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Design Analysis Kit for Optimization and Terascale Applications
(DAKOTA)
is an SNL toolkit for optimization, uncertainty quantification, and

sensitivity analysis with large-scale computational models
http://www.cs.sandia.gov/DAKOTA

 Survey DAKOTA framework and its key capabilities

e Current and developing capabilities for local and
global derivative-free optimization

 Demonstrate powerful combination of algorithms

Thanks to Barron Bichon, Mike Eldred, and Jean-Paul Watson for slide content.
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DAKOTA Motivation
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Goal: perform iterative analysis on (potentially
massively parallel) simulations to answer
fundamental engineering questions

* What is the best performing design?
« How safe/reliable/robust is it?
 How much confidence do | have in my answer?
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 Black box: nearly any Sandia or
» commercial simulation code

« Semi-intrusive: Matlab, ModelCenter, Python —
\_ SIERRA multi-physics, SALINAS, Xyce  / @ National
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DAKOTA C++/00 Framework Goals

» Unified software infrastructure: reuse tools and common interfaces; integrate
commercial, open-source, and research algorithms

* Enable algorithm R&D, e.g., for non-smooth/discontinuous/multimodal
responses, probabilistic analysis and design, mixed variables, unreliable
gradients, costly simulation failures

* Facilitate scalable parallelism: ASCI-scale applications and architectures

* Impact: Tool for DOE labs and external partners; broad application deployment;
free via GNU GPL (>3000 download registrations)
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Flexibility with Models & Strategies

DAKOTA models map inputs to response metrics of interest:

/variables / params\ ‘ . / responses \

» design: continuous, » functions: objectives,
discrete constraints, LSQ
residuals, generic

*
*

user application
(simulation)
system, fork, direct, grid
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. agc?t:tnaii‘g:rr(rllo?r)l?:rcrallal, : optional approximation (surrogate) » gradients: numerical
triagngular, hi,stogram: e gI_ol?aI (polynomial 1/2/3, neural net, - gnalytic ; ’
beta/gamma, EV |, ", 1] E krlglng’ MARS’ RBF) E e Hessians: numerical

. state: continuous, / : * local (Taylor); multipoint (TANA/3) Cnalytic, c.|uasi /’
discrete " hierarchical, multi-fidelity 5

DAKOTA strategies enable

flexible combination of multiple Strategy

models and algorithms. They /

can be: Optimization lUncertainty|

* nested : N
w OptUnderUnc \\ .
e layered . \
. cascaded UncOfOptimal
2ndOrderProb
e concurrent [Branch&Bound/PICO]

» adaptive / interactive @ Nofto
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Current Derivative-free Methods
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 COLINY (interfaced through ACRO, W.E. Hart, et al.)
— Asynchronous Parallel Pattern Search (APPSPACK; T.G. Kolda, et al.)
— Pattern Search (enhanced with basis and move selection options)
— Solis-Wets (greedy local search heuristic w/ MV Gaussian distribution)
— COBYLAZ2 (Nelder-Mead w/ linear & non-linear constraint support)
— Evolutionary Algorithms (several variants)
— Division of Rectangles (DIRECT)

« OPT++ Parallel Direct Search (PDS; J.C. Meza, et al.)

« John Eddy’s Genetic Algorithms (JEGA)
— Single-objective (SOGA)
— Multi-objective Pareto (MOGA)

 DIRECT (as implemented by J.M. Gablonsky, et al.)

Excepting OPT++, these all support general nonlinear constraints, either
natively or through framework-supplied penalty functions. @ Sandia
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* Developing Derivative-free Methods

 Templatized Metaheuristics Framework (TMF; J-P. Watson)
— Metropolis sampling
— Simulated annealing
— Iterated local search
— Basin hopping
— Variable-neighborhood search
— Elite pool maintenance schemes
— (eventually) Evolutionary computing, constructive heuristics

 Efficient Global Optimization (EGO; B.J. Bichon): Uses a Gaussian
Process model with expected improvement function to manage exploit vs.
explore samples in search of optimum (due to Jones, et al., 1998).

* Direct interface to APPSPACK / NAPPSPACK (Kolda & Griffin):

APPS now supports nonlinear constraints through |,1,,I penalty fns and
solving a sequence of linearly constrained subproblems.
@ Sandia
National
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}- Sample Algorithm Combinations

» Global/local optimization:
perform (1) sampling,
parameter study, or global opt;
then (2) local (gradient or non-
gradient) opt at each promising
point.

» Surrogate globalization of
derivative-free local methods
such as pattern search
(however not close-coupled as
Taddy, et al.).

* Optimization under uncertainty
(MEMS example)

 EGRA: Efficient Global
Reliability Analysis
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- Shape Optimization of Compliant MEMS -

* Micro-electromechanical system (MEMS) made from silicon, polymers, and
metals; used as micro-scale sensors, actuators, switches, and machines

« MEMS designs are subject to substantial variabilities and lack historical
knowledge base. Micromachining, photo lithography, etching processes
yield uncertainty:

— Material properties, manufactured geometries, residual and yield stresses
— Material elasticity and geometry key for bistability
— Data can be obtained to inform probabilistic approaches

* Resulting part yields can be low or have poor cycle durability

* Goal: shape optimize finite element model of bistable switch to...
— Achieve prescribed reliability in actuation force
— Minimize sensitivity to uncertainties (robustness)

actnation force

uncertainties to be considered
(edge bias and residual stress)

variable mean std. dev. | distribution

Aw -0.2 pm 0.08 normal
S, -11 Mpa 4.13 normal
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Tapered Beam Bistable Switch:
Performance Metrics
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Typical design specifications:
- actuation force F_; reliably 5 uN
* bistable (F,_,,> 0, F_,<0)
 maximum force: 50 <F__ <150

max min

» equilibrium E2 < 8 ym
* maximum stress < 1200 MPa
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Optimization Under Uncertainty

Rather than design and then post-process to evaluate uncertainty...
actively design optimize while accounting for uncertainty/reliability metrics
s,(d), e.g., mean, variance, reliability, probability:

Optl | - min f(d) + Wsy(d)
{d}‘ {S,} s.t. g1 < g(d) < gu
- UQ e  __| h(d) = hy
{u}|: _ J{R“} dy < d<dy
Sim
a; < A;su(d) < ay
(nested paradigm) Ae su(d) = ay
Bistable switch problem formulation: 13 design vars d: W, L, g,
2 random variables x: AW, S,
simultaneously reliable and robust designs foree switch
max E [Frin(d, x)] F comaet
S.t. 2 < ﬁccdf(d) s
50 < E[Fma(d,x)] < 150
E[Ex(d,x)] < 8 E R
E [Smaz(d,x)] < 3000 "
-51;0_ 0N g displacem




Reliability Formulation Results

— MVFOSM
v =SS AMVEE |
vy | T target force

6.5 7 7.5 8
displacement (um)

displacement (um)

Mean Value overpredicts the reliability \
metric N\ MVFOSM [ AMVZ+ FORM
.b. name u.b. | initia\ & || optimal d3, | optimal d* | optimal d%.
E [Foin] (uN) -26.29 | -5.896 -6.188 -6.292
2 3 5.376, [ 2.000 >+ 1.998 1.999
50 E [Frnaz) (uN) 150 68.69 \ 50.01 5767 57.33
E [E>] (um) 8 4.010 \ 5.804 5.990 6.008
E [Smaz] (MPa) | 1200 470 1563 1333 1329
AMVZ+ verified 3 3.771 |\ 1.804 N| - - Sandia
FORM verified (3 3.771 [\ 1.707 J |7 1.784 - @ Blaagmtlms
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}I Nonlinear/Multimodal Limit States

Insight from parameter study over 3o uncertain variable range
for fixed design variables d,,*. Dashed black line denotes

9(x) = Fpin(X) = -5.0.

« AMV?+ and FORM converge to
different MPPs
(+ and O respectively)

« Challenge: limit states with
multiple legitimate candidates
for MPP

» Challenge: local first order
probability integrations may
not be accurate enough for
nonlinear limit state
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residual stress S (MPa)
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-~ Efficient Global Reliability Analysis

« EGRA (B.J. Bichon) performs reliability analysis with EGO (Gaussian
Process surrogate and NCSU DIRECT optimizer) coupled with Multimodal
adaptive importance sampling.

* Created to tackle nonlinear and/or multi-model limit states in MPP searches.

Gaussian process model of reliability limit state with
10 samples 28 s/a_Qples

/) .

Ve exploit

y explore
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AKOTA/EGRA: Superior Performer

D

First-Order py
(% Error)

Second-Order py
(% Error)

Sampling py

(% Error,

Avg. Error)

Reliability Function
Method Evaluations
No Approximation 66
x-space AMV?2+ 26
u-space AMV?2+ 26
x-space TANA 506
u-space TANA 131
x-space KGO 50.4
u-space EGO 49.4
True LHS solution 1M

0.11798 (276.3%)
0.11798 (276.3%)
0.11798 (276.3%)
0.08642 (175.7%)
0.11798 (276.3%)

0.02516 (-19.7%)
0.02516 (-19.7%)
0.02516 (-19.7%)
0.08716 (178.0%)
0.02516 (-19.7%)

0.03127 (0.233%, 0.929%)
0.03136 (0.033%, 0.787%)
0.03135 (0.000%, 0.328%)

* Most accurate local method under-predicts p; by ~20%

« EGO-based method accurately quantifies probability of failure within
1% with similar number of function evaluations.

* Pro: LHS accuracy + MPP efficiency without gradients, good tail

probability resolution

» Con: Exploratory samples wasteful, GP can break down for large
number of samples or independent variables
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Conclusions
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 The DAKOTA toolkit includes algorithms for uncertainty
quantification and optimization with large-scale computational
models.

« DAKOTA strategies enable combination of algorithms, use of
surrogates and warm-starting, and leveraging massive parallelism.

* Uncertainty-aware design optimization is helpful in MEMS design
where robust and/or reliable designs are essential.

 Advanced analytic reliability techniques may offer more refined
estimates of uncertainty than sampling or mean value methods and
may be more suitable in an optimization context.

* Nonlinear limit states present in engineering applications present
challenges for approximation and integration methods.

* Further UQ and OPT capabilities are in development as is
deployment to additional applications.

Thank you for your attention!

briadam@sandia.gov Sncia
http://www.cs.sandia.gov/DAKOTA @ Ratonal
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