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Outline

• Motivation for sensitivity analysis (SA) and uncertainty 
quantification (UQ), including application to code V&V

• Using computational models for design, margin 
evaluation, reliability analysis, prediction, etc.

• The DAKOTA toolkit and UQ methods implemented, 
focusing on sampling, epistemic, and reliability 
methods

• Sample application of reliability analysis to MEMS
• Our view on relevant future research directions and 

challenges

Thanks to M.S. Eldred, A.A. Giunta, W.L. Oberkampf, L.P. Swiler, and T.G. 
Trucano of SNL for slide content and helpful input.



Why Uncertainty Quantification (UQ)?
Need to design systems given uncertain/variable material properties, 
manufacturing processes, operating conditions, models (including 
science, equations, numerics, and code), measurements…

Uncertainty must be properly modeled to quantify risk
and design robust and reliable systems.

Example of UQ aware design: UQ-based approach to optimization under 
uncertainty (OUU) – helpful when safety factors, multiple operating 
conditions, local sensitivities insufficient.

Aleatory / irreducible
inherent variability with sufficient data

(probabilistic models)

Epistemic / reducible
uncertainty from lack of knowledge

(non-probabilistic models)
vs.

Crucial: recognize difference between design/test conditions vs. 
operation (e.g., component tests vs. full system operation, calibration in 
one regime to operate in another):  based on uncertainty, in what regime 
do we trust the results?



Sample SNL UQ Applications

d

MEMS device

joint mechanics

penetrators

Nuclear power-related projects

shock physics

• Yucca Mountain analysis, including multi-fidelity reactions, 
geochemistry, hydrology, geology, flow UQ (1M year scale)
• Waste Isolation Pilot Plant (Carlsbad, NM) long-term safety
• Nuclear reactor safety (Rod Schmidt)
* Expertise in fault trees, including aggregating probabilities,
performing sensitivity analysis, and impact of terrorist attacks



Waste Isolation Pilot Plant (WIPP)
• Sandia responsible for ongoing evaluation and 

recertification (http://www.sandia.gov/E&E/risk/wast2.html)

• Consequence and uncertainty analysis, including:
– probabilistic characterization of likelihood of different futures 

occurring at WIPP site over 10,000 year period
– estimating radionuclide releases to accessible environment in 

each scenario 
– probabilistic characterization of uncertainty in models/parameters 

on which regulation and performance assessment are based



UQ and Verification & Validation

• Analysis based on (possibly coupled) computer models of complex 
systems with many uncertain calibration and input parameters, 
numerical approximations, possible error cancellation  
– Discrete event and logistics simulators (e.g., to model waste 

handling or supply chain) expensive to solve
– Large-scale physics or chemistry-based models (e.g., to model 

reactions, long-term degradation) often finite element, nonlinear, 
expensive to solve

• Need to change the engineering simulation culture from “high 
fidelity, deterministic physics” to “best estimate plus uncertainty”

• Codes implementing complex simulations need fidelity in 
– correctly representing phenomena; and 
– accurately solving for that representation with computers

model to 
experiment 
comparison 
uncertain

inference from 
comparison 
uncertain

decisions must include 
credibility statements that 
account for uncertainty



Components of Credible Simulation

graphic courtesy 
Bill Oberkampf

SNL/ASC targeting all four areas



• determine variance of outputs based on uncertain inputs (UQ)
• identify parameter correlations and local sensitivities, find 

robust optima
• identify inputs whose variances contribute most to output 

variance (global sensitivity analysis)
• quantify uncertainty when using calibrated model to predict

GOALS:

Model-based Uncertainty Quantification
Forward propagation: quantify the effect that uncertain 
(nondeterministic) input variables have on model output

Input Variables
(physics parameters, 
geometry,  initial and 
boundary conditions)

Computational
Model

Variable 
Performance

Measures

(possibly given distributions)

scenarios and 
environments this is a parametric view



DAKOTA Overview

Goal: answer fundamental engineering questions
• What is the best design?  How safe is it?
• How much confidence do I have in my answer?
Challenges
• Software: reuse tools and common interfaces
• Algorithm R&D: nonsmooth/discontinuous/multimodal, 

mixed variables, unreliable gradients, costly sim. failures
• Scalable parallelism: ASCI-scale apps & architectures
Impact: Tool for DOE labs and external partners, broad application 

deployment, free via GNU GPL (~3000 download registrations)

Nominal Optimized

iterative 
analysis…

DAKOTA
optimization, uncertainty quant, 

parameter est., sensitivity analysis

Computational Model
• Black box: Sandia or commercial 

simulation codes
• Semi-intrusive: SIERRA multi-physics,

SALINAS, Xyce, Matlab, ModelCenter

response 
metrics

parameters
(design, UC, 

state)



DAKOTA UQ Methods
Active UQ development in DAKOTA (new, developing, planned)

– Sampling: LHS/MC, QMC/CVT, Bootstrap/Importance/Jackknife
Gunzburger collaboration
trustworthy and robust, often too costly in high dimension

– Reliability: Evaluate probability of attaining specified outputs / failure
MVFOSM, x/u AMV, x/u AMV+, FORM (RIA/PMA mappings),
MVSOSM, x/u AMV2, x/u AMV2+, TANA, SORM (RIA/PMA)
Renaud/Mahadevan collaborations

– SFE: Polynomial chaos expansions (quadrature/cubiture extensions). 
Ghanem (Walters) collaborations

– Metrics: Importance factors, partial correlations, main effects, and 
variance-based decomposition.

– Epistemic: 2nd-order probability: combines epistemic and aleatory;
Dempster-Schafer: basic probability assignment (intervals); 
Bayesian

With DAKOTA, these methods can be readily combined with surrogates 
(creating/sampling), optimization, and more



Sampling Capabilities
Parameter Studies
• perturb each variable
• “one-off” or one at a time
• simple but inefficient

Design of Computer Experiments (DACE)
and Design of Experiments (DOE)

• LHS, Box-Behnken, Central Composite
• factorial and fractional designs
• orthogonal arrays, OA-LHS

• Support distributions: normal, lognormal, uniform, loguniform, 
triangular, gamma, gumbel, frechet, weibull, histogram, interval

• Also useful for constructing data fit or spanning ROM surrogates.

Output 
Distributions

N samples

measure 1

measure 2

Model

Sampling Methods – typical for forward 
UQ propagation 

• Standard Monte Carlo
• Pseudo-Monte Carlo:  Latin Hypercube 

Sampling (samples from equi-probability 
bins for all 1-D projections)

• Quasi-Monte Carlo (low discrepancy):  
Hammersley, Halton

• Centroidal Voroni Tesselation (CVT):  
approx. uniform samples over arbitrarily 
shaped parameter spaces

including correlations



Epistemic UQ

Second-order probability
– Two levels: distributions/intervals on 

distribution parameters
– Outer level can be epistemic (e.g., interval)
– Inner level can be aleatory (probability distrs)
– Strong regulatory history (NRC, WIPP).

Dempster-Shafer theory of evidence
– Basic probability assignment (interval-based)
– Solve opt. problems (currently sampling-based)

to compute belief/plausibility for output intervals

New

New

Insufficient knowledge to specify prob. distribution  
(subjective, reducible uncertainty)



Analytic Reliability Methods for UQ

• Define limit state function g(x) for response metric (model 
output) of interest, where x are uncertain variables.

• Reliability methods either
– map specified response levels (perhaps corr. to a 

failure condition) to reliability index β or probability p; or
– map specified probability or reliability levels to the 

corresponding response levels.

Mean Value (first order, second moment – MVFOSM)
determine mean and variance of limit state:

simple 
approximation, 
but widely used 
by analysts



Analytic Reliability: MPP Search
Perform optimization in u-space (std normal space corr. to uncertain x-space) 
to determine Most Probable Point (of response or failure occurring)

G(u)

Reliability Index 
Approach (RIA)

Find min dist to G level curve
Used for fwd map z p/β

Performance Measure
Approach (PMA)

Find min G at β radius
Better for inv map p/β z

...should yield better 
estimates of reliability 

than Mean Value 
methods



…actively design while accounting for 
uncertainty/reliability metrics

Augment with general response statistics su
(e.g. μ, σ, or reliability z/β/p) with linear map

Uncertainty-Aware Design

Rather than designing and then post-
processing to evaluate uncertainty…

Standard NLP

minimize
subject to

mostly PDE-based, often transient, some agent-based/discrete event models 
response mappings (fns. and constraints) are nonlinear and implicit

Focus on large-scale simulation-based engineering applications:

minimize
subject to



Optimization Under Uncertainty
Opt 

UQ 

Sim 

{d} {Su}

{u} {Ru}

min
s.t.optimize, accounting for 

uncertainty metrics
(use any of surveyed UQ methods)

nested paradigm

Input design parameterization
• Uncertain variables augment design variables in simulation
• Inserted design variables: an optimization design variable 
may be a parameter of an uncertain distribution, e.g., design 
the mean of a normal.

Response metrics to design for…
…robustness:
min/constrain μ, σ2, 
moments or G(β)
range

…reliability:
max/constrain p/β
(minimize tail stats, 
failure)

…combined/other:
pareto tradeoff, LSQ: 
model calibration under 
uncertainty

da

di
ui

ua

M
odel



Engineering Application Deployment:
Shape Optimization of Compliant MEMS

• Micro-electromechanical system (MEMS) designs are subject to 
substantial variabilities and lack historical knowledge base

• Sources of parametric uncertainty (μ): Material properties, manufactured 
geometries, residual stresses

• Goal: shape optimization of nonlinear FEM to achieve prescribed reliability 
and minimize sensitivity to uncertainties (robustness)

Bi-stable MEMS Switch

13 design vars d:
Wi, Li, θi μ)

μ)

μ)

μ)

)

σσ

simultaneously reliable 
AND robust designs



General Comments on UQ Needs

• Even with good tools, it is difficult to enumerate and quantify input 
uncertainties, propagate them through models of complex systems,
and analyze the results

• How to properly integrate UQ and V&V into a risk-informed decision 
making process is not always (often) clear 

• Naively applied sampling methods can be too costly for complex 
computer models – need more efficient sampling methods 
(surrogates may help) and efficient alternatives

• Need better failure and tail probability analysis (e.g., via analytic 
reliability methods) and epistemic UQ (esp. for numerics) 

• Education: crucial to connect scientists, analysts with breadth of 
available tools for SA, UQ, V&V; help select job-appropriate tools

• Impact: demonstrate importance of these techniques – they are not 
a burden, rather crucial components of risk analysis



5 Year Outlook on UQ Method Needs
• Quantify predictive/extrapolative confidence:  requires response surface 

methods which handle uncertainty
• Sampling stochastic processes (random fields):  in space and/or time, 

possibly non-stationary and non-Gaussian, not just random variables. 
• Intrinsic / Analytic UQ capability: expand role of expansion methods such as 

Polynomial Chaos; solving DEs with random coefficients; issues include set 
of points on which to construct basis for different distribution types, type of 
integration method, etc.

• Efficient methods for higher order moments and tail statistics: success of 
surrogates depends on quantification of surrogate accuracy

• Adaptive Experimental Design
– Importance Sampling, Adaptive OAs

• Efficient sensitivity analysis, better sensitivity metrics
• Epistemic UQ (fuzzy sets, imprecise prob., possibility, info gap, Bayesian)

– Capability to combine aleatory and epistemic uncertainty in one analysis
• UQ treatment in multi-fidelity and/or hierarchical models:  Need efficiency, 

but more important is handling uncertainty at different time or length scales 
across simulations

• 2nd order probability and evidence theory



Conclusions

• Modeling fidelity, sensitivity analysis, uncertainty quantification, 
verification, and validation are crucial to have faith in simulation-
based analysis and quantify risk.

• Uncertainty-aware design optimization is helpful in engineering 
applications where robust and/or reliable designs are essential.

• SNL’s DAKOTA toolkit includes algorithms for uncertainty 
quantification and optimization of computational models.

• DAKOTA strategies enable combination of algorithms, use of 
surrogates and warm-starting, and leveraging massive parallelism.

• Further UQ and OPT capabilities are in development in collaboration 
with the academic community as is deployment to additional 
applications.

briadam@sandia.gov, 
http://endo.sandia.gov/DAKOTA
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Iterator 

Model 

Strategy: control of multiple iterators and models

Iterator 

Model 

Iterator 

Model 

Coordination:
Nested
Layered
Cascaded
Concurrent
Adaptive/Interactive

Parallelism:
Asynchronous local
Message passing
Hybrid
4 nested levels with

Master-slave/dynamic
Peer/static

Parameters

Model:

Design
continuous
discrete

Uncertain
normal/logn
uniform/logu
triangular
beta/gamma
EV I, II, III
histogram
interval

State
continuous
discrete

Application
system
fork
direct
grid

Approximation
global

polynomial 1/2/3, NN,
kriging, MARS, RBF

multipoint – TANA3

local – Taylor series

hierarchical

Functions
objectives
constraints
least sq. terms
generic

ResponsesInterfaceParameters

Hybrid

SurrBased
OptUnderUnc

Branch&Bound/PICO

Strategy

Optimization Uncertainty

2ndOrderProb

UncOfOptima

LHS/MC

Iterator 

Optimizer
ParamStudy

COLINYNPSOLDOT OPT++

LeastSqDoE
GN

Vector

MultiD

List

DDACE CCD/BB

UQ

Reliability

DSTE

JEGA

Pareto/MStart

CONMIN

NLSSOL

NL2SOLQMC/CVT

Gradients
numerical
analytic

Hessians
numerical
analytic
quasiNLPQL

CenterSFEM

DAKOTA Framework



Motivations:
– Surrogates: Data fit, spanning ROM
– UQ

Types:
– Pseudo Monte Carlo: Latin Hypercube Sampling 

(LHS) is a stratified, structured sampling method 
that picks random samples from equal probability 
bins for all 1-D projections. 

– Quasi Monte Carlo: deterministic sequences 
constructed to uniformly cover a unit hypercube 
with low discrepancy. 
E.g., Halton, Hammersley, Sobol

– Centroidal Voronoi Tesselation (CVT): generates 
nearly uniform spacing over arbitrarily shaped 
parameter spaces; originally developed for 
“meshless” mechanics methods.

Associated Tools: 
– Volumetric quality, Latinization
– Correlations, variance-based decomposition

100 CVT Samples in 2-D

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

UV1

U
V2

Sampling Capabilities

New



Epistemic Uncertainty Quantification

• Epistemic uncertainty refers to the situation where one does not know 
enough to specify a probability distribution on a variable

• Sometimes it is referred to as subjective, reducible, or lack of knowledge 
uncertainty

• The implication is that if you had more time and resources to gather more 
information, you could reduce the uncertainty

• Initial implementation in DAKOTA uses Dempster-Shafer belief structures. 
For each uncertain input variable, one specifies “basic probability 
assignment” for each potential interval where this variable may exist.

• Intervals may be contiguous, overlapping, or have “gaps”

BPA=0.5 BPA=0.2
BPA=0.3 Variable 1

BPA=0.5 BPA=0.2BPA=0.3
Variable 2



Outputs from DAKOTA/UQ

• Response metrics evaluated at samples
• Input/output correlations
• Variance-based decomposition (VBD) global sensitivity 

analysis indices
• Quality metrics (e.g., point distribution norm)
• Sample to generate and evaluate surrogates
• Bases for Polynomial Chaos Expansions
• Probability/reliability metrics
• Epistemic complementary cumulative belief and 

plausibility functions (CCBF and CCPF)



ICF Capsule Design – 1D Param Study
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Optimization with Surrogate Models

Purpose:
• Reduce the number of expensive, high-fidelity simulations by 

using a succession of approximate (surrogate) models
• Approximations generally have a limited range of validity
• Trust regions adaptively manage this range based on efficacy during opt
• With trust region globalization and local 1st-order consistency,

SBO algorithms are provably-convergent

Surrogate models of interest:
• Data fits
• Multifidelity (special case: multigrid optimization)
• Reduced-order models

Future connections to multi-scale for managing approximated scales



Trust-Region Surrogate-Based Optimization

Data Fit

Data fit surrogates:
• Global: polynomial regress., splines, 

neural net, kriging, radial basis fn

• Local: 1st/2nd-order Taylor

• Multipoint: TPEA/TANA, …

Data fits in SBO
• Smoothing: extract global trend

• DACE: number of des. vars. limited

• Local consistency must be balanced 
with global accuracy

Multifidelity surrogates:
• Coarser discretizations, looser 

conv. tols., reduced element order

• Omitted physics: e.g., Euler CFD, 
panel methods

Multifidelity SBO
• HF evals scale better w/ des. vars.

• Requires smooth LF model

• Design vector maps may be reqd.

• Correction quality is crucial

Multifidelity

ROM surrogates:
• Spectral decomposition (str. dynamics)

• POD/PCA w/ SVD (CFD, image 
analysis)

• KL/PCE (random fields, stoch. proc.)

• RBGen/Anasazi

ROMs in SBO
• Key issue: capture parameter changes

– Extended ROM, Spanning ROM

• Shares features of data fit 
d l ifid li

New area

ROM



New representations of uncertainty

• Fuzzy sets (Zadeh)
• Imprecise Probability (Walley)
• Dempster-Shafer Theory of Evidence (Klir, Oberkampf, 

Ferson)
• Possibility theory (Joslyn)
• Probability bounds analysis (p-boxes)
• Info-gap analysis (Ben-Haim)
• Bayesian approaches:  Bayesian belief networks, 

Bayesian updating, Robust Bayes, etc.
• Scenario evaluation



Bi-Stable Switch: Results (DOT/MMFD)

Reliability: target achieved for AMV+/FORM; target approximated for MV

Robustness: variability in Fmin reduced from 5.7 to 4.6 μN per input σ [μFmin/β]

Ongoing: quantity of interest error estimates error-corrected UQ/RBDO

MVFOSM-
based RBDO

AMV+/FORM-
based RBDO
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