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Outline

• The DAKOTA framework and design concepts

• Tour of methods

• Strategies combining methods 

– Surrogate-based optimization

– Optimization for uncertainty quantification

– Reliability-based design (OPT+UQ)

• Ongoing research 

By combining optimization, uncertainty analysis methods, and 
surrogate (meta-) modeling in a single framework, DAKOTA enables 

advanced studies with computational models.

Slide (and research) credits:  Mike Eldred (PI), 
Laura Swiler, Barron Bichon

 http://www.cs.sandia.gov/DAKOTA/



DAKOTA Motivation

Goal: perform iterative analysis on (potentially 
massively parallel) simulations to answer 
fundamental engineering questions:

• What is the best performing design?  
• How safe/reliable/robust is it?
• How much confidence do I have in my answer?

Nominal Optimized

DAKOTA 
optimization, sensitivity analysis, 

parameter estimation, 
uncertainty quantification

Computational Model (simulation)
•

 

Black box: any code: mechanics, circuits, 
high energy physics, biology, chemistry

•

 

Semi-intrusive: Matlab, ModelCenter, Python 
SIERRA multi-physics, SALINAS, Xyce

response 
metrics

parameters 
(design, UC, 

state)
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DAKOTA C++/OO Framework Goals
• Unified software infrastructure:

 

reuse tools and common interfaces; integrate 
commercial, open-source, and research algorithms

• Enable algorithm R&D, e.g., for non-smooth/discontinuous/multimodal 
responses, probabilistic analysis and design, mixed variables, unreliable 
gradients, costly simulation failures

• Facilitate scalable parallelism:

 

ASCI-scale applications and architectures; 
4 nested levels of parallelism possible

• Impact:

 

tool for DOE labs and external partners; broad application deployment; 
free via GNU GPL

 

(>3000 download registrations)

EGO DIRECT

algorithms

 
hierarchy

TMF

PSUADE

EGRA
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DAKOTA C++/OO Framework Goals
• Unified software infrastructure:

 

reuse tools and common interfaces; integrate 
commercial, open-source, and research algorithms

• Enable algorithm R&D, e.g., for non-smooth/discontinuous/multimodal 
responses, probabilistic analysis and design, mixed variables, unreliable 
gradients, costly simulation failures

• Facilitate scalable parallelism:

 

ASCI-scale applications and architectures; 
4 nested levels of parallelism possible

• Impact:

 

tool for DOE labs and external partners; broad application deployment; 
free via GNU GPL

 

(>3000 download registrations)

EGO DIRECT

algorithms

 
hierarchy

TMF

PSUADE

EGRA

sensitivity analysis



responsesvariables/parameters

Flexibility with Models

• functions: objectives, 
constraints, LSQ 
residuals, generic

• gradients: numerical, 
analytic

• Hessians: numerical, 
analytic, quasi

user application 
(simulation)

system, fork, direct, grid

optional approximation

 

(surrogate)
• global (polynomial 1/2/3, neural net,  
kriging, MARS, RBF)

• local (Taylor); multipoint (TANA/3)
• hierarchical, multi-fidelity

• design: continuous, 
discrete

• uncertain: (log)normal, 
(log)uniform, interval, 
triangular, histogram, 
beta/gamma, EV I, II, III

• state: continuous, 
discrete

DAKOTA models

 

map inputs to response metrics of interest:

Flexible interface to user application (computational model/simulation)

• May be cheap (analytic function, linear analysis); typically costly

 
(finite element mesh with millions of DOF, transient analysis of

 
integrated circuit with millions of transistors)  

• May run tightly-coupled, locally as separate process, in parallel 
on a cluster, remotely on a distributed resource

integrate parameters into 
application inputs

extract relevant metrics



Optimization Methods

Gradient-based methods
(DAKOTA will compute finite difference 
gradients and FD/quasi-Hessians if 
necessary)
• DOT (various constrained)
• CONMIN (FRCG, MFD)
• NPSOL (SQP)
• NLPQL (SQP)
• OPT++ (CG, Newton)

Calibration (least-squares)
• NL2SOL (GN + QH)
• NLSSOL (SQP)
• OPT++ (Gauss-Newton)

Derivative-free methods
• COLINY (PS, APPS, Solis-Wets, 

COBYLA2, EAs, DIRECT)
• JEGA (single/multi-obj

 

GAs)
• EGO (efficient global opt via 

Gaussian Process models)
• DIRECT (Gablonsky)
• OPT++ (parallel direct search)

• TMF (templated

 

meta-heuristics 
framework)



• A single optimal design or nominal performance 
prediction is often insufficient for decision 
making

• Need to make risk-informed decisions, based 
on an assessment of uncertainty

Uncertainty Quantification



Uncertainty Quantification Example

• Device subject to heating

 

(experiment 
or computational simulation)

• Uncertainty in composition/ 
environment (thermal conductivity, 
density, boundary), parameterized by 
u1

 

, …, uN
• Response temperature T(u1

 

, …, uN

 

) 
calculated by heat transfer code

Given distributions of u1

 

,…,uN

 

, 
UQ methods calculate 
statistical info on outputs:
• Probability distribution of 
temperatures
• Correlations (trends) and 
sensitivity of temperature
• Mean(T), StdDev(T), 
Probability(T

 

≥

 

Tcritical

 

)
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• based on uncertain inputs, determine 
variance of outputs and probabilities 
of failure (reliability metrics)

• identify parameter correlations/local 
sensitivities, robust optima

• identify inputs whose variances 
contribute most to output variance 
(global sensitivity analysis)

• quantify uncertainty when using 
calibrated model to predict

Uncertainty Quantification (UQ)
Forward propagation: quantify the effect that uncertain 
(nondeterministic) input variables have on model output

Potential Goals:

Input Variables u

 
(physics parameters, 
geometry,  initial and 
boundary conditions)

Computational

 
Model

Variable 
Performance

 
Measures G(u)

(possibly given distributions)

Output 
Distributions

N samples

measure 1

measure 2

Model

Typical method: Monte Carlo Sampling



UQ Algorithms 
Goal: bridge robustness/efficiency gap

Production New Under 
dev.

Planned

Sampling LHS/MC, 
QMC/CVT

IS/AIS/MMAIS, 
Incremental LHS

Bootstrap, 
Jackknife

Reliability 1st/2nd-order local: 
MVFOSM/SOSM, 
x/u

 

AMV/AMV2/ 
AMV+/AMV2+, x/u

 
TANA, FORM/SORM

Global: EGRA

Polynomial 
Chaos

Wiener-Askey

 
gPC:

 

sampling, 
quadrature, 
pt collocation

Cubature Adaptivity, 
Wiener-Haar

Other 
probabilistic

Dimension 
reduction

Epistemic Second-order 
probability

Dempster-Shafer 
evidence theory

Bayesian, 
Imprecise 
probability

Metrics Importance factors, 
Partial correlations

Main effects, 
Variance-based 
decomposition

Stepwise 
regression



Outline

• The DAKOTA framework and design concepts

• Tour of methods

• Strategies combining methods 

– Surrogate-based optimization

– Optimization for uncertainty quantification

– Reliability-based design (OPT+UQ)

• Ongoing research 



Strategies Enable
 Algorithm Combination

DAKOTA strategies

 

enable flexible combination of 
multiple models and algorithms.  

• nested
• layered
• cascaded
• concurrent
• adaptive / interactive

Sequential Hybrid

Surrogate-based

OptUnderUnc

Branch&Bound/PICO

Strategy

Optimization Uncertainty

2nd Order Probability
UncOfOptima

Pareto/Multi-Start

Collaborative Hybrid



Sample Algorithm Combinations

In addition to allowing rapid selection of single optimization 
algorithms, DAKOTA enables advanced strategies, e.g.:

• Global/local optimization:

 

perform (1) sampling, parameter 
study, or global optimization; then (2) local (gradient or non- 
gradient) optimization at each promising point.

• Surrogate (meta-model)-based optimization:

 

use global 
surrogates or local surrogates with trust region management to 
reduce objective evaluation cost. 

• Efficient Global Reliability Analysis (EGRA):

 

reliability analysis 
through combination of Gaussian Process surrogate, DIRECT 
optimizer, and multi-modal adaptive importance sampling

• Optimization under uncertainty:

 

robust or reliability-based 
design,  design with probabilistic constraints



Trust-Region 
Surrogate-Based Optimization

Data Fit

Data fit surrogates:
• Global: polynomial regress., splines, 

neural net, kriging/GP, radial basis fn
• Local: 1st/2nd-order Taylor
• Multipoint: TPEA, TANA, …

Data fits in SBO
• Smoothing: extract global trend
• DACE: number of des. vars. limited
• Local consistency must be balanced 

with global accuracy

Multifidelity

 

surrogates:
• Coarser discretizations, looser 

conv. tols., reduced element order
• Omitted physics: e.g., Euler CFD, 

panel methods

Multifidelity

 

SBO
• HF evals

 

scale better w/ des. vars.
• Requires smooth LF model
• May require design vect. mapping
• Correction quality is crucial

Multifidelity

ROM surrogates:
• Spectral decomposition (str. dynamics)
• POD/PCA w/ SVD (CFD, image analysis)
• KL/PCE (random fields, stoch. proc.)

ROMs in SBO
• Key issue: capture parameter changes

– E-

 

ROM, S-ROM, tensor SVD
• Some simulation intrusion to re-project
• TR progressions resemble 

local, multipoint, or global

new area

ROM



Calculating Probability of Failure

• Given uncertainty in materials, geometry, and 
environment, determine likelihood of failure 
Probability(T

 

≥

 

Tcritical

 

)

•
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• Could perform 10,000 
Monte Carlo samples 
and count how many 
exceed the threshold…

• Or directly determine input variables which give rise to 
failure behaviors by solving an optimization problem.



Analytic Reliability: MPP Search

Perform optimization in uncertain variable space to determine Most 
Probable Point (of response or failure occurring) for G(u) = T(u).

Reliability Index Approach (RIA)

G(u)

Region of u 
values where 
T ≥

 

Tcritical
map Tcritical

 

to a 
probability



• Limit state linearizations:  use a local surrogate for the limit state G(u)

 

during 
optimization in u-space (or x-space):

Reliability: Algorithmic Variations
Many variations possible to improve efficiency, including in DAKOTA…

• Integrations (in u-space to determine probabilities): may need higher order 
for nonlinear limit states

1st-order:

• MPP search algorithm: Sequential Quadratic Prog. (SQP) vs. Nonlinear Interior Point (NIP)
• Warm starting (for linearizations, initial iterate for MPP searches):

 

speeds 
convergence when increments made in: approximation, statistics requested, design 
variables

curvature correction

2nd-order:

(could use analytic, finite difference, or quasi-Newton (BFGS, SR1) Hessians in 
approximation/optimization –

 

results here mostly use SR1 quasi-Hessians.)



Efficient Global Reliability Analysis
• EGRA

 

(B.J. Bichon) performs reliability analysis with EGO (Gaussian 
Process surrogate and NCSU DIRECT optimizer) coupled with Multimodal 
adaptive importance sampling for probability calculation.

• Created to address nonlinear and/or multi-modal limit states in MPP 
searches.

True fn

GP surrogate

Expected

 

Improvement

From Jones, Schonlau, Welch, 1998



Efficient Global Reliability Analysis
• EGRA

 

(B.J. Bichon) performs reliability analysis with EGO (Gaussian 
Process surrogate and NCSU DIRECT optimizer) coupled with Multimodal 
adaptive importance sampling for probability calculation.

• Created to address nonlinear and/or multi-modal limit states in MPP 
searches.

Gaussian process model of reliability limit state with

 
10 samples

 

28 samples

explore

exploit



DAKOTA/EGRA: Superior Performer

• Most accurate local method under-predicts pf

 

by ~20%
• EGO-based method accurately quantifies probability of failure within 

1%

 

with similar number of function evaluations.
• Pro:

 

LHS accuracy + MPP efficiency without gradients, good tail 
probability resolution

• Con:

 

Exploratory samples wasteful, GP can break down for large 
number of samples or independent variables



Shape Optimization of Compliant MEMS
• Micro-electromechanical system (MEMS):

 

typically made from silicon, 
polymers, or metals; used as micro-scale sensors, actuators, switches, 
and machines

• MEMS designs are subject to substantial variability

 

and lack historical 
knowledge base.  Materials and micromachining, photo lithography, 
etching processes all yield uncertainty.

• Resulting part yields can be low or have poor cycle durability
• Goal: shape optimize finite element model of bistable

 

switch to…
– Achieve prescribed reliability

 

in actuation force
– Minimize sensitivity to uncertainties (robustness)

bistable

 
MEMS 
switch

uncertainties to be considered 
(edge bias and residual stress)



Tapered Beam Bistable
 

Switch: 
Performance Metrics

13 design vars d: 
Wi , Li , θi

σ
σ

key relationship: force

 
vs. displacement

new tapered beam design

Typical design specifications:
• actuation force Fmin

 

reliably 5 μN
• bistable

 

(Fmax

 

> 0, Fmin

 

< 0)
• maximum force: 50 < Fmax

 

< 150
• equilibrium E2 < 8 μm
• maximum stress < 1200 MPa



Optimization Under Uncertainty

Opt 

UQ 

Sim 

{d} {Su}

{u} {Ru}

min

 
s.t.

(nested paradigm)

Rather than design and then post-process to evaluate uncertainty…

 
actively design optimize while accounting for uncertainty/reliability metrics 
su

 

(d), e.g., mean, variance, reliability, probability:

13 design vars d:  Wi

 

, Li

 

, qi

 

2 random variables x: ΔW, Sr

σσ
-5.0

simultaneously reliable and robust designs

Bistable

 

switch problem formulation (Reliability-Based Design Optimization):

min

 
s.t.



RBDO Finds Optimal & Robust Design

Close-coupled results:

 

DIRECT / CONMIN + reliability method yield optimal

 
and reliable/robust

 

design:



Research Directions

Work in progress…
• Polynomial Chaos and Stochastic Collocation

 (and their use in design optimization: tailor opt to UQ method)
• Model calibration under uncertainty, 
• Better epistemic methods, including for OUU
• General weighted nonlinear least squares for calibration problems
• Advanced surrogate models and ROMs
• Improved user interface and XML problem specifications

Thank you for your attention!
briadam@sandia.gov 

http://www.sandia.gov/~briadam

DAKOTA’s

 

power comes partially from numerous iterative methods 
and flexible interfaces, but largely from its flexibility in combining 
methods for uncertainty-aware analysis of expensive simulations
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