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Outline

• The DAKOTA framework and its key capabilities

• Uncertainty and reliability analysis techniques 

• Reliability-based design optimization for micro-
electro-mechanical system (MEMS) design

Design Analysis Kit for Optimization and Terascale Applications 
(DAKOTA)

is an SNL toolkit for optimization, uncertainty quantification, and 
sensitivity analysis with large-scale computational models. 

http://www.cs.sandia.gov/DAKOTA

Thanks to Barron Bichon, Mike Eldred, and Laura Swiler for slide content.



DAKOTA Motivation

Goal: perform iterative analysis on (potentially 
massively parallel) simulations to answer 
fundamental engineering questions:

• What is the best performing design?  
• How safe/reliable/robust is it?
• How much confidence do I have in my answer?

Nominal Optimized

DAKOTA
optimization, sensitivity analysis,

parameter estimation,
uncertainty quantification

Computational Model (simulation)
• Black box: nearly any Sandia or 
commercial simulation code

• Semi-intrusive: Matlab, ModelCenter, Python 
SIERRA multi-physics, SALINAS, Xyce

response 
metrics

parameters
(design, UC, 

state)
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DAKOTA C++/OO Framework Goals
• Unified software infrastructure: reuse tools and common interfaces; integrate 

commercial, open-source, and research algorithms
• Enable algorithm R&D, e.g., for non-smooth/discontinuous/multimodal 

responses, probabilistic analysis and design, mixed variables, unreliable 
gradients, costly simulation failures

• Facilitate scalable parallelism: ASCI-scale applications and architectures; 
4 nested levels of parallelism possible

• Impact: tool for DOE labs and external partners; broad application deployment; 
free via GNU GPL (>3000 download registrations)

EGO DIRECT

algorithms
hierarchy
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responsesvariables/parameters

Flexibility with Models & Strategies

• functions: objectives, 
constraints, LSQ 
residuals, generic

• gradients: numerical, 
analytic

• Hessians: numerical, 
analytic, quasi

user application 
(simulation)

system, fork, direct, grid

optional approximation (surrogate)
• global (polynomial 1/2/3, neural net,  
kriging, MARS, RBF)

• local (Taylor); multipoint (TANA/3)
• hierarchical, multi-fidelity

• design: continuous, 
discrete

• uncertain: (log)normal, 
(log)uniform, interval, 
triangular, histogram, 
beta/gamma, EV I, II, III

• state: continuous, 
discrete

DAKOTA strategies enable 
flexible combination of multiple 
models and algorithms.  

• nested
• layered
• cascaded
• concurrent
• adaptive / interactive

Hybrid

Surrogate Based

OptUnderUnc

Branch&Bound/PICO

Strategy

Optimization Uncertainty

2nd Order ProbabilityUncOfOptima

Pareto/Multi-Start

DAKOTA models map inputs to response metrics of interest:

app-specific:  users often need initial help to ID key parameters, script, extract metrics



Sample Algorithm Combinations

In addition to allowing rapid selection of single optimization 
algorithms, DAKOTA enables advanced strategies, e.g.:

• Global/local optimization: perform (1) sampling, parameter 
study, or global optimization; then (2) local (gradient or non-
gradient) optimization at each promising point.

• Surrogate (meta-model)-based optimization: use global 
surrogates or local surrogates with trust region management to 
reduce objective evaluation cost. 

• Efficient Global Reliability Analysis (EGRA): reliability analysis 
through combination of Gaussian Process surrogate, DIRECT 
optimizer, and multi-modal adaptive importance sampling

• Forthcoming example: 
Optimization under uncertainty for MEMS
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• based on uncertain inputs, determine variance of outputs and 
probabilities of failure (reliability metrics)

• identify parameter correlations/local sensitivities, robust optima
• identify inputs whose variances contribute most to output variance 

(global sensitivity analysis)
• quantify uncertainty when using calibrated model to predict

Uncertainty Quantification
Forward propagation: quantify the effect that uncertain 
(nondeterministic) input variables have on model output

Potential Goals:

Input Variables
(physics parameters, 
geometry,  initial and 
boundary conditions)

Computational
Model

Variable 
Performance

Measures
(possibly given distributions)

• Aleatoric/irreducible: sampling (Monte Carlo, LHS, CVT), 
reliability analysis (mean value, FORM, algorithmic variants)

• Epistemic/reducible: 2nd order probability, Dempster-Shafer 
Theory of Evidence

Methods:



DAKOTA UQ Methods

Active UQ development in DAKOTA (new, developing, planned)
– Parameter studies and study design (DoE, DACE, factorial, OA)

– Sampling: LHS/MC, Quasi-MC/CVT, Bootstrap/Importance/Jackknife
trustworthy and robust, often too costly in high dimension

– Reliability: Evaluate probability of attaining specified outputs / failure
MVFOSM, x/u AMV, x/u AMV+, FORM (RIA/PMA mappings),
MVSOSM, x/u AMV2, x/u AMV2+, TANA, SORM (RIA/PMA)

– SFE: Polynomial chaos expansions (quadrature/cubature extensions). 

– Epistemic: Dempster-Schafer: basic probability assignment (intervals); 
Bayesian; 2nd-order probability: combines epistemic and aleatory;

Metrics: Importance factors, partial correlations, main effects, and variance-
based decomposition.



Analytic Reliability Methods
• Define limit state function g(x) for response metric (model 

output, e.g., Fmin) of interest, where x are uncertain variables.
• Reliability methods either

– map specified response levels (perhaps corr. to a 
failure condition) to reliability index β or probability p; or

– map specified probability or reliability levels to the 
corresponding response levels.

Mean Value (first order, second moment – MVFOSM)
determine mean and variance of limit state, translate to from p, β:

simple approx., 
but widely used 
by analysts; also 
second order 
formulations



Analytic Reliability: MPP Search
Perform optimization in u-space (std normal space corr. to uncertain x-space) 
to determine Most Probable Point (of response or failure occurring)

G(u)

Reliability Index 
Approach (RIA)

Find minimum distance to 
G(u) level curve; used for 
forward map z p or β

Performance Measure
Approach (PMA)

Find minimum G(u) for 
specified β radius; used for 
inverse map p or β z

...should yield better 
estimates of reliability 

than Mean Value 
methods



• Limit state linearizations:  use a local surrogate for the limit state G(u) during 
optimization in u-space (or x-space):

Reliability: Algorithmic Variations
Many variations possible to improve efficiency, including in DAKOTA…

• Integrations (in u-space to determine probabilities): may need higher order 
for nonlinear limit states

1st-order:

• MPP search algorithm: Sequential Quadratic Prog. (SQP) vs. Nonlinear Interior Point (NIP)
• Warm starting (for linearizations, initial iterate for MPP searches): speeds 

convergence when increments made in: approximation, statistics requested, design 
variables

curvature correction

2nd-order:

(could use analytic, finite difference, or quasi-Newton (BFGS, SR1) Hessians in 
approximation/optimization – results here mostly use SR1 quasi-Hessians.)
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Shape Optimization of Compliant MEMS
• Micro-electromechanical system (MEMS): typically made from silicon, 

polymers, or metals; used as micro-scale sensors, actuators, switches, 
and machines

• MEMS designs are subject to substantial variability and lack historical 
knowledge base.  Materials and micromachining, photo lithography, 
etching processes all yield uncertainty.

• Resulting part yields can be low or have poor cycle durability
• Goal: shape optimize finite element model of bistable switch to…

– Achieve prescribed reliability in actuation force
– Minimize sensitivity to uncertainties (robustness)

bistable
MEMS 
switch

uncertainties to be considered 
(edge bias and residual stress)



Tapered Beam Bistable Switch: 
Performance Metrics

13 design vars d:
Wi, Li, θi

σ
σ

key relationship: force
vs. displacement

new tapered beam design

Typical design specifications:
• actuation force Fmin reliably 5 μN
• bistable (Fmax > 0, Fmin < 0)
• maximum force: 50 < Fmax < 150
• equilibrium E2 < 8 μm
• maximum stress < 1200 MPa



Optimization Under Uncertainty

Opt 

UQ 

Sim 

{d} {Su}

{u} {Ru}

min
s.t.

(nested paradigm)

Rather than design and then post-process to evaluate uncertainty…
actively design optimize while accounting for uncertainty/reliability metrics 
su(d), e.g., mean, variance, reliability, probability:

13 design vars d:  Wi, Li, qi
2 random variables x: ΔW, Sr

σσ
-5.0

simultaneously reliable and robust designs

Bistable switch problem formulation (Reliability-Based Design Optimization):

min
s.t.



RBDO Finds Optimal & Robust Design

Close-coupled results: DIRECT / CONMIN + reliability method yield optimal
and reliable/robust design:



Summary

• The DAKOTA toolkit includes algorithms for massively parallel 
uncertainty quantification and optimization with large-scale 
computational models.

• DAKOTA strategies enable efficient combination of algorithms, use 
of surrogates, and warm-starting.  

• Uncertainty-aware design optimization is helpful in MEMS design 
where robust and/or reliable designs are essential.

• DAKOTA is a research framework for novel capability such as 
EGRA, an algorithm which closely couples several other algorithms 
to perform effective reliability analysis.

Thank you for your attention!
briadam@sandia.gov

http://www.cs.sandia.gov/DAKOTA
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UQ Challenge: Nonlinear/Multimodal
Limit States

• Calculating β requires solving 
nonlinear equality-constrained 
sub-problem in probability space

• Methods AMV2+ and FORM 
converge to different MPPs
(+ and O respectively)

• Challenge: limit states with 
multiple legitimate candidates for 
most probable point of failure
(need all optima)

• Challenge: local first order 
probability integrations may not be 
accurate enough for nonlinear 
limit state

0.5)(.t.s

min

−== zxg

xxT



Efficient Global Reliability Analysis
• EGRA (B.J. Bichon) performs reliability analysis with EGO (Gaussian 

Process surrogate and NCSU DIRECT optimizer) coupled with Multimodal 
adaptive importance sampling for probability calculation.

• Created to address nonlinear and/or multi-model limit states in MPP 
searches.

Gaussian process model of reliability limit state with
10 samples 28 samples

explore

exploit



DAKOTA/EGRA: Superior Performer

• Most accurate local method under-predicts pf by ~20%
• EGO-based method accurately quantifies probability of failure within 

1% with similar number of function evaluations.
• Pro: LHS accuracy + MPP efficiency without gradients, good tail 

probability resolution
• Con: Exploratory samples wasteful, GP can break down for large 

number of samples or independent variables


