SAND2006-2256
Unlimited Release
Printed April 2006

Nonlinear algebraic multigrid for constrainedsolid mechanicsproblems
using Trilinos

MichaelW. Gee
Computational Math & Algorithms
Sandia National Laboratories
PO Box 5800, Albuquerque, NM, 8718310

Ray S. Timinaro
Computational Math & Algorithms
Sandia National Laboratories
PO Box 0969, Livermore, CA, 94551-0969

Key words nonlinear multigrid, algebraic multigrid, smoothadgregation, nonlinear systems of equations,

full approximation scheme, nonlinear conjugate gradients, Nesvinathod

Abstract

The application of the finite element method to nonlinear solid mechanics problems results in the neccessity
to repeatedly solve a lge nonlinear set of equations. In this paper we lounitself to problems arising in
constrainedsolid mechanics problems. It is common to apply some variant of Newtethod or a Newton—

Krylov method to such problems. Often, an analytic Jacobian matrix is formed and used in the above mentioned
methods. Howeveif no analytic Jacobiais given, Newton methods might not be the method of choice. Here,

we focus on a variational nonlinearultigrid approach that adopts the smoothed aggregation algebraie multi
grid method to generate a hierachfcoarse grids in a purely algebraic manér use preconditioned nondin

ear conjugent gradient methods and/or quasi—-Newton methods as nonlinear smoothers on fine and coarse grids.
In addition we discuss the possibility to augment this basic algorithm with an automatically generated Jacobian
by applying a block colored finite dérencing scheme. After outlining the fundamental algorithms we give
someexamples and provide documentation for the parallel implementation of the described method within the
Trilinos framework.

Acknowledgment

This work was partially fundety the Department of Erggr Office of Science MICS program at Sandia Nation

al LaboratorySandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Compa
ny, for the United Stated Department of Eynes National Nuclear Security Administration under contract DE—

AC04-94AL85000.

M.W. Gee, R.S. timinaro

(pageintentionally left blank)

M.W. Gee, R.S. timinaro

1 Intr oduction and problem definition

The applicationof the finite element method to nonlinear solid mechanics problems results
in the necessity to repeatedly solve a nonlinear function

F(x) =0, 1)

whereF : RN — RN usually is a vector of residual forces anid a vector of primal variables
suchas nodal velocities or displacements. In faper we limit ourself to problems arising
in (contrained) nonlinear solid mechanics though the given methods and algorithmbamight
applicableto other types of nonlinear problems as well.

It is common to apply somariant of Newtors method or some kind of Newton—Krylov
methodto Eqg. (1). Vith the exception of matrix—free Newton type algorithmg; i differen-
tiable at x, a Jacobian

I(x) = [Jij](x) - 2—';_‘(x) ()

is formed and used in the Newton— or Newton—Krylov type algorithm [14]. Tieselitiation

canbe performed analytically in some cases, or the Jacobian can be formed by a numerical
finite difference approximatioto the diferentiation. Newton type methods in general have
very good convegence characterictics but are not guaranteed to gmvEne initial estimate

X has to be sfitiently close to the solution and the Jacobidmas to be a sfifiently good
approximation to Eq. (2). Here, we focus on cases were either @ma¢h of these conditions
arenot met so that Newtan'method might not be an appropiate choice.

Besides these Newton type methods, there exist several other solution approaches as e.g.
the nonlinear Gauss—Seidel algorithm [6], preconditioned nonlinear conjugate gradibent
od (nonlinear CG) [2] or nonlinear multigrid schemes [3],[6].

We focus on a variational nonlinear multigrid approach called the full approximation
schemgFAS) that adopts a smoothed aggregation algebraic multigrid method [18],[19],[20]
to create prolongation and restriction operators between grids in a purely algebraic manner
No coarse grid discretizatios$ the underlying problem have to be provide@. ¥8e nonlinear
CG and/or quasi—-Newton methods as nonlinear smoothers and approximate nonlinear solvers
onfine and coarse grids.

In addition we discuss the possibility to augment this basic algorithm with an automatically
generatedacobian by applying a blocklored finite diference scheme. kM this capability
insidethe nonlinear solvethe underlying applicatiodoes not have to provide any Jacobian
to themultigrid algorithm. The algorithm is therefore suitable to use in applications that merely
havefunctionalityto evaluate residuals at a given current solution state as would usually be
the case in purely explicit time integration codes.

3

M.W. Gee, R.S. timinaro

Underlyingtheory andalgorithms are discussed briefly in this article. The emphasis lies on
the usage of the implementationtloé proposed algorithm in parallel within the software-proj
ectTrilinos [9] and on the discussion of the several metrarthnts that can be usede\pe
vide two examples comparing several choices.

The implementation makes use of severdlrdinos subpackages, most importantly the
algebraicmultigrid packag®/lL [15] and the nonlinear solver packdg@X [16]. The present
ed method is implemented il and uses its algebraic multigrid hierarddgnlinear smooth
ing and solution methodswell as the interface to an underlying application code are derived
from theNOX package.

This article is oganized as follows. In Section 2 through Section 6 we present the proposed
nonlinear multigrid algorithm and pay special attention to its building blocks. In Section 7 the
usage of the method for problems with constraints is discasgbd Section 8 two examples
aregiven. Section 9 serves as a detailed documentation of the implementation of the method
and we conclude in Section 10.

2 Smoothed aggegation multigrid (SA)

A multigrid solver tries to approximate the origifdDE problem of interest on a hierarchy
of grids and uses approximate solutions from coarse grids to accelerate thgesmesen the
finestgrid (which is the one of interest)o To so, a basie in this case nonlinear — iterative
methodhas to be applied on each grid whicleetively smooths out the error associated with
the current approximate solution on that grid.

The prolongationP and restrictionR (operatorsthat transfer solutions, residuals and
correctiondrom coarse to fine gridsnd vice versa, respectively) are the key ingredient and
are determined by the smoothed aggregation method, for details see [18],[19],[20]. The user
does not need to supply any hierarchy of coarse discretizations. Hpweadvantageous
to supply some extra information about greblem, namely the kernel of the fine grid Jaco
bianneglecting any Dirichlet boundary conditions. In the case of 3D—eladtatiernel con
sists of six vectors describing the rigid body modes of the objetteoést neglecting Dirichlet
boundaryconditions. Computing these rigid body modes ispaot of the presented imple
mentationthough details on how to compute them from nodal coordinates fafi¢hgrid are
givenin Section 9.2. The actual fine grid Jacobian is not needed to compute rigid body modes.

Theimplementation of the presented method also providesaftebilitiy to use an adaptive
smoothedaggregation procedure$A) [4] to identify additional near nullspace modes that
arenot well captured by an existing multigheerarchy These additional adaptively computed
modesare then added to the nullspace and this enriched near—nullspace is used to recompute
a multigrid hierachy with improved approximation and cogeace properties.

As the adaptive smoothed aggregation multigridcedureausedinear v—cycles to deter

4

M.W. Gee, R.S. timinaro

mine additional nullspace mod&s the setup phase it is inexpensive compared to the actual
nonlinear iteration to be performed. It is therefore especially suit@biese in the nonlinear
setting,which does not always hold when usedinear multigrid methods. An example of
the adaptive smoothed aggregation approach is given in Section 8.3. The usage Twith the
nos implementation is described in Section 9.5.

Systemsof equationgesulting from finite element or other types of discretizations have a
sparsenodal block structure. When the underlying application retains degrees of friiedom
are prescribed by Dirichlet boundary condition within the system, the nodal blockssize
constanthroughout the system. Howeyeome applications condense rows and columns as
sociatedwith Dirichlet boundary condition from the system of equations resulting in a variable
block size. In those cases it is beneficial or even necessary to gvtividéh additional infor
mationabout the block structure of the problevtl. supports variable blocked systems in the
generatiorof the multigrid hierarchy when didient information is provided. Building and
providing nodal block information as well as choosing the correct input parametdft fer
describedn Section 9.2.

3 Full approximation scheme (RS)

Thealgorithm is described for a nonlinear multigrid V—cycle, which indicates the order that
coarse grids are visited and how they contribute to the solut®ns@é/a classichlll approxi-
mation scheme (FAS) [3],[6], that can be showto reduce to a standard linear V—cycle in the
casethat the nonlinear functioR in Eg. (1) is in fact linear (see Remark 2).

In this paper sub— and superscriptl, , ()V in parenthesis indicate a grid in the multigrid
hierarchywith | = 0 being the finest gridndL is the number of grids to be used. In the follow
ing, the FAS V—cycle is explained as a 2—grid method chooking 2. Introducing an iterate
index k we can rewrite problem (1) on the fine grid as a series of iterates such that

Flofxo) = 0. 3

We introduce a nonlinear smoothing metlﬁ‘gg(F(l
the presmoothed fine grid iterate

y (,)) to be applied’, times and obtain

FK (4)

(0= SylFloy)

X (0) (0)(

Restrictingthe current solution vectot ©) and the current re5|du&|(0)(~ (0)) to the next
coarsemgrid yields

@) 1) 5
Xay = RGX(o » Fao = R()F(O)((0)) ®)

We omit the iterate index k on all coarse grid variables for clarity
A modified coarse grid problem

M.W. Gee, R.S. timinaro

F(l)(x(l))"é(l)(7(1)) +Fq — 0 (6)

is set up, wher€ 4, is obtained from Eq. (5) and

F(Xw) = ﬁ(R(l) % K (7)

() (0)) '

f(l) : F (1) are fixed quantities throughout the nonlinear smoothing iterS@applied to Eq.
(6)

X @< S?i)(F(l)‘ Fo + Fo ’X(l)) - (8)

The nonlinear functiorF is evaluated in a variational way on all coarse drigs0. Specift
cally,

— | 0
Folxo) = R8)F(0)(PE|)) Xa)) L 1>0, 9)

wherePg()) prolongates from levétto level j and Rg‘)) restricts from levej to level k. Specif

cally

pO) = pO) p(1) pl-1)

10
U] @ @70 ’ (10)

RO — pOT

11
©) (Ol (1D

and RE:)_Tl) = PE:)‘ 1) correspond to themoothed aggregation multigrid hierarchy discussed

in Section 2.

Remark 1: Operators Pglo)) , R?g) are never explicitly formed. Instead, Eq. (10) is applied.
Giventhe nonlinear smoothed coarse grid itev"agg, a corrections calculated and added to
the current fine grid solution using the interpolation operator:

ek gk Ofg . —x 12
X< Xo T P(l)(x 1) X(l))- (12)

Applying a postsmoothing step

k+1<_SV2(Fk g k

13
X(0) O\ 0y (0))' (13)

v, times finalizes the V—cycle. Fig. 1 gives the compl&& Bolver scheme for the general
caseL = 2. Therein,F, denotes the residugstricted to level which remains unaltered
throughoutthe pre-and postsmoothing steps . The number of smoothing Bieplv, can
be chosen independently on each grid. Choosgjng v, on each grid results in a symmetric

6

M.W. Gee, R.S. timinaro

V—cyclewhich is normally recommended for symmetric problems in the linear case. Choosing
v, # v, results in a nonsymmetric multigrid operator which can be comptetitive with respect
to performance in the nonlinear case.

FAS Vcycle (f(,) , Xayo 1)

if 1=0
Presmooth Xy <= SZI;(F(,) : x(,))
ese
Fo < FolX) L
endif
if | <L—1
_ I1+1
Xo+1) = RED %)
_ I1+1
Farn = R,)F(I)(X(I))
FAS Veycle (Fgiqy, Xgipy, | + 1)
|
X0y < %o + PR,y X0 +1)
endif
if 1=0
Postsmooth Xy <= SZI;(F(,), x(,))
else . B
Xy < X — X
endif
return

Figure 1: AS V-cycle as a solver

Thefull approximation scheme V—cycle calso be easily formulated as a preconditioner
to some outer nonlinear iteration, e.g. nonlinear CG. The V—cyclp@sanditioner is given
in Fig. 2. TheML implementation supports both versions.

Remark 2: When F , islinear and an exact coarse grid solve is used the algorithm corresponds
to the usual multigrid scheme. In particular:

Fo)=bo —AoXo » Fu = ba) — Aaxw- (14)

Substituting Eq. (14) into (6) we get

7

M.W. Gee, R.S. Iminaro

_ 1 1
by — A Xw = bay = Aw RE X0 = R (be) = AoX) (15)

— 1 1
Ay Xa) = A RE X0 + RY (b = ApX() (16)
Multiplying by an exact coarse grid solve A(‘l)1 fromthe right yields

_ 1 -1 1
Xa) = R X0 + Agl RY) (boy — Awxo)) (17)

Substituting thisinto Eq. (12) yields the usual linear multigrid coarse level correction
0)aA-1(RE
X0) < X0 + PR) A (R§0§ (b(O) - A(O)X(O))) : (18)

The proposed method is matrix—free in the sense that the application doeesdiat supply
aJacobian. A Jacobian or some approximation to it can be constructed internally ldiffinite
ferencingand used in the smoother or for the coarse grid solve. It is though always beneficial
if the underlying application is capable of providing a Jacobian. Analytical Jacobians are of
betterquality than obtained by finite d&rencing and the finite ddrencing process is a high
percentag®f the overall setup cost of the method.

FAS Vcycle p (f(,) , Xy 1)

Foy= F(I)(’T(I))

if <L-1

_ I1+1
Xo+1) = RED %)

_ I1+1
Farn = R,)F(I)(X(I))
FAS Veycle p (Fyqys Xgegy, | +1)

|
X@y < X + PQ, 1 %a+1)
endif
Xoy <= Xay = Xq)
return
Figure 2: AS V-cycle as a preconditioner

4 Nonlinear conjugate gradient method (nonlinear CG) as a smoother and solver
The preconditioned nonlinear CG method [2],[7],[8] is adopted as one choice of a nonlinear
smoother/solvein the hierarchy of grids. It can also be used as an outer nonlinear Kryloav meth

8

M.W. Gee, R.S. timinaro

od to which the presented nonlinear algebraic multigrid is dpgtied as a nonlinear precondi
tioner. Given the nonlinear problem'(j)(x'(j)) from Eq. (1) on some grif) with k = 0,..., N
asiterate index a search direction

sktl=M-1Fk k=0, (19)

L= M-Ipk4 gk | k>0 (20)
is computed omittinghe grid identifier(l) for clarity, whereM is alinear preconditioner and
B results from the so called Polak—Ribiére formula
FKT M —1(|:k — |:k—1)
T T EK-ITM-Lpk-1
In the casqb’k < O the iteration is restarted using Eq. (19). A new iterate

= Xk gkt (22)

K (21)

Xk-i-l

is computed using the line search parameter

KT ok
ak = F_s . (23)

Theiteration terminates when a user provided cagereze criterid F ||, < e is met or a pre
scribedmaximum number of iterations is reached.

Except for thdinear preconditioneM to the nonlinear CG, no Jacobian is used to generate
asearch direction as would be the case in linear CG. The implementation of the offettsod

a variety of choices favl, e.g. damped Jacobi, domain decomposition symmetric Gauss—Sei
del, Chebychev polynomials and a LU—factorization, see Section 9.5. All of them except for
the Jacobi preconditioner need a Jacobian for construction. If one sweep of damped Jacobi pre
conditioningis chosen by the usgust the main diagonal of the Jacobian is necessary and can
be efficiently constructed using finite dé@rencing.

Thoughnonlinear CG has been proven to be inferior to Newtor®thod with respect to con
vergenceates in [2], it is more reliable if the approximatiorihie Jacobian is not of high quali

ty and/or the initial guess is far from the solutiorml$bis of low computational cost and might
actually be very étient depending otheefficiency of the underlying application in evaluat

ing the residual.

Remark 3: Code that has been designed for explicit time integration usually does not have a sup-

porting infrastructure to compute and assemble Jacobians.On the other hand, such
applications usually compute residual vectorsin a very efficient way.
Thus, nonlinear CG (even though it generally takes more iterations than some Newton
type method) might actually be the nonlinear smoother of choice. Our numerical stu-
dies also indicate that it seems to be less sensitive to poor quality approximations to
a Jacobian than the quasi—Newton method, as the Jacobian is used in the construction
of the linear preconditioner to the nonlinear CG only.

9

M.W. Gee, R.S. Iminaro

5 Quasi—Newton method as a smoother and solver

The implementation of the proposed variational multigridrsfa choicef two types of
guasi—-Newtommethod. Théirst is a simple modified Newton method (with a guaranteed lin
earconvegence rate), where the Jacobiffris computed or provided in the setup phase of the
multigrid and is used throughout the iteration on some ()id

AxK = —(JO)‘lF(xk) , XL = xKk gy Axk | k= Kk + 1(24)

The second is matrix—free Newton—Krylowhere the matrix—vector product of the Krylov
solveris approximated by

F(xk + oy)—F(xk)
5 ;

ando < 1is a perturbation parameter

As a linear solver insidéhe Newton iteration a preconditioned linear Krylov method is
used.As preconditioner to the Krylov solveyne of the methodsentioned in Section 4 can
be chosen. Additionallythe number of Krylov iterations and Newton iterations can be limited
separately on each grid to allow for incomplete solves, see also SectiN@H.provides the
implementationof Newtons methodusing theAztecOO [10] packages implementation of
parallelpreconditioned Krylov iterative methods.

Ky = (25)

6 Block colored finite differencing of Jacobian operators

As some applications might not provide a Jacobian matrix, the construction of a Jacobian on
somegrid (1) can be performed using a parallel block colored finitieiihce scheme. The
minimum requirement to thenderlying application is therefore to provide a graph (sparsity
pattern) of the problem on the fine grid, see also Section 9.5.

Scalarentries of the tangent Jacobian operator are approximated by a secant. So €alled for
ward differencing evaluates

_OF, N Fi(X + 6(—}1) - Fi(X)

i =% = 5

L d=alxl+8, (26)

wheree is thejth unit vector and is a scalar perturbation value computed from user chosen
parameters: and . Forward finite diferencing needsl + 1 evaluations of the residual.
Central finite diferencing evaluates

_ i oe) — Fi(x—96
Jij=g—l;'z|:(x+ (-}J)ZéF(x q)’ (27)

10

M.W. Gee, R.S. timinaro

and provides second order spatial accuracy at the c@st ef 1 evaluations of the residual
vector.Both methods cannot be used in thegiral form as the computationadst is immense
andscales quadratically with respect to problem size. Therefore, the protdpmis colored

using a parallel distance—2 coloring scheme such that every colored node of the graph does not
share a neighbor with any other node of the same éotgnaphical illustration of a distance—2
coloring of a structured graph is given in Fig. 3.

O O
Figure 3: Distance—2 graph coloring

All entries sharing &olor can then be evaluated at the same time reducing the number of
residualevaluations to the number of colors. The distance—2 coloring process s@(lblb%)s
whereb is the maximum bandwitbf the graph andll is the problem size. The coloring is per
formedexploiting the nodal block structure of the problem resulting fiteerfinite element
nature of the problem. By building a nodal block graph, which is smaldamwell as irb
by the factom, wheren is the numbeof degrees of freedom per node, the coloring cost can
bereduced ta@® Nn—tf . This proved to be fdrdable in all tested applications. Note that while
the actual parallel coloring is performed by Tnginos subpackag&petraExt [12], the nodal
block collapsed coloring wrapper is currently implementelin

7 Nonlinear systems of equations with constraints
The nonlinear multigrid method can also be used to solve nonlinear systequeattbns
with constraints

F(x) + CA =0, (28)
subject to
C'x =0, (29)
were/ is a set of Lagrange multipliers a@ds a matrix representation of constraint equations.

Suchconstraints can arise from e.g. contact formulations, mesh—tying and pboaddary

11

M.W. Gee, R.S. timinaro

conditions.

Thesolver is designed to operatexonnly expecting the underlyirgpplication to perform
neccessargonstraint enforcement. It has to be guaranteed that the current iterate and initial
guesssatifiy constraints Eq. (29) and the residual is evaluated according @8Ed\ote that
convergencenight deteriorate whe@ is nonlinear

Specialcareshould be taken in the construction of the Jacobian matrix used to build the mul
tigrid hierarchy and the smoothing operators. The Jacobian (gradiensibuld at least satis
fy the constraints approximateljhis can be achieved by either using a penalty approach for
the constraints or by using the colored finitdeliéncing process described in Section 6, where
Eqgns.(28) and (29) are applied to the probe vector and residual, respectively

In the latter case of colored finite f/@ifencing for an approbiate Jacobian, a graph centain
ing all potential Jacobian entries foonstraints has to be supplied and is used in the coloring
andfinite differencing process.

mesh—tying/contact

constraint T e s
4)
0
a) Wrorg gaph oloring & it would b) Corred¢ graph loring an
appea withou additiond constrair constraint—modifid gaph
information

Figure 4: Distance—2 graph coloring of constraint—modified graph

It is requested by the implementation of the method througheh&bdi f i edG aph()
methoddescribed in Section 9.2. The way in which the graph has to be modified depends on
the type of the constraints and is not prescribed by the solver

12

M.W. Gee, R.S. Iminaro

By way of example we describe the graph modification when strong local contact or mesh
tying constraints are considered. Fig. 4a shows the graph of a preblereone slave node
is constrained to two master nodAs.the multigrid algorithm operates on primal degrees of
freedom onlythegraph of the problem does not contain any information on this constraint.
Therefore the distance—2 coloring process will not considerctivestraint and construction
of a finite diference Jacobian using this coloring will lead to the wrong result.

The application therefore has to supply a modified graph of the problem as given in Fig.
4b. This graph coloring will result in a Jacobian were constraints are handled cohmecaise
of non—local or variational constraint formulations such as e.g. Mortar methods [2bptree
describedcorrect graph modification might be elaborate or impossible to form. In such cases
it is better to rely on the specific properties of the constraint formulation to form a Jacobian
that is definite.

In the nonlinear multigrid V—cycle described in Section 3 the residual is evaluated in a varia
tional form Eq. (9). Given a current |terax%0) and matching re&du&l'(‘o) let us assume the
underlyingapplication has some method to enfccroastralntiﬁ(o) x(o) — X(oy such thak(o)
satisfies Eq. (29) anBX ©) matchlngx(o) is computed from Eq. (28). Then, constraints on coarse
grids| > 0 are enforced in a variational way

- e 0
F(')(X(')) - R8) Fo (@«»PE.)’ X(l)) ! (30)
7. = R 0
X0 = Rﬁc?)@ PEI))X (31)
in each nonlinear smoothing step, waé%) RO were defined in Eqns. (10) and.{1

©)
As prolongation and restrictiaperators obtained from the smoothed aggregation-multi

grid method do not conserve the scaling of the iterate in Eq. (31) due to

| 0
R8) PEI)) = 13, (32)

the scaling o, is suboptimal. This issue is subject to current research and improvement.
Constrainecenforcement has to be explicitly turned on in the parameters for the nonlinear
preconditioneias described in Section 9.5.

13

M.W. Gee, R.S. timinaro

8 Examples

8.1 One dimensional example

This simple example discretizes and solves

g—i‘z‘—lo%?:o L 0=0[01, ux=0=1, ux=1)=0 (33
using linear finite elements. It is also provided as a user example with the distribution of
Trilinos/ML, see Section 9.6.

We fix the size of the generated coarsest grid to be 3000 equations and the coarsening rate
tobel : 3for each level. This leads to an increase in the numlseranée grids as the problem
size is increaselly refinement. W use colored finite dérencing to obtain a fine grid Jacobian
matrix from which a smoothed aggregation multigrid hieraclgeiserated. W denote this set
of choices as “®frsion I in Fig. 5. As nonlinear smoothers, we select a polynomial smoother[1]
preconditionedhonlinear CG where the polynomial order is chosen as 4 on all gridkeOn
coarsesgrid, we use nonlinear CG preconditioned by a LU factorizatidimeovariational coa
resestevel Jacobian. Wapply a nonsymmetric V—cycle skipping all presmoothing steps on
all grids toavoid the presmoothing residual evaluations, applying 6 iterations on the coarsest
grid, 2 postsmoothing steps on every intermediate grid and 3 postsmoothing stepestthe
grid, respectivelyAs convegence criteria, an absolute residual norm of 1.0e-07 is chosen.

10005 5 ,
. t [sec] | total 5ol iferations
1 Versian |: nonlinea MG
| Versin II: linea MG residubieval. |
404
100- total |
] 30
1 residualeval. |
104 20-
] KX XXX
i 10+
. unknowns 0 unknowns
40000,00 400000,00 4000000,00 500000 1000000 1500000

Figure 5: Solution times

14

M.W. Gee, R.S. Iminaro

A second variant denotedéksion II' in Fig. 5 uses lanear multigrid operator as a precon
ditionerto an outer nonlinear CG. A polynomial smoother of degree 3 is used on all grids ex
cept for the coarse grid where a direct solve is applied. The Jacogmmeiatean the fine
grid using finite diferencingand a smoothed aggregation multigrid hierachy is constructed as
before.

Fig. 5 provides total solution timé@scluding setup and time spent in the residual evaluation
aswell as number of outer nonlinear CG iterations taken for various refinements. All times
wereobtained on a dual Xeon 3.6 GHz machine.

It can be seen that in this case using a standard linear preconditioner is superior over the
nonlinearvariant.For both versions, the number of nonlinear CG iterations remains constant
while increasing the problem size. It is not so easy to see in this picture but the overall time
for the nonlinear multigrid (&fsion) increases faster then the time spent in the residual evalu
ation. This is due to the variational evaluation of the nonlinear function on coarse grids, see
Eqgns.(9) and (10). As the problem size increases and more coarse grids are added, the transfer
of the current iterate on some coarse grid to the fine grid and the transfer of the residual vector
backto the coarse grid gets more expensive as more intermediate grids exist. It is therefore
recommendetb use as few grids as possible by e.g. applying aggressive coarsening strategies.
As will be shown irthesecond example in Section 8.2, the nonlinear algorithm is more attrac
tive for problems with severe nonlinearities and ill—conditioned Jacobian matrices.

8.2 Three dimensional example

As asecond example, a thin walled half sphere is studied which is discretized using a nonlinear
largedeformation hybrid three—dimensional shell formulation [5].

The sphere is loaded by an internal hydrostatic pressure load (which also is nonlinear) in
atransient analysis. Snapshots of the deformation and simulation parameters are given in Fig.
6. Due to the high radius to thickness ratio and the fact that the thickness change of the sphere
wall is taken into account by the shell formulation, the Jacobian operator shows severe ill-con
ditioning.

We study three versions of nonlinear and linear multigrid preconditioners. In Fig. 7,-the ver
sions are described and solution times including the setup phase and iteration numbers are giv
enfor each nonlinear solve.

Versions Il and 11l which are the nonlinear multigrid V—cycles perform best with respect
to time in this example. Thougkersion I, which is the linear multigrid precondition@er
forms competitively at the beginning of the simulation, its number of iterations starts mncreas
ing drastically around time step 140 as soon as the nonlinearities get more severe. The number
of iterations of versions Il and Il remain low up to the end of the simulation time. The-signifi
cantincrease in the number of iterations at the end of the simulation te theeappearance

15

M.W. Gee, R.S. timinaro

of dynamic buckling of thetructure which should make an adjustement of the time step size
necessarnat that time.

— shel discretization includes
thicknes dange d shel wall

— radiss / hicknes = 10

— Ogda hyperelastt materid

— hydrostat internd pressue load

— 19958 guatiors

— implicit nonlinea dynamtc analyss
(generalized—alpha—method)

— 1B load 4eps At = Q01 sc

t = 1.93seC

Figure 6: Half sphere under hydrostatic pressure

16

M.W. Gee, R.S. timinaro

10000+ 100-— _
1 [sec] iterations
i 80-
1000-
60
100+ i
40~
104 |
] 20-
1 time step |
1 T T T T T O T T T T T T T T
0 40 80 120 160 200 0 40 80 120 160 2C
Versian | Versian I

3 gid linea MG preconditioner
orde 4 poly. snoothe on fine gid
3 svees ymmetrc Gauss—Seide
on medium gid

LU factorizatio on coar® gid

Versia Il

3 gid ronlinea MG preconditioner

2 gep quasi-Newta methad an dl grids
preconditiond GG & inea slver

orde 4 poly. snoothe on fine gid

3 svees DD—symm Gauss—Seide

on medium gid

LU factorizatio on coare gid

— 3 gid ronlinea MG preconditioner

— preconditiond monlinea CG smoother
on dl grids

— orde 4 poly. snoothe on ine gid

— 3 svees DD-symm Gauss—Seide
on medium gid

— LU factorizatio on coare gid

Figure 7: Solution times

8.3 Three dimensional example with adaptive smoothed agggation

We consider the example from Section 8.2 but significametiyice the mass term in the non
linear system to increase ill-conditioning even furtfiéris leads to amcrease in iteration
numbersand overall solution time compared to the example in Section&.&ow Il of the
nonlinearmultigrid algorithm described in Fig. 7 is applied with and without the adaptive
smoothedaggregation setup procedure [4] described in Section 2.

17

M.W. Gee, R.S. timinaro

— in dock—wise ader. first, cord
and third rear—nullspae node
— 3 leve adaptive nultigrid etup
using ymmetrc Gauss—Seideand
20 V—cycles an dl levek © determire
near—nullspae mmponents

Figure 8: Near—nullspace modes from adaptive smoothed aggregation setup

An initial smoothed aggregation multigrid preconditioner is constructed based on the 6 rigid
body modes of the structure and the adaptive smoothed aggregation procedure is applied to
computean additional 3 near—nullspace modes visualizddg. 8 that are not well-captured
by the existingnultigrid preconditionerThe initial 6 rigid body modes together with 3 adat
pively computed near—nullspace modes are then incorporated in a refined multigrid hierachy
which is then used in the nonlinear multigrid iteration described in Section 3.

Iteration numbers and solution times that include all setup costs are gikan for a
simulationapplying 123 time steps.

In Fig. 9 the overall solution time benefits from the adaptive setup even thwarghs a
significantly higher setup cost for the adaptive multigrid hierachy in each time step and
slightly increased cost for the application of one nonlinear V—cycle. The pealathla¢ seen
in Fig. 9 at time step 65 is due to geometric buckling phenomena which drives the determinant
of the Jacobian close to zero thus significantly increasing the condition number of the problem.

Remark 4: Efficieny can be increased even further if the once computed near—nullspace modes
areresused in several consecutive solves as the setup procedure of the adaptive smoo-
thed aggregation method contributes a major component to the overall solution time.
This approach was not used here to demonstrate competitiveness of the adaptive me-
thod in each individual solve.

18

M.W. Gee, R.S. Iminaro

It can also be expected that the benefit fromatteptive procedure is even higher in the
caseof more complex models with e.g. jumps in material fi@ehts, where algebraically
smoothsolution components are less well captured by the stasahothed aggregation mul
tigrid approach.

1400 30— _
1 [sec] iterations
1200- |
1000-
204
800-
1 HAE SA
i S SR
) 10-
i . adaptie A
200- adaptie A P
time step
O T T T T O T T T
0 40 80 120 0 40 80 120

Figure 9: Solution times with adaptive smothed aggregation setup

9 Implementation documentation

9.1 Availability and configuration of Trilinos and ML

The proposed algorithm is part of tML [15] package within th&rilinos [9] framework.
It is contained in tharilinos developer version and Tmilinos 6.0 and later releases. Note that
this report refers to thé&rilinos 6.0 version of the code.

—enabl e—ni —wi th-m _netis —Wwi t h—m _nox
—enabl e—nox —enabl e-nox—epetra —enabl e—prerel ease
—enabl e—epetra —enabl e—epet r aext

—enabl e-t euchos

—enabl e—azt ecoo

—enabl e—anesos

—Wwi t h—I df | ags="-L/ <METI S_PATH>"

—Wi t h—i ncdi rs="—I/<METI S_PATH>/ Li b”

—Wwi th—libs="-lnmetis”

Figure10: ConfiguringTrilinos for use of nonlinear MG

As the method makes use of severdllinos subpackages such B, NOX, Epetra and
EpetraExt, Trilinos has to be configured such that all neccessary subpackages are peesent. T

19

M.W. Gee, R.S. timinaro

do so, the configure options given in Fig. 10 should be included ifrtheos configuration.
For general installation and usage instructionslfainos andML, see [9] and [15].

In some choices of aggregation schenviis makes use of the third patilprary Metis [13]
not contained in thelinos distribution. Theuser has to provide tivetis library when con
figuring and compilingTrilinos, see Fig. 10.

9.2 The application interface

Theinterface between an underlying nonlinear application and the nonlinear muytegrid
conditioneror solver is entirely contained in a virtual class called
M__NOX: : M._Nox_Fi nei nt er f ace contained in the file
Trilinos/packages/ m/src/NonlinM/mM _nox fineinterface.H.

Theuser has to provide an implementation of this virtual class. Data from the solver such
ase.g. thecurrent solution iterate will be passed to the underlying application through-this in
terfaceand the application has to provide information such as a residual vector or a graph of
the problem to the solveThe virtual clasdL_NOX: : M__Nox_Fi nei nt er f ace itself in-
heritsfrom three diferent types oNOX's interface classes.

Remark 5: It shall be stressed that all data passed to and from the solver through thisinterface
refersto the finest grid which isthe one the user isinterested in solving. No data asso-
ciated with any coarse grids nor a coarse grid interface need to be provided as data
is passed to coarse grids through automatically generated coarse grid interfaces that

obtain data from the described fine grid interface. Most data is passed as Epetra distri-
buted objects. Please refer to the Epetra user manual [11] for a detailed description.

In the following, a brief description of the methoddMn NOX: : M._Nox_Fi nei nt er -
f ace is given. Pure virtual methods have to be implemented by thes asgived class.

20

M.W. Gee, R.S. timinaro

vi rtual

bool conputeF(const Epetra Vector& x, Epetra_ Vector& FVec,
Fill Type flag) = O;

Thesolver provides the current iterate (solution vector) in x anc
pectsthe underlying application to reevaluate the residual ve
andstore it in F\éc.

vi rtual

bool conputeJacobi an(const Epetra_ Vector& x) = 0;

Thesolver provides the current iterate (solution vector) in x anc
pectsthe application to reevaluate the Jacobian matrix and st
soit can be accessed by the methetlacobi an() described be
low. This method will only beised in cases where the user speci
usageof an application provided Jacobian in the input options,
Section 9.5.

vi rtual

Epetra_CrshMatri x* getJacobian() = 0;

The method returns a pointer to the Jacobian evaluated at the
recentcall toconput eJacobi an() described above. This methc
will only be used in cases where the user specified usage of
plication provided Jacobian in the input options.

vi rtual

bool conputePreconditioner(const Epetra_Vector& x) = 0;

Themethod is currently not used by the algoritlitnhas to be im
plemented though (e.gith an error message) as it is derived fr
anunderlyingNOX virtual class.

vi rtual

const Epetra_CrsG aph* getGraph() = 0;

Themethod returns the graph of the problem. This could eithe
the graph underlying the Jacobian matribpresent grin the case
the application does not provide a Jacobian, it has to be a ¢
instancecomputed and stored for thpsirpose by the underlying-a|
plication.

vi rtual

const Epetra_CrsG aph* get Modi fi edG aph() = 0;

Themethod returns the modified graph of the constrained prol
asdescribed in Section 7.

21

M.W. Gee, R.S. timinaro

vi rtual

const

vi rtual

Epetra_Map& get Map() = O;

The method returns thEpetra map associated with the solutic
vector.lt is crucial that this map is pointwiggentical to the map o
theresidual vectqgrthe pointwise row map of the Jacobian and
pointwiserow map of the supplied gragh.parallel, any map migh
be specified though the performance of #igorithm benefits from
well chosen distributions of the unknowns as can be generated
a partitioning library such as e.Nletis [13].

doubl e* Get _Nul | space(const int nunmyrows, const int nunpde,

vi rtual

const

const int dimnullsp) = 0;

The method returns vectorgpresenting an approximation to t
nullspaceof the nonlinear PDE operatdn case of elasticity preb
lems, these vectors contain the six rigid body modes afisiceete
domainon the finegrid. The rigid body modes can be easily ec
puted using nodal coordinates of the fine discretization, for de
see [15] and the example in FId.. They are used in the constrL
tion of the algebraic prolongation and restriction operators and
acrucial role to the performance of the oveeddjorithm. The pa
rameters provided are:

nUMYyr ows Number of local rows of a nullspace vector ol
process
nunpde Maximum number of degrees of freedom per

nodeas specifiedh the solver options by the use

di m nul | sp Numberof nullspace vectors expected by the
solver If the user specified the dimension of t
problemas ‘3’ on input, the algorithm expects <
vectors,if the dimension of the problem was
specified as ‘2’ or as ‘1’, the algorithm expect
three or one nullspace vectoespectively

If the method returnSIULL, ML's default nullspace will be use

which might lead to slower convgence rates.

Epetra_Vector* getSol ution() = 0;

The method returns the initial guess or the latest solution ite
storedby the application. It is used only in cases wheratiminear
multigrid is used as a standalone solver insteas$ @ precondition
er. If a preconditioner is used, implementing an emessage is suf
ficient.

22

M.W. Gee, R.S. timinaro

rigid body modes::

translation translation translation rotation
e in x iny inz rourd X
[®
° _direct
8 x—direction 1 0 0 0
9=
S N
% y—direction 0 1 0 X3—X3
Q
8 A
o z-direction 0 0 1 Xo—Xo
©
°
e
c

X 1 nodal coordinates

rotatian
rourd y

X3~ X3

X : coordinates of an arbitrary reference point

Figure11: Nullspace for continuum discretization

virtual bool Get_ Bl ocklnfo(int* nblocks, int** blocks,

int** bl ock_pde) =

Themethod is used if th/ BMETIS’ aggregation scheme is cho
sen by the user on input, see Section 9.5. dgggegatiorscheme
providessupport for variable blocked problems when the number
of degrees of freedom per node is non—congtaatighout the sys
temof equations. In this case the user has to provide additienal in
formation about the nodal block structure of the problem.

nbl ocks (output) Local number of blocks on a process

bl ocks (output) Allocated vector of local length match—

ing the row map obtainely get Map() .

Containgglobal numbering of blocks where the
index base is zero.
bl ock_pde (output) Allocated vector of local length match—

ing the row map obtained lget Map() .

Contains the number of the PDE equation each
point row entry belongs to, where the indmse

is zero.

Both allocated vectors are destroyedliy solver when no longer
needed.If the method return$ al se on exit, the aggregation
schemeéMETIS’ is used and a constant block size is assumed. An
examplefor the construction of this block information is given in

Fig. 12.

23

M.W. Gee, R.S. timinaro

graph: X X X X X
noce 0 X X X X X
X X X X X
X X X X
nock 1 X X X X
X X X X
X X X X
X X X X X
noe2) |y x x X X
blodk data: *nblocks = 3
bocks | 000111122
block pde | 0120123001

Figure 12: \driable block data

bool isnewlacobian() { return isnewldacobian_; }

Returnsthe variabldbool i snewJacobi an_ from class
M__NOX: : M._Nox_Fi nei nterface. Thisvariable should
besetta r ue byconput eJacobi an whenever a Jacobian is re
evaluatedlt should be set tbal se by conput eF whenever a
new residual isevaluated. This allows the solver to determine
whetherthe current Jacobian matches the current residual.

i nt getnumlacobi an() { return numlacobi an_; }

Returnsthe variabla nt numlacobi an_ from class

M__NOX: : M._Nox_Fi nei nterface. Thisvariable should
be incremented bgonput eJacobi an whenever a Jacobian is
reevaluatedlt is used for statistical output.

void resetsuntinme() { t_ =0.; return; }

Usedinternally to reset the summed time spenthm interface. It

is used to measure time spent in the interface and application sepa
ratelyfor the solver setup and the iteration phase.usesl for statis

tical output.

24

M.W. Gee, R.S. timinaro

i nt getnuntal | scomputeF() { return ncalls_conputeF_}

Returnsthe variabla nt ncal | s_conput eF_ from class
M__NOX: : M._Nox_Fi nei nterface. Thisvariable should
beincremented bgonput eF whenever a residual is reevaluated.
It is used for statistical output.

bool setnuntal |l sconputeF(int ncalls) { ncalls_conputeF _=ncalls;
return true;}

Usedinternally to reset the variablent ncal | s_conput eF_
from classM_L_NOX: : M._Nox_Fi nei nterface. Itisused
to measure the number of callsdonput eF separatelyfor the
setupphase and in the total.

9.3 Nonlinear multigrid as a solver

The nonlinear multigrid class can be used as a solver though in most cases it is recommended

to use it as a preconditioner to some outer nonlinear iteration, see Section 9.4. Hesere

the principal setup of the method in Fig. 13 using the solver capability of the class.
Thenonlinear multigrid class can loenstructed (Fig. 13, line 108) after definingkgye-

tra_Comm derived communicator obje@,map reflecting the distribution of solution and re

sidualvectors, rows of the problem graph and the Jacobian. Detailed fudotamentation

is also provided in théri | i nos/ packages/ nl / doc directory ofthe distribution. Fal

lowing line 110 in Fig. 13, a variety of options can be chosen which are discussed in detail in

Section9.5.

After all options are chosen and passed toMheNOX: : M._Nox_Pr econdi ti oner

classthesol ve() method starts the setup phase and the iterative soprtieedure of the

multigrid method.

9.4 Nonlinear multigrid as a preconditioner

It is recommended to use the nonlinear multigrid as a preconditioner to some outer nonlinear
Krylov iteration. The basic setup of the preconditioner has already been described in Section
9.3. Additionally, the user has to setup the outer Krylov solver and register the preconditioner
with it. As describing the setup ofNDX solver would exceed the purpose of this report, we
referto [16] and the examplgpplication provided with the distribution and described ir Sec
tion 9.6.

25

M.W. Gee, R.S. timinaro

0 #i f def PARALLEL

1 #i ncl ude “Epetra_Mi Conm h”

2 #el se

3 #i ncl ude “Epetra_Serial Comm h”
4 #endi f

5

6 #i ncl ude “Epetra_Map. h”

7

8 #i nclude “nyinterface. H

9 #include “m _nox_preconditioner.H
(...)

50 #ifdef PARALLEL

51 Epetra_Mi Conm Comm(npi conm);
52 #el se

53 Epetra_Serial Comm Com();

54 #endif

(...)

100 // create the M._NOX : M._Nox_Fi nei nterface
101 // derived application interface

102 MW _APP_| NTERFACE inter(Conm);

103

104 // get the fine grid row and vector map
105 Epetra_Map& map = inter.Get Map();

106

107 // create the nonlinear multigrid class
108 M__NOX : M__Nox_Preconditioner Prec(inter, map, nap, Comm) ;
109

110 // choose options

(...)

150 // solve

151 bool ok = Prec.solve();

Figure13: Setup of the nonlinear algorithm

9.5 Nonlinear preconditioner options

Oncethe ML_NOX: : M._Nox_Precondi ti oner class is created as shown in Fig. 13, line

108, there exist several methods to pass options to the class and override the default-configura
tion.

In the following, options as well as the methods to pass options to the preconditioner class are
listedand discussed. Note that some option choices might confiaigbt not have any fefct

at all depending ohow other parameters are chosen. It is therefore recommended to study the
variantscarefully

26

M.W. Gee, R.S. timinaro

bool Set NonlinearMethod(bool islinPrec, int maxlevel,

i slinPrec

max| evel

ismatri xfree

i smatri xfreel evO

fi xdi agonal

constraints

bool ismatrixfree, bool isnmatfreelevO,
bool fixdi agonal, bool constraints);

Choiceof principal properties of the algorithm.

If t r ue, the preconditioner will act as a standargar algebraic
multigrid preconditionerlf f al se, the nonlinear &S scheme
(Section3) will be used. When actirgg a linear preconditionep
tionsfor choosing nonlinear smoothers and a nonlinear V—cycle do
not take efect.

Maximum number of grids including the given fine grid.

If t r ue, the preconditioner will never call the interface to supply
aJacobian matrix. Instead it will use finitefdifencing to construct

a Jacobian itself. Note that finite thfencingcan be costly and is
performedon every grid. Also, as there is no Jacobian present in the
setup of the algebraic coarse grid hierarciptain aggregation
insteadof smoothed aggregation multigrid will be used to construct
prolongationand restriction operators.

If t r ue in combination with smat ri xfree=t rue, theprecondi
tioner will use finite diferencing on the fine grid only and will
construct avariational coarse grid hierarchy using smoothed ag
gregationmultigrid. It is recommended to use eitherat ri xfree

= ismatfreelevO0 = true Orto usa smatri xfree =

i smatfreel ev0 = fal se in case the underlying application can
supplya Jacobian matrix.

If t rue, the algorithm will check the Jacobian matrix on the fine
grid for rows without any nonzero entries (empty rows). If such an
emptyrow is found, a reasonab$yzed value will be added to the
maindiagonal of that rowT his might become necessary with some
applications thougimn general no empty rows should appear and the
optionshould therefore be chosenftd se by default.

If true, the algorithm will apply variational constraint enforce
mentas described in Section 7.

27

M.W. Gee, R.S. timinaro

bool Set Nonli near Sol vers(bool usenl nCG fine, bool usenl nCG
bool usenl nCG coarse, bool useBroyden,
int niters fine, int niters,
int niters_coarse);

Choiceof nonlinear smoothing and solving algorithm and the m
mum number of iterations to be taken on distinct grids.

usenl nCG fi ne, If t r ue, the preconditioner will use nonlinear GG a nonlinear

usenl nCG, methodon the fine, all intermediate and on the coarse grid, resy

usenl nCG coarse tively. If f al se, quasi-Newtomethod will be used. Usage of Ron
linear CG and Newtors method can be mixed among grids.

niters_fine, Whenchoosing a quasi—-Newton method on a grichear CG solve
niters, will be performed inside each Newton step. The maximum nui
niters_coarse of linear CG iterations to be taken can be specified by these

ables.These optiondo not take é&ct when nonlinear CG is chos¢
asthe nonlinear smoothing method.

bool SetPrintLevel (int m _printlevel);

Choiceof the amount of output to be generated during setup-al
eration.nl _printl evel can take values between 0 (no output)
10 (full output). A value of 6 results in a reasonable amount of-ir
mation.

bool SetDi nensions(int spatial Dinmension, int nunPDE, int di n\S);

Provideinformation about the spatial dimension of the problem,
nodalblock size and the nullspace to be used.

spatial Di mensi on Specify 1, 2 or 3 for 1D, 2D or 3D problems, respectively

nunmPDE Numberof PDE equations. Igeneral equal to the number of c
greesof freedom per node on the fine grid and the nodal block
of the Jacobian matrix. If the aggregation scheBMVETI S” is
usedand the problem is of variable block size, thgdat block size
in the system has to be specified.

di mN\S Dimensionof the approximation to the nullspacetbé fine grid
nonlinearoperator seeSection 2. For 3D structural problems, tl
usuallywould be the 6 rigid body modes of the discretized boely
glecting Dirichlet boundary conditions. The number of nullsp:
vectorsdi NS hasto be lager or equal taunPDE.

28

M.W. Gee, R.S. timinaro

bool Set CoarsenType(string coarsentype, int maxlevel,

coar sent ype

max| evel

maxcoar sesi ze

nnodeper agg

i nt maxcoarsesi ze, int nnodeperagg);

Choiceof ML's aggregation method in the generation of the co
grid hierachy

ThoughML supports several other aggregation schemes, the 1«
earpreconditioner class currently suppdrtdncoupl ed” , “ ME-
TI'S” and“ VBMETI S’ , see also [15]The” VBMETI S” scheme
is currently the only scheme supporting problems wahconstant
nodal blocks, also see Sections 2 and“VBMETI S” can also be
used for constant blocksized problems though tHeMETI S’
schemds more dicient in this case resulting in an identical gr
hierarchy.

Maximumnumber of levels to be generated. The maximum nur
of levels to be used dependstba problem size but should be ke
assmall as possible without resulting in a togéacoarse grid preb
lem.

The setup of the multigrid hierachy stops generating coarser |
whenthe current coarsest grid has less tiatoar sesi ze equa
tions.

Whenusing the* METI S” or “ VBVETI S’ aggregation scheme
the tagetnumber of nodal blocks per aggregate can be spec
Standarcthoices are 9 in 2D and 27 in 3D. Choosing less noele
aggregate results in gr and eventually more coarse grids, chc
ing more nodes peaggregate results in a faster decay of grid :
andeventually less coarse grids (a ‘cheapearse grid hierarchy
atthe cost of reduced congence rates. The option does not hi
anyeffect when thé Uncoupl ed” aggregation scheme is chos¢

bool Set ConvergenceCriteria(double FAS nornf, double FAS nupdate);

Choosethe convegence criteria norm of the residual vector &
normof the update vector for all grids. The nonlinear smoothin
eration (nonlinear CG or quasi—Newton method) on a grid w4ll
minatesuccessfully when either of these criteria is met. Note
thesecriteria should be chosen equal or smaller than for the ou
nonlinearKrylov method if used as a preconditioner

29

M.W. Gee, R.S. timinaro

bool Set ReconputeOffset(int offset);
bool Set ReconmputeOffset(int offset, int reconputestep,
doubl e adaptreconpute, int adaptns);

Optionsto choose when to recompute the multigrid hiera€mgce

the multigrid hierachy and the Jacobian operatorscaraputed
they do not change throughout the nonlinear iteration. In order to
speedup the iteration process it might be useful to recompute this
data from time to timeSeveral ways to do so can be chosen using
these parameters.

of f set Everyof f set nonlineariterations, the multigrithierachy and Ja
cobian operators adestroyed and recomputed from scratch. If no
recomputation is desiredi f set should be chosen as a venygkar
number.

reconmput est ep It might beadvantagous to recompute the multigid hierachy once
after a few nonlinear iterations have takplace. When coming
closerto the solution, the approximation quality of the Jacobian op
eratorsand the multigrid preconditioner increases. The multigrid
hierarchyis recomputed once after theconput est ep iteration.
Choosing econput est ep to O indicates that the hierarchy is not
recomputed.

adapt r econput e If the initial guess to the nonlinear iteration is far from the solution,
the nonlinear multigrid preconditioner might have poor approxima
tion properties and divgence might occuirhe multigridhierachy
is recomputed every time the residual norm of the outsigiov
methodis laiger thanadapt r econput e. Choosingadapt recom
put e to 0.0 will not recompute the hierachy

adapt ns Number of additional near—nullspace components to be computed
by an adaptive smoothed aggregation setup procedure, see also Sec
tions 2, 8.3 and [4]. If chosen to 0, no adaptive setup will be per
formed.

30

M.W. Gee, R.S. timinaro

bool Set Smoot hers(string finesnoothertype, string snoothertype,
string coarsesolve);

Choiceof linear smoother/preconditioning method to be used
preconditionetto thenonlinear CG or thelinear CG solve inside
Newtonmethod on the fine, intermediate and coarse ggshee
tively. Options recognized ateSGS” for domain—decompositiol
symmetricGauss—Seidel,BSGS” for domain decomposition sy
metric block Gauss—SeidélJacobi ” for damped Jacobi smoett
ing,“ MLS” for polynomialsmoothing; Bcheby” for block Che
bychev polynomial smoothing and AmesosKLU’ for a direct
solve.Recommended afedVLS” and” SGS’ , where* AnesoskK-
LU’ is supposed to be used on the coarsestagriyl The number
of smoothing steps to be taken within one iteration of nonli@éa
or one iteration ofinear CG inside a Newton step is specified us
Set Snoot her Sweeps.

bool Set Smoot her Sweeps(i nt nsmooth_fine, int nsnooth,
i nt nsnoot h_coar se);

Specifiesthe number of smoothing sweeps of fimear smoother
specified usinget Snoot her s. In cases usingAnesosKLU’
choosinga 1 is recommended. Inase of using‘M.S" or
“BCheby” , the number specified is usedthe polynomial ordei
of the smootherContrary to linear multigrid methods, it is obsen
that using more powerful smoothing methods or msmeothing
sweepss eficient in the nonlinear case.

bool SetFiniteDi fferencing(bool centered, double al pha, double beta);

Optionsto specify parameters of the finitefdilencing for the Jaeo
bian operators. Whetent er ed=t r ue, central finite diferencing is
usedat the cost of twice as many residual evaluations (see
Section6). Parametersl pha andbeta are perturbatiorvalues
from Eq. (26).Finite differencing is always performed using gra
coloring. However if the problem has variabtedal block sizes
block collapsed coloring is currently not supported trealgo
rithm will employ scalar coloring. lit is chosen to use the Jacobi
suppliedby the underlying application as specifieddey Nonl i -
near Met hod, no coloring and no finite dérencing will be per
formed.

31

M.W. Gee, R.S. timinaro

bool Set FAScycle(int prefsnpoth, int presnooth,
i nt coarsesnooth, int postsnoot h,
i nt postfsnooth, int nmaxcycle);

Optionsto specify the layout of the potentially nonsymmetASFK/—cycle. For the finest,
intermediateand coarsest grids, the maximum numdiepresmoothing, coarse grid and
postsmoothingterations can be chosen. Choosing faed post iteration numbersfeifent-

ly results in a nonsymmetric V—cycle. Exceptdoar sesnoot h, all values can aldoeinde
pendentlychosen to be zero, see also Fig. 14a.

Whenconvegence is achieved on some intermediate grid irpteemoothing phase, no
coarser grid is visited but instead the algorithm returns to the postsmopliaisg of the
next finer grid. For a graphical illustration, see Fig. 14b.

a) nonsymmetic FAS \—cycle qgotions for pre— ad postsmoothig rumbe of iterations

(_

oute nonlinea CG
prefsmooth=0 postfsmooth=4

fine

presmooth=2 postsmooth=3

presmooth=2 postsmooth=3

presmooth=2 postsmooth=3

Y

coarse
coarsesmooth=4

b) convergene during presmoothig dep

(_

oute nonlinea CG

proceé o postsmoothig
/ on rex finer grid

convergene aiteria is met

Figure 14: NonsymmetricAS v—cycle

32

M.W. Gee, R.S. timinaro

9.6 Example application

An example application using the nonlinear multigrid is given in the subdirectory
Trilinos/ packages/ m / exanpl es/ Nonl i nM./
of the Trilinos installation. It is a simple one dimensional nonliniate element problem
wherethe number oélements is specified by the user on the command linefidiesafly large
number(e.g. 10000) must be specified to allow for generation of at least one coarse grid by
ML.

The file m _nox_1Del asticity_exanpl e. cpp contains the main routine
whereall solver parameters are set. The fitesi t eEl enent Pr obl em cpp andPr ob-
| em I nterface. cpp contain the underlying application and the interface between ap
plicationand solverrespectivelyThe latter is a good example on how the interface described
in Section 9.2 is implemented while the main routine contains one choice of solver options de
scribedin Section 9.5.

10 Conclusion

A nonlinear multigrid solveis described. This description includes algorithm basics as well
asdetailed user instructions for setting up and directing the sdhaeinformation can be
found withinML's documentation and example directories.

11 References

[1] Adams, M., Brezina, M., Hu, J., uminaro, R. (2003)Parallel multigrid smoothing:
Polynomial versus Gauss-Seidel. J. Comp. Physic4,88/2 593-610.

[2] Al-Baali, M., Fletcher, R. (1996):0n the order of convergence of preconditioned non-
linear conjugate gradient methods. SIAM J. Sci. Comput17, 658—665.

[3] Brandt, A. (1977):Multi—Level Adaptive Solutions to Boundary Value Problems. Math.
Comp.,31, 333-390.

[4] Brezina, M., Falgout, R., MacLachlan,S., Manteuffel, T, McCormick, S., Ruge, J.
(2004): Adaptive Smoothed Aggregation (aSA). SIAM J. Sci. Comp.25, 1896-1920.

[5] Buchter, N., Ramm, E., Roehl, D. (1994)Three Dimensional Extension of Nonlinear
Shell Formulation Based on the Enhanced Assumed Strain Concept. Int. J. Num. Meth.
Eng.,37, 2551-2568.

[6] Briggs, W.L., Henson, VE., McCormick, S.F (2000): A Multigrid Tutorial, Second
Edition. SIAM Press.

33

M.W. Gee, R.S. timinaro

[7] Fletcher, R. (1987):Practical Methods of Optimization, Second Ed.. Wiley, Chichester
England.

[8] Heinstein, M.W., Key, S.W, Blanford, M.L. (): A Multigrid Method for Matrix—free
Solutions of Non—Linear Quasistatic FE Solid Mechanics Problems. Draft, Sandia Na
tional Laboratories.

[9] Heroux, M. Allen, M., Sala, M. (2004):An Overview of the Trilinos package. Technical
ReportNo. SAND2004-1949C, Sandia National Laboratories.

[10] Heroux, M. (2005):AztecOO User Guide. Technical Report No. SAND2004-3796, San
dia National Laboratories. software.sandia.gov/trilinos/packages/aztecoo .

[11] Heroux, M., Hoekstra, R.J., Wlliams, A. (2005):Epetra User Guide. Technical Report
No. SAND2004—xxxx, Sandia National Laboratories. software.sandia.gov/packages/
epetra.

[12] Hoekstra, R., Cross,J., Heroux, M., Willenbring, J., Williams, A. (2005):EpetraExt
linear algebra package. software.sandia.gov/packages/epetraext .

[13] Karypis, G., Kumar, V. (1998):METIS4.0: Unstructured graph partitioning and sparse
matrix ordering system. technical report, Deprtment of Computer Science, Urfiii-
nessota.

[14] Kelley, C.T. (2003):Solving Nonlinear Equations with Newton’s Method. in ‘Fundamen
tals of Algorithms’ series, SIAM Press.

[15] Sala,M., Tuminaro, R.S., Hu, J.J., Gee, M.\M2005):ML 4.0 Smoothed Aggregation
User’s Guide. Technical ReporNo. SAND2004-4819, Sandia National Laboratories.
software.sandia.gov/trilinos/packages/ml

[16] Kolda, T., Pawolwski, R., BaderB., Hooper R., Phipps, E., SalingerA. (2005):NOX/
LOCA nonlinear solvers and path following algorithms package within Trilinos. soft
ware.sandia.gov/nox

[17] Shewchuk,J.R. (1994):An Introdution to the Conjugate Gradient Method Without the
Agonizing Pain. Technical Report, Carnegie Mellon Univ

[18] Vanek, P, Mandel, J., Brezina, M. (1996):Algebraic Multigrid by Smoothed Aggrega
tion for Second and Fourth Order Elliptic Problei@smputing, 56, 179—-196.

[19] Vanek, B, Brezina, M., Tezaur, R. (1999):Two—-Grid Method for Linear Elasticity on
Unstructured Meshe§ AM Journal on Scientific Computing, 21, 900-923.

34

M.W. Gee, R.S. Iminaro

[20] Vanek, P, Brezina, M., Mandel, J. (2001)Convegence of algebraimultigrid based
on smoothed aggregatiddumerische Mathematik, 88, 559-579.

[21] WohIimuth, B.l. (2001):Discretization Methods and Iterative Solvers Based on Domain
Decomposition. Lecture Notes in Computational Science and Engineering 17, Springer
Press, Berlin, Germany

35

