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}' Outline

Design Analysis Kit for Optimization and Terascale Applications
(DAKOTA)
is an SNL toolkit for optimization, uncertainty quantification, and

sensitivity analysis with large-scale computational models.
http://www.cs.sandia.gov/DAKOTA

 The DAKOTA framework and its key capabilities
* Uncertainty and reliability analysis techniques

 Reliability-based design optimization for micro-
electro-mechanical system (MEMS) design

Thanks to Barron Bichon, Mike Eldred, and Laura Swiler for slide content.
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DAKOTA Motivation

Goal: perform iterative analysis on (potentially
massively parallel) simulations to answer
fundamental engineering questions:

 What is the best performing design? &
 How safe/reliable/robust is it? : SR
« How much confidence do | have in my answer? |

Nominal Optimized

4 DAKOTA )
optimization, sensitivity analysis,

parameter estimation,
\_uncertainty quantification )
.

( Computational Model (simulation) = .
* Black box: nearly any Sandia or

.

» commercial ssmulation code e
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« Semi-intrusive: Matlab, ModelCenter, Python —
\_ SIERRA multi-physics, SALINAS, Xyce  / @ National

Laboratories
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state)
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DAKOTA C++/00 Framework Goals

* Unified software infrastructure: reuse tools and common interfaces; integrate
commercial, open-source, and research algorithms

* Enable algorithm R&D, e.g., for non-smooth/discontinuous/multimodal
responses, probabilistic analysis and design, mixed variables, unreliable
gradients, costly simulation failures

* Facilitate scalable parallelism: ASCI-scale applications and architectures;
4 nested levels of parallelism possible

* Impact: tool for DOE labs and external partners; broad application deployment;
free via GNU GPL (>3000 download registrations)

Iterator

A
ParamsStudy UQ
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\/ector List LHS/MC DSTE
- Reliability SFEM/PCE
Center MultiD DoE LeastSq
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DDACEH| CCD/BB NLSSOL GN
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2 Optimizer NL2SOL
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algorithms

hierarchy Sandia
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Flexibility with Models & Strategies

DAKOTA models map inputs to response metrics of interest:

/variableslparamete; : user application ":
- design: continuous, : (Slfmuklagon id :
discrete : system, fork, - constra

° in- . . . . . I , : .
uncertain: (log)normal, _>E optional approximation (surrogate) residuals, generic

ﬂ.?fg;ﬂ:;?,"xi’s'trgggﬂ’ e global (polynomial 1/2/3, neural net,
beta/gamma, EV |, II, lI : kriging, MARS, RBF)

- state: continuous : * local (Taylor); multipoint (TANA/3)
discrete ’ / ¢ hierarchical, multi-fidelity

e gradients: numerical,

...IIIIIII

app-specific: users often need initial help to ID key parameters, script, extract metrics

DAKOTA strategies enable Strategy
flexible combination of multiple /\
models and algorithms. Optimization| Uncertainty|
* nested _
Hybrid OptUnderUnc
» layered
e cascaded Surrogate Based UncOfOptima 2"d Order Probability
* concu_rrent_‘ . Pareto/Multi-Start _
» adaptive / interactive @ ﬁgt"igﬁ'm
Branch&Bound/PICO Laboratories
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}- Sample Algorithm Combinations

In addition to allowing rapid selection of single optimization
algorithms, DAKOTA enables advanced strategies, e.g.:

* Global/local optimization: perform (1) sampling, parameter
study, or global optimization; then (2) local (gradient or non-
gradient) optimization at each promising point.

» Surrogate (meta-model)-based optimization: use global
surrogates or local surrogates with trust region management to
reduce objective evaluation cost.

» Efficient Global Reliability Analysis (EGRA): reliability analysis
through combination of Gaussian Process surrogate, DIRECT
optimizer, and multi-modal adaptive importance sampling

 Forthcoming example:
Optimization under uncertainty for MEMS
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* The DAKOTA framework and its key capabilities
* Uncertainty and reliability analysis techniques

 Reliability-based design optimization for micro-
electro-mechanical system (MEMS) design
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* Uncertainty Quantification

Forward propagation: quantify the effect that uncertain
(nondeterministic) input variables have on model output

a D
Input Variables
(physics parameters, Computational‘]
geometry, initial and Model J
boundary conditions)

(possibly given distributions)
Potential Goals:

* based on uncertain inputs, determine variance of outputs and
probabilities of failure (reliability metrics)

 identify parameter correlations/local sensitivities, robust optima

« identify inputs whose variances contribute most to output variance
(global sensitivity analysis)

« quantify uncertainty when using calibrated model to predict

Methods:

» Aleatoric/irreducible: sampling (Monte Carlo, LHS, CVT),
reliability analysis (mean value, FORM, algorithmic variants)

 Epistemic/reducible: 2"d order probability, Dempster-Shafer @ Sandia

. National
Theory of Evidence Laboratories
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Active UQ development in DAKOTA (new, developing, planned)

DAKOTA UQ Methods

— Parameter studies and study design (DoE, DACE, factorial, OA)

— Sampling: LHS/MC, Quasi-MC/CVT, Bootstrap/Importance/Jackknife
trustworthy and robust, often too costly in high dimension

— Reliability: Evaluate probability of attaining specified outputs / failure

MVFOSM, x/lu AMV, x/u AMV+, FORM (RIA/PMA mappings),
MVSOSM, x/u AMV?Z, x/lu AMV2+, TANA, SORM (RIA/PMA)

— SFE: Polynomial chaos expansions (quadrature/cubature extensions).

— Epistemic: Dempster-Schafer: basic probability assignment (intervals);
Bayesian; 2nd-order probability: combines epistemic and aleatory;

Metrics: Importance factors, partial correlations, main effects, and variance-
based decomposition.
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}’-i Analytic Reliability Methods

* Define limit state function g(x) for response metric (model
output, e.g., F ) of interest, where x are uncertain variables.

* Reliability methods either

— map specified response levels g(x) = z (perhaps corr. to a
failure condition) to reliability index B8 or probability p; or

— map specified probability or reliability levels to the
corresponding response levels.

Mean Value (first order, second moment — MVFOSM)
determine mean and variance of limit state, translate to from p, 3:

g = g(px) ™

1g dg
Z Z Cou(i, 35 *”x}d z; (px) simple approx.,
but widely used
(g5, = M~ z _ > by analysts; also
ad o 2 {3 = g — OgBedf second order

= pB< - P, =z _ :
Z — lig 2 = g+ 0gBccds formulations

3.. —
L codf ag -/ @ ﬁan_dial
ationa
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Cumulative Probability

07

03

\

| Analytic Reliability: MPP Search

Perform optimization in u-space (std normal space corr. to uncertain x-space)
to determine Most Probable Point (of response or failure occurring)

Reliability Index
Approach (RIA)

minimize ulu

subject to G(u) ==

Find minimum distance to
G(u) level curve; used for
forward map z 2> p or

\ A

A

o MY
0 x-lu-space AMV

@ x-fu-space AMV+ & FORM

+ 100k Latin hypercube samples

I I 1
0 05 1 15

...should yield better
estimates of reliability
than Mean Value
methods

Cumulative Probability

Performance Measure
Approach (PMA)

minimize +G(u)

subject to ulu = 32

Find minimum G(u) for
specified gradius; used for
inverse mappor > z

o MV
G x-/u-space AMV

© x-/u-space AMV+ & FORM

+ 100k Latin hypercube samples

1 1 1 I
04 1 15 2




i Reliability: Algorithmic Variations

Many variations possible to improve efficiency, including in DAKOTA...
« Limit state linearizations: use a local surrogate for the limit state G(u) during
optimization in u-space (or x-space):
u-space AMV: G(u) = G(pu) + VuG(pu)? (u — pu)
u-space AMV+: G(u) = G(u*) + VuG(u*)! (u — u*)
u-space AMV24: G(u) = G(u*) + V.G(u) T (u — u*) + %(u —u")TV2G(u*)(u — u*)

(could use analytic, finite difference, or quasi-Newton (BFGS, SR1) Hessians in
approximation/optimization — results here mostly use SR1 quasi-Hessians.)

* Integrations (in u-space to determine probabilities): may need higher order
for nonlinear limit states

p(g < ,ZJI - @(_ﬁf:df) : nl 1
Ist-order: , 2rd.order: { p=®(—4 S
{ p{g = ,Zjl = ‘I'{:_-{ff:{rdf} ! ( . jl E W\ 1 -+ .:'.?H-?'

curvature correction

 MPP search algorithm: Sequential Quadratic Prog. (SQP) vs. Nonlinear Interior Point (NIP)

 Warm starting (for linearizations, initial iterate for MPP searches): speeds
convergence when increments made in: approximation, statistics requested, design

variables Sandia
@ National
Laboratories
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* The DAKOTA framework and its key capabilities
 Uncertainty and reliability analysis techniques

* Reliability-based design optimization for micro-
electro-mechanical system (MEMS) design

Sandia
National
Laboratories



- Shape Optimization of Compliant MEMS '

* Micro-electromechanical system (MEMS): typically made from silicon,
polymers, or metals; used as micro-scale sensors, actuators, switches,
and machines

« MEMS designs are subject to substantial variability and lack historical
knowledge base. Materials and micromachining, photo lithography,
etching processes all yield uncertainty.

* Resulting part yields can be low or have poor cycle durability

* Goal: shape optimize finite element model of bistable switch to...
— Achieve prescribed reliability in actuation force
— Minimize sensitivity to uncertainties (robustness)

actnation force

uncertainties to be considered
(edge bias and residual stress)

variable mean std. dev. | distribution
. Aav -0.2 yum 0.08 normal
bistable S 11 I:I a 4.13 normal
MEMS o P '
switch

Sandia
National
Laboratories



Performance Metrics

\ tapered beam [ ]

V
\‘ ' Tapered Beam Bistable Switch:

anchor

| 13 design vars d: _
W, L, 6, _ 1 ol —shuttl

> -/actuaﬁﬂn force

~—

T L, - )\ new tapered beam design ﬁ;’%
T T80 50 X ) 10 20 0
force
| e _ _ Typical design specifications:
P I key relationship: force

- actuation force F_ reliably 5 uN

| * bistable (F ., >0, F_. <0)

. \/ « maximum force: 50 <F__ <150
- e equilibrium E2 < 8 ym

* maximum stress < 1200 MPa

vs. displacement

max

g displacem
2 A
min
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Optimization Under Uncertainty

Rather than design and then post-process to evaluate uncertainty...
actively design optimize while accounting for uncertainty/reliability metrics
s,(d), e.g., mean, variance, reliability, probability:

min f(d) + Wsu(d)

{d}|

(nested paradigm)

Opt | «

UuQ ]
{u}|: :|{Ru}
Sim

1Sy!

S.t.

g1 < g(d) < gu
h(d) = hy

d; < d < dy

a; < A; su(d) < ay
Ae su(d) = ay

Bistable switch problem formulation (Reliability-Based Design Optimization):

simultaneously reliable and robust designs

max E [Fhin(d, x)]
[S-t- 2 < Beegr(d)
50 < E[Fmaz(d,x)] <
E[Ex(d,x)] <
E [Smaz(d,x)] <

force

A switch
contact

13 design vars d: W, L, q,
2 random variables x: AW, S,

E, E;

displacem

eje]
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D

O Finds Optimal & Robust Design

displacement (um)

— MVFOSM
=S AMVEE ]
""" target force

6.5 7
displacement (um)

Close-coupled results: DIRECT / CONMIN + reliability method yield optimal
and reliable/robust design:

metric MVFOSM AMVZ+ FORM
l.b. name u.b. | initial d° || optimal d%, | optimal d* | optimal d
0 a6 6.188
2 el -
50 E [Fraz] (uN) 638.69 50.01 57.67 57.33
E [E2] (um) 8 4.010 5.804 5.990 6.008
E [Smaz] (MPa) 1200 470 1563 1333 1329
AMV=+ verified 3 3.771 1.804 -
FORM verified 3 3.771 1.707 1.784

— )
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} Summary

« The DAKOTA toolkit includes algorithms for massively paraliel
uncertainty quantification and optimization with large-scale
computational models.

- DAKOTA strategies enable efficient combination of algorithms, use
of surrogates, and warm-starting.

* Uncertainty-aware design optimization is helpful in MEMS design
where robust and/or reliable designs are essential.

* DAKOTA is a research framework for novel capability such as
EGRA, an algorithm which closely couples several other algorithms
to perform effective reliability analysis.

Thank you for your attention!

briadam@sandia.gov |
http://www.cs.sandia.gov/DAKOTA @ Notocal
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Limit States

V
; ; 'UQ Challenge: Nonlinear/Multimodal

o Calculating B requires solving min X' X
nonlinear equality-constrained —
sub-problem in probability space s.t. g(X)=z=-5.0

 Methods AMV2+ and FORM
converge to different MPPs
(+ and O respectively)

+

e Challenge: limit states with
multiple legitimate candidates for
most probable point of failure
(need all optima)

r

-11

¥ :
513 o e fr o N N N

residual stress S (MPa)

* Challenge: local first order
probability integrations may not be
accurate enough for nonlinear

limit state By PRy a—
width bias AW (um)

19.26 I
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Efficient Global Reliability Analysis

« EGRA (B.J. Bichon) performs reliability analysis with EGO (Gaussian
Process surrogate and NCSU DIRECT optimizer) coupled with Multimodal
adaptive importance sampling for probability calculation.

 Created to address nonlinear and/or multi-model limit states in MPP
searches.

Gaussian process model of reliability limit state with
10 samples 28 samples

explore

i Sandia
ikt W National
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DAKOTA/EGRA: Superior Performer

Relability Function First-Order py Second-Order py Sampling pg
Method Evaluations (% Error) (% Error) (% Error, Avg. Error)
No Approximation 66 0.11798 (276.3%) |0.02516 (-19.7%) —

x-space AMV?2+ 26 0.11798 (276.3%) 0.02516 (-19.7%) —

u-space AMVZ2+4 26 0.11798 (276.3%) 0.02516 (-19.7%) —

x-space TANA 506 0.08642 (175.7%) 0.08716 (178.0%) —

u-space TANA 131 0.11798 (276.3%) 0.02516 (-19.7%) —

x-space EGO 50.4 — — 0.03127 (0.233%, 0.929%)
u-space EGO 49.4 — — 0.03136 (0.033%, 0.787%)
True LHS solution 1M — — 0.03135 (0.000%, 0.328%)

* Most accurate local method under-predicts p; by ~20%

« EGO-based method accurately quantifies probability of failure within
1% with similar number of function evaluations.

* Pro: LHS accuracy + MPP efficiency without gradients, good tail

probability resolution

« Con: Exploratory samples wasteful, GP can break down for large
number of samples or independent variables
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