 (normal)  

and X2 (uniform)



Calculating Probability of Failure

•

 

Given uncertainty in materials, geometry, and 
environment, determine likelihood of failure 
Probability(T

 

≥

 

Tcritical

 

)

•
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•

 

Could perform 10,000 
Monte Carlo samples and 
count how many exceed the 
threshold…

•

 

Or directly determine input 
variables which give rise to 
failure behaviors by solving 
an optimization problem.

By combining optimization, uncertainty analysis methods, and surrogate 
(meta-) modeling in a single framework, DAKOTA enables more efficient UQ.



DAKOTA Motivation

Goal: perform iterative analysis on (potentially 
massively parallel) simulations to answer 
fundamental engineering questions:

•

 

What is the best performing design?  
•

 

How safe/reliable/robust is it?
•

 

How much confidence do I have in my answer?
Nominal Optimized

DAKOTA 
optimization, sensitivity analysis, 

parameter estimation, 
uncertainty quantification

Computational Model (simulation)
• Black box: any code: mechanics, circuits, 
high energy physics, biology, chemistry

• Semi-intrusive: Matlab, ModelCenter, Python 
SIERRA multi-physics, SALINAS, Xyce

response 
metrics

parameters 
(design, UC, 

state)



LHS/MC

Iterator 

Optimizer

ParamStudy

COLINYNPSOLDOT OPT++

LeastSqDoE

GN

Vector

MultiD

List

DDACE CCD/BB

UQ

Reliability

DSTE

JEGACONMIN

NLSSOL

NL2SOLQMC/CVT

NLPQL

Center SFEM/PCE

DAKOTA C++/OO Framework Goals
•

 

Unified software infrastructure:

 

reuse tools and common interfaces; integrate 
commercial, open-source, and research algorithms

•

 

Enable algorithm R&D, e.g., for non-smooth/discontinuous/multimodal 
responses, probabilistic analysis and design, mixed variables, unreliable 
gradients, costly simulation failures

•

 

Facilitate scalable parallelism:

 

ASCI-scale applications and architectures; 
4 nested levels of parallelism possible

•

 

Impact:

 

tool for DOE labs and external partners; broad application deployment; 
free via GNU GPL (>3000 download registrations)

EGO DIRECT

algorithms

 
hierarchy

TMF

PSUADE

EGRA



responsesvariables/parameters

Flexibility with Models & Strategies

•

 

functions: objectives, 
constraints, LSQ 
residuals, generic

•

 

gradients: numerical, 
analytic

•

 

Hessians: numerical, 
analytic, quasi

user application 
(simulation)

system, fork, direct, grid

optional approximation

 

(surrogate)
•

 

global (polynomial 1/2/3, neural net,  
kriging, MARS, RBF)

• local (Taylor); multipoint (TANA/3)
• hierarchical, multi-fidelity

•

 

design: continuous, 
discrete

•

 

uncertain: (log)normal, 
(log)uniform, interval, 
triangular, histogram, 
beta/gamma, EV I, II, III

•

 

state: continuous, 
discrete

DAKOTA strategies

 

enable 
flexible combination of multiple 
models and algorithms.  

• nested
• layered
• cascaded
• concurrent
• adaptive / interactive

Hybrid

Surrogate Based

OptUnderUnc

Branch&Bound/PICO

Strategy

Optimization Uncertainty

2nd Order ProbabilityUncOfOptima

Pareto/Multi-Start

DAKOTA models

 

map inputs to response metrics of interest:



Alternatives to Sampling

•

 

for a modest number of random variables, polynomial 
chaos expansions

 

may converge considerably faster to 
statistics of interest

•

 

if principal concern is with failure modes (tail probabilities),

 consider global reliability methods

LHS sampling is robust, trusted, ubiquitous, but advanced 
methods may offer advantages:



Approximate response stochasticity

 

with Galerkin

 

projection using

 
multivariate orthogonal polynomial basis functions defined over standard

 
random variables

e.g.

 

using

• Intrusive
•

 

Nonintrusive:

 

estimate response coefficients using sampling (expectation),

 
quadrature/cubature (num integration),

 

point collocation (regression)

Wiener-Askey

 

Generalized PCE with adaptivity
• Tailor basis:

 

optimal basis selection leads to exponential convergence rates

• Tailor expansion order/integration order:

 

adaptivity

 

based on PC error estimates
–

 

Isotropic/anisotropic tensor-product quadrature

 

& 
sparse grid Smolyak

 

cubature

Generalized Polynomial Chaos Expansions

R(ξ) ≈

 

f(u)



CDF

PCE: Fast Convergence

Hermite

 

basis, lognormal distributions



Analytic Reliability: MPP Search

Perform optimization in uncertain variable space to determine Most 
Probable Point (of response or failure occurring) for G(u) = T(u).

Reliability Index Approach (RIA)

G(u)

Region of u 
values where 
T ≥

 

Tcritical
map Tcritical

 

to a 
probability



•

 

Limit state linearizations:  use a local surrogate for the limit state G(u)

 

during 
optimization in u-space (or x-space):

Reliability: Algorithmic Variations
Many variations possible to improve efficiency, including in DAKOTA…

•

 

Integrations (in u-space to determine probabilities): may need higher order 
for nonlinear limit states

1st-order:

•

 

MPP search algorithm: Sequential Quadratic Prog. (SQP) vs. Nonlinear Interior Point (NIP)
•

 

Warm starting (for linearizations, initial iterate for MPP searches):

 

speeds 
convergence when increments made in: approximation, statistics requested, design 
variables

curvature correction

2nd-order:

(could use analytic, finite difference, or quasi-Newton (BFGS, SR1) Hessians in 
approximation/optimization – results here mostly use SR1 quasi-Hessians.)



Efficient Global Reliability Analysis
•

 

EGRA

 

(B.J. Bichon) performs reliability analysis with EGO (Gaussian 
Process surrogate and NCSU DIRECT optimizer) coupled with Multimodal 
adaptive importance sampling for probability calculation.

•

 

Created to address nonlinear and/or multi-modal limit states in MPP 
searches.

True fn

GP surrogate

Expected 
Improvement

From Jones, Schonlau, Welch, 1998



Efficient Global Reliability Analysis
•

 

EGRA

 

(B.J. Bichon) performs reliability analysis with EGO (Gaussian 
Process surrogate and NCSU DIRECT optimizer) coupled with Multimodal 
adaptive importance sampling for probability calculation.

•

 

Created to address nonlinear and/or multi-modal limit states in MPP 
searches.

Gaussian process model of reliability limit state with

 
10 samples

 

28 samples

explore

exploit



Challenge: Epistemic UQ

•

 

Epistemic uncertainty:

 

insufficient information to specify a 
probability distribution

•

 

Subjective, reducible, or lack-of-knowledge uncertainty 
(given more resources to gather information, could reduce the uncertainty)

•

 

For example:
–

 

“I expect this parameter to have a lognormal distribution, but only 
know bounds on its mean and standard deviation,”

 

or
–

 

Dempster-Shafer belief structures: “basic probability assignment”

 

for 
each interval where the uncertain variable may exist; 
contiguous, overlapping, or gapped

BPA=0.5 BPA=0.2
BPA=0.3 Variable 1

BPA=0.5 BPA=0.2BPA=0.3
Variable 2



Propagating Epistemic UQ

Second-order probability
–

 

Two levels: distributions/intervals on 
distribution parameters

–

 

Outer level can be epistemic (e.g., interval)
–

 

Inner level can be aleatory

 

(probability distrs)
–

 

Strong regulatory history (NRC, WIPP).

Dempster-Shafer theory of evidence
–

 

Basic probability assignment (interval-based)
–

 

Solve opt. problems (currently sampling-based)

 
to compute belief/plausibility for output intervals

New

New



DAKOTA UQ Algorithms Summary 
Goal: bridge robustness/efficiency gap

Production New Under 
dev.

Planned Collabs.

Sampling LHS/MC, 
QMC/CVT

IS/AIS/MMAIS, 
Incremental LHS

Bootstrap, 
Jackknife

Gunzburger

Reliability 1st/2nd-order local: 
MVFOSM/SOSM, 
x/u

 

AMV/AMV2/ 
AMV+/AMV2+, x/u

 
TANA, FORM/SORM

Global: EGRA Renaud, 
Mahadevan

Polynomial 
chaos/ 
Stochastic 
collocation

Wiener-Askey

 
gPC: sampling, 
quad/cubature, 
pt collocation

 
SC: quadrature

SC: 
cubature
gPC/SC: 
arbitrary 
input PDFs

Adaptivity, 
Wiener-Haar

Ghanem

Other 
probabilistic

Dimension 
reduction

Youn

Epistemic Second-order 
probability

Dempster-Shafer 
evidence theory

Bayesian, 
Imprecise 
probability

Higdon, 
Williams, 
Ferson

Metrics Importance factors, 
Partial correlations

Main effects, 
Variance-based 
decomposition

Stepwise 
regression

Storlie



•

 

Military requirement: certify to hostile 
environment

neutrons create damage
Emitter 
(n-type)

Base 
(p-type)

Collector 
(n-type)

x
x

x
xx

x
x

damage degrades gain

Neutron Radiation Exposure 
Degrades Electronics 



•

•

 

SPR dismantled end of FY06 to improve  
security posture

•

 

Military requirement: certify to hostile 
environment

neutrons create damage
Emitter 
(n-type)

Base 
(p-type)

Collector 
(n-type)

x
x

x
xx

x
x

damage degrades gain

Neutron Radiation Exposure 
Degrades Electronics 

pass/fail

 testing



quantified

 uncertainty

•

•

 

SPR dismantled end of FY06 to improve  
security posture

•

 

Military requirement: certify to hostile 
environment

neutrons create damage
Emitter 
(n-type)

Base 
(p-type)

Collector 
(n-type)

x
x

x
xx

x
x

damage degrades gain

QASPR (Qualification Alternatives to Sandia Pulse Reactor) 
methodology will certify qualification via modeling & 

simulation with quantified uncertainty

Neutron Radiation Exposure 
Degrades Electronics 



UQ

M&SEC

select 
experiments 
in alternate 
facilities

γ,n – 100 ms
long pulse

ion – 100 μs
short pulse

QASPR: Science-Based 
Engineering Methodology For Qualification
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computational modeling

validation



V&V for QASPR Components

•

 

Developing formal V&V 
plans

•

 

Each computational code 
subject to code and 
solution verification

•

 

UQ used to validate 
device model response 
against data ensembles

•

 

Ultimately systems 
(circuit) V&V for 
qualification



Device Prototype: 
UQ Extrapolation to SPR

•

 

Calibrated to other 
facilities, CHARON 
fills SPR gap

•

 

Uncertainty & bias 
characterized by 2 
degrees of freedom
–

 

facility multiplier
–

 

device multiplier

•

 

Uncertainty 
quantified with D.O.E 
+ statistical approach

End UQ Methodology Goal: Best Estimate 
+ Uncertainty Prediction for SPR

Facility Multiplier, F

Device Multiplier, M

μM-MS

 

= 1.0

μF-SPR

 

= 1.0μF-ACR

 

= 0. 88

μM-FA

 

= 1.07

Model DevelopmentFacility Bias

BE+U Prediction

σF-SPR

Device Bias

σM-FA



+2σ

peak damage

-2σ

mean

Model Validation: Blind Prediction

UQ algorithms have a critical role in 
system validation

Transient Device Damage Response
•

 

Fairchild response data 
within SPR hidden

•

 

First prototype

 

of the 
QASPR methodology 
(and real validation of 
the QASPR system)  

•

 

Prediction + Uncertainty 
(+/-2σ

 

device and facility 
uncertainty)



Model Validation: Blind Prediction

UQ algorithms have a critical role in 
system validation

+/- 1-2% vertical error on 
experimental measurement

Transient Device Damage Response
•

 

Fairchild response data 
within SPR hidden

•

 

First prototype
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Model Validation: Blind Prediction

UQ algorithms have a critical role in 
system validation

+/- 1-2% vertical error on 
experimental measurement

Transient Device Damage Response
•

 

Fairchild response data 
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•

 

First prototype

 

of the 
QASPR methodology 
(and real validation of 
the QASPR system)  

•
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(+/-2σ

 

device and facility 
uncertainty)



Model Validation: Blind Prediction

UQ algorithms have a critical role in 
system validation

+/- 1-2% vertical error on 
experimental measurement

Transient Device Damage Response
•

 

Fairchild response data 
within SPR hidden

•

 

First prototype

 

of the 
QASPR methodology 
(and real validation of 
the QASPR system)  

•

 

Prediction + Uncertainty 
(+/-2σ

 

device and facility 
uncertainty)



Electrical Modeling Complexity

•

 

simple devices:

 

1 parameter, 
typically physical and 
measurable

•

 

e.g., resistor @ 100Ω

 

+/-

 

1%
•

 

resistors, capacitors, inductors, 
voltage sources

Circuit Board

Large Digital Circuit
(e.g., ASIC)

Sub-circuit 
(analog)

Single Device

device: 1 to 100s of params

sub-circuit: 10s to 
100s of devices

ASIC: 1000s to 
millions of devices

•

 

complex devices:

 

many parameters, some 
physical, others “extracted”

 

(calibrated)
•

 

multiple modes of operation
•

 

e.g., zener

 

diode: 30 parameters, 3 bias 
states; many transistor models (forward, 
reverse, breakdown modes) 

sim
ulation tim

e grow
s exponentially

(G. Gray, M. M-C)

complex device models + replicates in circuits



UQ: Mitigate Explosion of Factors!

L

H

N

•

 

Consider bounding parameter 
sets?

•

 

Exploit natural hierarchy or 
network structure?

•

 

Use surrogate/macro-models as 
glue between levels?

•

 

Need approaches curbing the 
curse of dimensionality



Summary

•

 

Credible simulations must deliver best estimate + 
uncertainty.

•

 

Uncertainty quantification algorithms are essential in 
validation and calibration under uncertainty

•

 

Complex/large-scale/multi-scale/multi-physics simulations 
demand research in advanced efficient UQ methods

Thank you for your attention!
briadam@sandia.gov; 

http://www.sandia.gov/~briadam 

http://www.cs.sandia.gov/DAKOTA

Advanced algorithms enable robust, efficient uncertainty 
quantification for validating models with experimental 

data and making credible predictions.

http://www.sandia.gov/~briadam


Abstract

Uncertainty Quantification Algorithms and Software Enabling V&V

Computational simulations are increasingly used for risk-informed decision making in the 
presence of uncertainties.  To be credible, they must deliver not only a best estimate of 
performance, but also its degree of variability or uncertainty. Uncertainty quantification (UQ) 
algorithms compute the effect of uncertain input variables on simulation response metrics of 
interest, enabling model validation and subsequent credible risk

 

assessment.  

I will survey UQ algorithms research addressing both aleatory

 

(inherent) and epistemic (lack-

 
of-knowledge) uncertainties.  For example, advanced reliability analysis and polynomial 
chaos expansion methods available in Sandia's

 

DAKOTA toolkit offer substantial efficiency 
advantages over ubiquitous Monte Carlo sampling. Application to electrical circuit 
calibration and validation in the QASPR (Qualification Alternatives to Sandia's

 

Pulsed 
Reactor) program will demonstrate UQ algorithms in an extrapolation context and motivate 
the need to develop hierarchical UQ techniques for systems analysis.
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